Welcome to UW Geotechnical Engineering!

MoreHall

-net

thand all

6 minutes from Husky station to downtown Seattle (students receive UPASS = train, bus, ferries)

Life @ UW

West Seattle

Mount Rainer National Park

Alki Beach

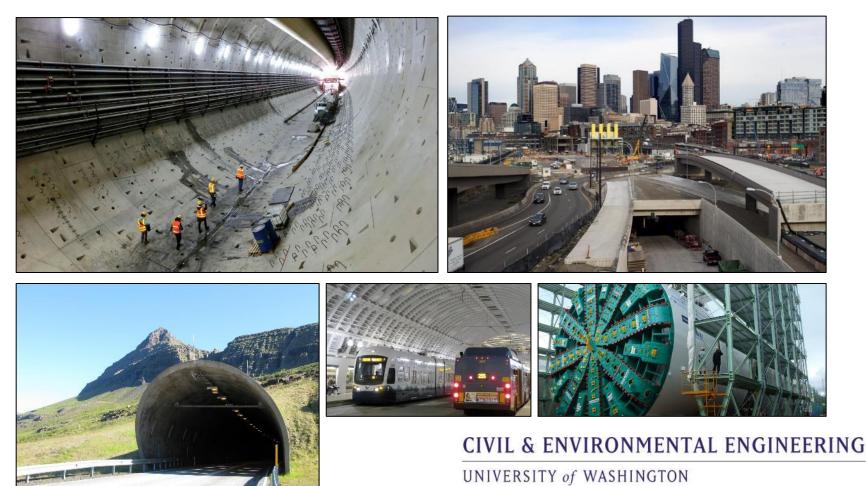
Puget Sound

- > Five Full Time Faculty: Pedro Arduino, Mike Gomez, Steve Kramer, Brett Maurer, Joe Wartman
- > One Emeritus Professor: Bob Holtz

- Additional instructors from industry and government
 e.g., CESG 571: Case Histories in Geotechnical Eng.
- > Guest speakers and seminars throughout year
 - Honorary lectures, ASCE Seattle chapter, GIGGS lunch seminars, visiting academics, geotechnical firms...

What might you do as a geotechnical engineer?

Design structural foundations (infrastructure doesn't float)


What might you do as a geotechnical engineer?

Design retaining walls

What might you do as a geotechnical engineer?

Design tunnels

What might you do as a geotechnical engineer?

Design dams and levees

CIVIL & ENVIRONMENTAL ENGINEERING

What might you do as a geotechnical engineer?

Predict and mitigate various geohazards

What might you do as a geotechnical engineer?

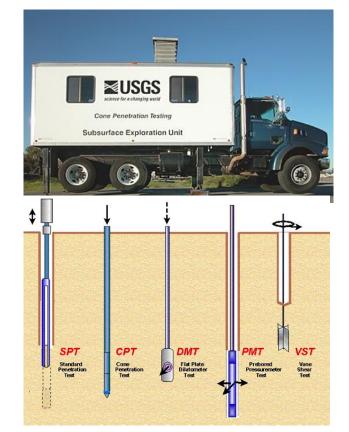
Joe Wartman

Oso WA landslide

Conduct reconnaissance to learn from failures

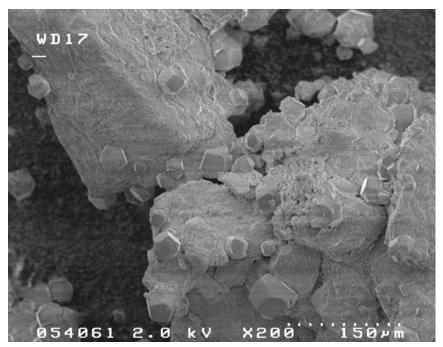
Brett Maurer – New Zealand

Steve Kramer - Taiwan


Pedro Arduino – Mexico City

What might you do as a geotechnical engineer?

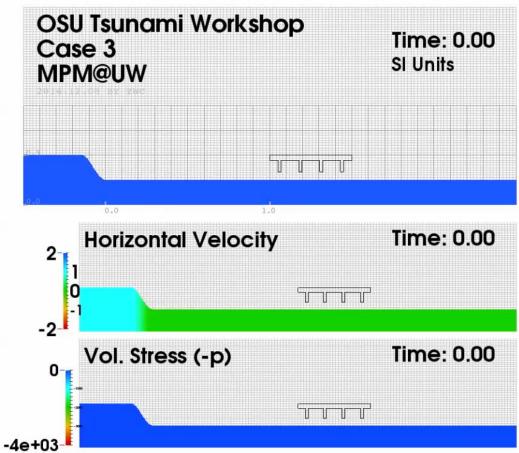
Measure material properties



CIVIL & ENVIRONMENTAL ENGINEERING

What might you do as a geotechnical engineer?

Improve problematic geomaterials


CIVIL & ENVIRONMENTAL ENGINEERING

What might you do as a geotechnical engineer?

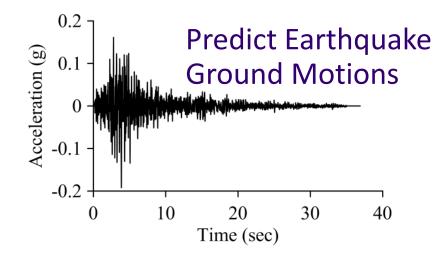
Apply numerical modelling to geotechnical problems

Modeling Granular Material Response

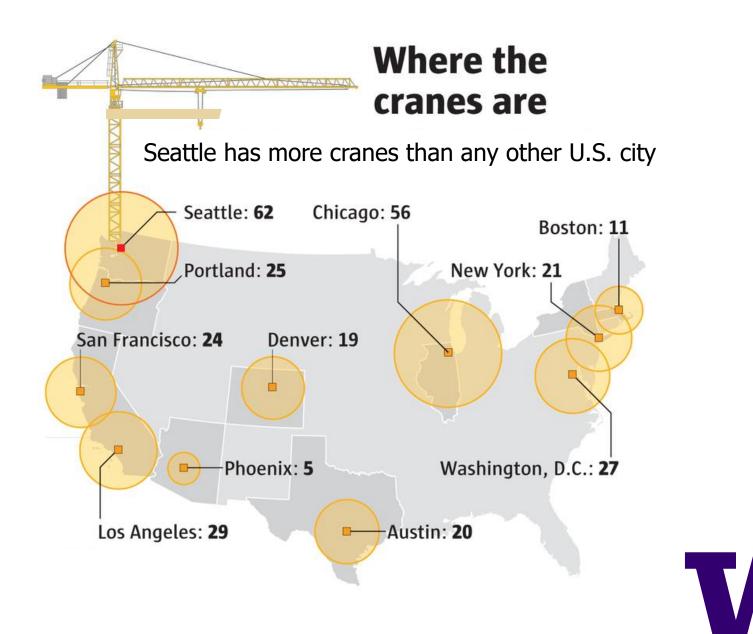
Modeling Fluid Response

What might you do as a geotechnical engineer?

...and solve many other problems involving geomaterials


Settlement

Sinkholes


Polluted Soils

CIVIL & ENVIRONMENTAL ENGINEERING

Geotechnical Engineering in Seattle

Geotechnical Engineering in Seattle

Geotechnical Engineering in Seattle

= An active geotechnical scene, robust community of practicing engineers, and extensive network of UW alumni

Degree Programs

> Master's Degree (M.S.)

– Two options resulting in same degree

Professional Master's Program

Intended primarily for students who are interested in going directly to professional practice. No thesis required.

Research Master's Program

For students who are interested in significant research experience prior to professional practice, or to pursuing a PhD. Generally requires a thesis.

Doctor of Philosophy (Ph.D.)

MS Degree Requirements

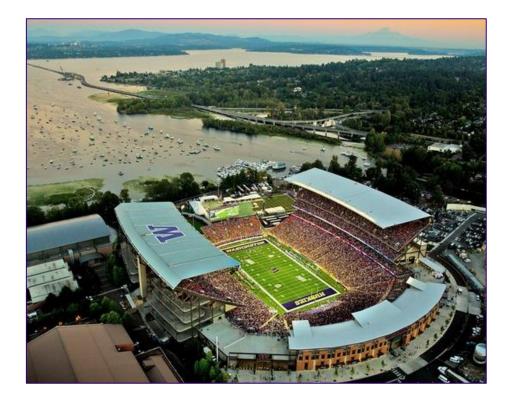
> Two options:

- Professional Track (42 Credits Total):
 - 42 credits coursework
 - Research experience can still be acquired via ind. study with faculty (which replaces elective credits)
- Research Track (42 Credits Total):
 - 33 credits coursework9 credits thesis research (CEE 700)

MS Degree Requirements (Specifics)

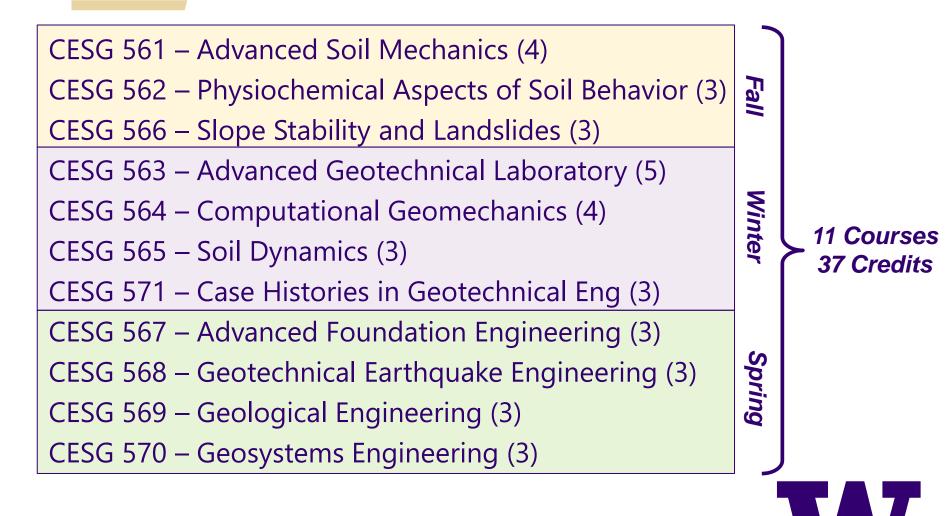
42 Credit Coursework Option:

- The following four courses must be taken (13 credits): CESG 561: Advanced Soil Mech (4); CESG 566: Slope Stability and Landslides (3); CESG 567: Advanced Foundation Engineering (3); CESG 569: Geological Eng (3)
- 2. 19 to 24 credits must be taken from the following list: CESG 563: Adv Geotech Lab (5); CESG 562: Phys-chem Aspects of Soil Beh (3); CESG 564: Computational Geomechanics (4); CESG 565: Soil Dynamics (3); CESG 571: Case Histories (3); CESG 568: Geotechnical Earthquake Eng (3).
- **3. 5 to 10 credits of electives** in any department/program (must take CEE 436 if lacking an UG foundation eng. course)


MS Degree Requirements (Specifics)

42 Credit Research Option:

- The following four courses must be taken (13 credits): CESG 561: Advanced Soil Mech (4); CESG 566: Slope Stability and Landslides (3); CESG 567: Advanced Foundation Engineering (3); CESG 569: Geological Eng (3)
- 2. 15 to 20 credits must be taken from the following list: CESG 563: Adv Geotech Lab (5); CESG 562: Phys-chem Aspects of Soil Beh (3); CESG 564: Computational Geomechanics (4); CESG 565: Soil Dynamics (3); CESG 571: Case Histories (3); CESG 568: Geotechnical Earthquake Eng (3).
- 3. 9 credits of CEE 700 (Master's thesis)
- **4. 0 to 5 credits of electives** in any department/program (must take CEE 436 if lacking UG foundation eng. course)


PhD Degree Requirements

- 90 credits total
- M.S. degree counts for 30 credits
- At least 18 course credits
- At least 27 research credits
- Additional Exams

2021-2022 Graduate Geotechnical Courses

Example 9-Month MS Degree Plan (42 Credits)

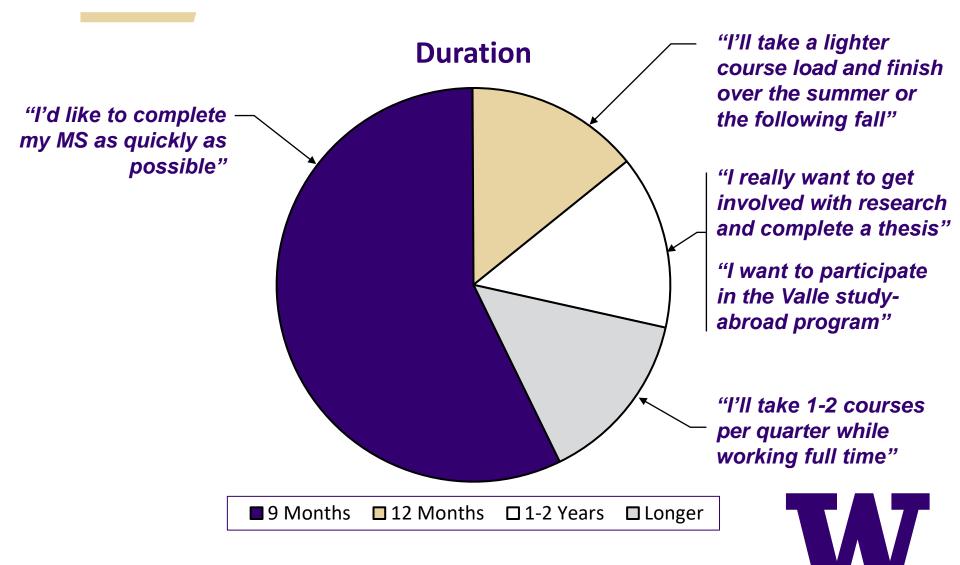
Autumn Quarter 2021	Winter Quarter 2022	Spring Quarter 2022
Adv. Soil Mechanics (4)	Soil Dynamics (3)	Adv. Foundations (3)
Slope Stability (3)	Comp. Geomech. (4)	Geological Eng. (3)
Phys. Chem. Aspects (3)	Adv. Geotech. Lab (5)	Geotech. Eq. Eng. (3)
U.G. Foundations* (3)	Case Histories (3)	Elective Credits (0-5)
<i>and/or</i> Elective Credits (0-3)	Elective Credits (2-5)	
13-16 Credits	15 Credits	12-14 Credits

* Required if missing an equivalent undergraduate course; otherwise optional

Graduate Elective Courses

Other Programs in CEE

 Remote Sensing, Risk & Reliability, Programming Languages, Mechanics, Materials, Hydraulics, Coastal Engineering, Pavements, Construction, Transportation...


Other Departments

- Earth and Space Sciences: Geology, Geophysics, Seismology, Geomorphology
- Statistics, Applied Math, Comp Sci
- Law School, Construction

Ind. Research/study with geotech faculty

Mix and match with geotechnical coursework to satisfy graduation requirements and personal interests

How long does it take to complete an MS at UW?

Graduate Program

- Typically 20-25 students
- Currently ~50% women, ~50% men
- GIGSS (student group) seminars, field trips, social activities, ASCE activities

Laboratory Equipment

- Soil classification
 - Permeability
 - Consolidation
 - Direct shear
- Triaxial testing device
- Direct Simple Shear (New)

Specialized Laboratory Equipment

- Computer-controlled GDS actuators and Bishop-Wesley cell for stress path testing.
- Large cuboidal shear (true triaxial) device, 250 mm on a side
- Smaller cuboidal shear device (100 mm)
- SBEL (Stokoe) resonant column
- Large scale ring shear device
- New K_o oedometer ring
- Shaking table with 2 x 2 x 1.5 m soil bin.
- Geosynthetics equipment for specialized research on filtration, separation, and reinforcement properties

"Dear

UCS/

Multitest

Vs System

ans TR

Triaxial

Apparatus

More Hall Room 14 Lab Space

De tra

Dynamic

DSS

100

6

EARTHQUAKE EXAMPLE ILLUSTRATING LINKS BETWEEN STRATEGIC APPROACHES, INSTRUMENTATION, AND DATA COLLECTION PRODUCTS

Overarching Strategic Reconnaissance Research Approaches

1. Collect data across temporal scales, e.g. evolution of co-seismic landslide with time, recovery and return to home for affected persons

- 2. Collect data across geospatial scales, e.g. community-level and site-specific damage mapping, regional geology trends and site period
- 3. Collect data and integrate across disciplines, e.g. collect building damage and socio-economic data in identical effected communities

UAS lidar: Aerial mapping of ground failure to obtain high-resolution, obtain orthophotos bare-earth DEM

UAS camera: Aerial mapping of building damage patterns to and DEM

Seismometer: measure natural period and aftershocks to obtain site characteristics

Camera and geomatics control: SfM survey to map building damage to obtain 3D model for obtain social interrogation

iPad App: interview affected persons to science data

Terrestrial lidar: map ground failure and affected structures to obtain highresolution DEM

AUV/single beam: submarine mapping to obtain bathometry

co-seismic

landslide

undamaged damaged building building

strong shaking/ site effects

tsunami inundation

liquefaction and lateral spreading

affected

person

tsunami-induced erosion

and deposition

Questions?

