3-D Static Elastic Constants and Strength Properties of a Glass/Epoxy Unidirectional Laminate

Daniel D. Samborsky, John F. Mandell and Pancasatya Agastra Department of Chemical and Biological Engineering Montana State University, Bozeman, MT 59717

Abstract

This report presents the results of static tensile, compressive and shear stress-strain tests in the three primary material directions for a unidirectional laminate typical of wind turbine blade construction. Test coupons were machined from six-ply (in-plane properties) and 80-ply laminates prepared by resin infusion of Vectorply E-LT-5500 unidirectional glass fabric (containing about 6% transverse glass backing strands) with Epikote MGS RIMR 135/Epicure MGS RIMH 1366 epoxy resin. Results are given for elastic constants, strengths, and best-fits to stress-strain curves.

Property Summary

The material directions and coupon orientations are described in Figure 1. Average elastic constants and strengths are given in Table 1 in the material principal directions. Properties are averages for coupons with the same stress direction, but orthogonal coupon orientations, such as LTZ and ZLT, which are given separately in the following sections.

Table 1. Average 3-D elastic and strength properties for thick unidirectional glass fabric/epoxy laminate and for neat resin.

LAMINATE ELASTIC	$V_F = 56.8 - 58.2\%$
CONSTANTS ¹	
Tensile Modulus E _L (GPa)	44.6
Tensile Modulus E _T (GPa)	17.0
Tensile Modulus Ez (GPa)	16.7
Compressive Modulus EL (GPa)	42.8
Compressive Modulus E _T (GPa)	16.0
Compressive Modulus E _Z (GPa)	14.2
Poisson Ratio vLT	0.262
Poisson Ratio v _{LZ}	0.264
Poisson Ratio VTL	0.079
Poisson Ratio v _{TZ}	0.350
Poisson Ratio vzl	0.090
Poisson Ratio vzt	0.353
Shear Modulus GLT (GPa)	3.49
Shear Modulus GLZ (GPa)	3.77
Shear Modulus G _{TL} (GPa)	3.04
Shear Modulus G _{TZ} (GPa)	3.46
Shear Modulus GzL (GPa)	3.22
Shear Modulus G _{ZT} (GPa)	3.50

¹Tensile and compressive moduli and Poisson's ratios determined from best fit line between 0.1% and 0.3% strain; shear moduli calculated from best fit line between 0.2% and 0.6% shear strain.

LAMINATE	STRESS	STRENGTH	ULTIMATE		
STRENGTH	DIRECTION	(MPa)	STRAIN		
PROPERTIES			(%)		
Tension	L	1240	3.00		
Tension ¹	Т	43.9	0.28		
Tension	Ζ	31.3	0.21		
Compression	L	-774	-1.83		
Compression	Т	-179	-1.16		
Compression	Ζ	-185	-1.44		
Shear ²	LT	55.8	5.00		
Shear ²	LZ	54.4	5.00		
Shear	TL	52.0	4.60		
Shear ²	ΤZ	45.6	5.00		
Shear	ZL	33.9	1.10		
Shear	ZT	28.4	0.81		

¹Transverse tension properties given for first cracking (knee) stress ²Shear values given for 5% strain following ASTM D5379

Neat Resin Properties	
Tensile Modulus (GPa)	3.53
Poisson's Ratio	0.347
Compression Modulus (GPa)	2.98
Shear Modulus (GPa)	0.990
0.2% Offset Tensile Yield Stress (MPa)	41.0
Ultimate Tensile Strength (MPa)	76.3
Ultimate Tensile Strain (%)	4.20
0.2% Offset Compressive Yield Stress (MPa)	-64.7
Ultimate Compressive Strength (MPa)	-91.0
Ultimate Compressive Strain (%)	-5.38
0.2% Offset Shear Stress (MPa)	26.1
Shear Stress at 5% Strain (MPa)	37.7

Experimental Methods

Materials and Processing

The unidirectional glass fabric/epoxy laminates were composed of Vectorply E-LT-5500 infused with Epikote MGS RIMR 135/Epicure MGS RIMH 1366 (100 to 30 mass ratio) epoxy resin. While the primary (warp) reinforcing strands are in the longitudinal direction, the fabric also contains about 6% transverse (weft) backing glass strands to which the warp strands are stitched; the backing strands are irregularly spaced, as shown in the transmitted light photographs in Figure 2. Warp strands are PPG 4400 Tex with Hybon 2026 sizing. There is sufficient backing strand content to significantly influence the properties in some directions. The areal weights of the fabric construction are detailed in Table 2; since the fabric is not strictly unidirectional, it is designated 0b. The stacking of fabric and strands in the 80 ply laminate is shown in Figure 3 for a transverse slice. The internal structure is very heterogeneous on the scale of many 12.7 mm wide coupons, and transverse strands vary as to the number present in the coupon cross-section.

Figure 2. Transmitted light photographs of Vectorply E-LT-5500 (Front and Back)

Figure 3. Through-thickness fabric strand stacking for infused 80 ply laminate (50 mm wide x 90 mm high slice).

Manufacturer and Product	Fiber Areal Weight, g/m ²						
Designation	Total	0°	90°	-45°	+45°	mat	stitch
Vectorply E-LT-5500	1875	1728	114	0	0	0	33

Table 2. Fabric Construction

Properties were determined from 6-ply laminates for in-plane (L, T, LT, TL) properties to reduce possible effects of machining. Properties with a thickness (Z) direction stress were determined from an 80-ply thick laminate, with test coupons removed by wet machining with a diamond edge saw.

The 80-ply thick laminate, (0b)80, 79 cm long by 27 cm wide by 9.2 cm in thickness, was carefully cure monitored to reduce cure errors related to the curing exotherm. After the room-temperature infusion was completed, the laminate was initially cured on a RT aluminum mold plate until the exotherm subsided (about 12 hrs), then the mold plate temperature was raised to 70°C (mold surface temperature) for 12 hours, de-molded and placed in a post curing oven at 70°C for another 12 hours. Four thermocouples were placed in the laminate for temperature monitoring, detailed in Figure 4. The 6-ply laminate, (0b)6, used for in-plane properties was cured at RT for 24 hours, followed by a 12 hour post-cure at 70°C. Table 4 gives fiber content and ply-thickness data for the two laminates.

Table 5. Fiber Volume Fraction (ASTNI D2504)									
Number of	Fiber Volu	me Fractio	on, VF	Thiskness Average mm/nly					
Layers	Average,%	STD	COV	Thickness, Average him/piy					
6-ply laminate	56.8	0.34	0.6	1.19					
80-ply laminate	58.2	0.52	0.9	1.16					

Table 3. Fiber Volume Fraction (ASTM D2584)

Test Methods

Tests were conducted on an Instron 8562 servo-electric test system at a displacement ramp rate of 0.025 mm/s. Axial strains were determined with Micro-measurements Group C2A-06-125LW-120 strain gages for tensile and compressive strains, and C2A-06-062LT-120 strain gages for transverse (Poisson's ratio) and shear strains. For the compression coupons, strains were calculated as the average of gages were on both (width) faces.

A variety of test coupon geometries were used following the indicated test standards, with deviations from standard geometries such as added tabs or thickness tapering to obtain gage section failures. Figure 4 gives the various coupon geometries.

Tensile coupon geometries (ASTM D3039 and D638 with variations)

TZL thickness tapered tension (25 mm wide)

ZTL, ZLT thickness tapered, tension (25 mm wide)

Compression coupon geometries (ASTM D6641)

Neat Resin Coupon Geometries

Figure 4. Test coupon geometries.

Results and Discussion

Table 4 gives detailed results for each coupon orientation and stress direction. Normal stress tests used the two orthogonal coupon orientations each for L, T, and Z direction stresses, indicated in Figure 1. These results are averaged for the property listings in Table 1, but are listed separately in Table 4. Major nonlinearities occur in the transverse tension and shear tests. In transverse tension, a knee in the stress-strain curves is observed at the stress where resin cracking occurs parallel to the warp direction strands, if the weft direction backing strands remain in-tact; separate results are given for the first cracking stress and strain. Stress-strain curves are nonlinear over most of the stress range in shear, so 0.2% offset data are given where values could be determined. Shear results are limited to 5% shear strain or less by ASTM D5379, so the stress at 5% strain is listed instead of ultimate values.

Individual test stress-strain data and best fit stress-strain curves are given in Appendix A, and tabular individual test data are given in Appendix B. Figure 5 compares the best fit stress-strain curves for various cases, with fit equations given in Table 5. Figure 6 gives photographs of failed coupons for each case. Cases with greater scatter evident in Appendix A such as transverse and thickness direction tension (Figures c-f) and ZL and ZT shear (Figures q and r) reflect differences in the number of transverse strands in the gage section, local strand packing features (Figure 3) or the location of the V-notch in the shear coupon relative to the transverse strand position.

There do not appear to be significant differences between coupons taken from the 6-ply laminate (LTZ and TLZ) compared to those sectioned from the 80-ply laminate (LZT and TZL). The longitudinal tension coupons were each machined with a radius (Figure 4), while the other LTZ and TLZ coupons used as-molded surfaces. The fiber content was slightly higher for the 80-ply laminate (Table 3).

Table 4. Detailed Test Results

Tensile Properties

Stress Direction	ress Coupon ection Orientation		ETens	sion, GP	а		Poisso	on's Rati	o Ultimate Tens Stress, MPa			nsile Pa	Failure strain, %		
			Avg	SD	COV		Avg	SD	COV	Avg	SD	COV	Avg	SD	COV
L	LTZ	Е.	43.2	2.1	4.9	ν_{LT}	0.262	0.01	3.2	1180	66	5.6	2.92	0.13	4.4
L	LZT		45.9	2.0	4.4	ν_{LZ}	0.264	0.02	7.3	1293	20	1.6	3.08	0.13	4.2
Т	TLZ	F -	17.2	2.0	12	ν_{TL}	0.079	0.01	17	73.0	3.7	5.0	0.45	0.03	6.5
Т	TZL	ET	16.7	0.73	4.4	ν_{TZ}	0.350	0.02	6.5	65.5	9.6	15	1.09	0.57	53
Z	ZLT	E -	16.3	2.1	13	ν_{ZL}	0.090	0.02	20	32.6	1.6	4.8	0.23	0.02	8.7
Z	ZTL	ΓZ	17.0	2.3	14	ν_{ZL}	0.353	0.06	16	29.9	3.5	12	0.19	0.05	28
	Neat Resin	E	3.53	0.08	2.2	ν	0.347	0.01	1.7	76.3	0.63	0.83	4.2	0.50	12

First cracking (knee) tensile stress and strain

Stress Direction	Coupon Orientation	First stre	crac ss, N	king 1Pa	Strain at First cracking, %			
		Avg	SD	COV	Avg	SD	COV	
L	LTZ							
L	LZT							
Т	TLZ	44.0	3.2	7.3	0.27	0.04	16	
Т	TZL	43.8	6.2	14	0.29	0.06	22	
Z	ZLT							
Z	ZTL							

Compression Properties

Stress Coupon	ECor	npression, (GPa	Ultimate Str	e Compr ress, MF	essive Pa	Failure Strain, %			
Direction	Onentation	Avg	SD	COV	Avg	SD	COV	Avg	SD	COV
L	LTZ	42.5	2.3	5.4	-750	42	5.5	-1.78	0.17	9.5
L	LZT	43.1	1.8	4.1	-797	66	8.3	-1.87	0.25	13
Т	TLZ	16.4	1.8	11	-189	3.7	2.0	-1.18	0.15	13
Т	TZL	15.6	1.3	8.6	-168	24	14	-1.13	0.13	12
Z	ZLT	13.8	0.79	5.7	-180	6.3	3.5	-1.44	0.10	6.6
Z	ZTL	14.6	1.2	8.0	-189	7.2	3.8	-1.44	0.10	6.8
	Neat Resin	2.98	0.02	0.70	-91.0	1.3	1.4	-5.38	0.37	6.9

Shear Properties

Stress Direction	Coupon Orientation	Shear Modulus ¹ , G, GPa			0.2% Offset Stress, MPa			Maximum Shear Stress, MPa			Maximum ² Shear Strain at Maximum Stress, %			
			Avg	SD	COV	Avg	SD	COV	Avg	SD	COV	Avg	SD	COV
LT	LTZ	Glt	3.49	0.39	11	38.7	3.8	9.7	55.8	0.79	1.4	5		
LZ	LZT	G _{LZ}	3.77	0.25	6.6	39.1	2.8	7.1	54.4	2.4	4.4	5		
TL	TLZ	Gtl	3.04	0.37	12	38.0	4.3	11	52.0	1.7	3.3	4.6	0.30	6.5
ΤZ	TZL	Gtz	3.46	0.51	15	36.3	3.6	9.9	45.6	3.0	6.6	5		
ZL	ZLT	Gzl	3.22	0.38	12			-	33.9	5.5	16	1.1	0.28	25
ZT	ZTL	G _{ZT}	3.50	0.44	13				28.4	3.6	13	0.81	0.25	31
	Neat Resin	G	0.99	0.19	19	26.1	4.1	16	37.7	2.0	5.3	5		
	¹ Shear modulus calculated from best fit line between 0.2% and 0.6% shear strains. ² ASTM D5379 limits the maximum shear strain to 5%.													

(b) Compression Best Fit Stress-Strain Curves (Two Scales)

Figure 5 (a, b, c). Best fit stress-strain curves from Appendix A, curve fits in Table 5.

Table 5. Best fit stress-strain curve fits.

Stress Direction	Coupon Orientation	Tensile Stress Best Fit Equations
L	LTZ	Stress (MPa) = 411.36(%strain)
L	LZT	Stress (MPa)= 441.67(%strain) ^{0.96}
т	TI 7	Stress (MPa)=152.32(%strain) ^{0.94} for 0 – 0.3% strain
1	I LZ	Stress (MPa) = 19.53(%strain)+43.26 for 0.3 – 1.2% strain
т	T7I	Stress (MPa)= -130.83(%strain) ² + 192.87(%strain) for 0-0.3% strain
1	IZL	Stress (MPa) = 21.01(%strain)+39.79 for 0.3 – 1.2% strain
Z	ZLT	Stress (MPa)= 144.9(%strain) ^{0.95}
7	ZTL Stres	Stress (MPa)= 153.06(%strain) ^{0.96} for 0-0.15% strain
۷.		Stress (MPa) = 85.33(%strain)+11.96 for 0.15 – 0.27% strain
	Neat Resin	Stress (MPa)= 0.1448(%strain) ⁴ - 1.1038(%strain) ³ - 2.1641(%strain) ² +
	Near Nesin	36.005(%strain)

Tensile Stress-Strain Curve Best Fit Equations

Compression Stress-Strain Curve Best Fit Equations

Stress	Coupon	Compressive Stress Best Eit Equations
Direction	Orientation	
L	LTZ	Stress (MPa) = 412.95(%strain)
L	LZT	Stress (MPa) = -23.901(%strain) ² + 469.19(%strain)
Т	TLZ	Stress (MPa) = 156.67(%strain) ^{0.9135}
Т	TZL	Stress (MPa) = -19.415(%strain) ² +164.07(%strain)
Z	ZLT	Stress (MPa) = 130.8(%strain) ^{0.951}
Z	ZTL	Stress (MPa) = -20.956(%strain) ² +160.7(%strain)
	Neat Resin	Stress (MPa) = $0.1438(\% train)^4 - 1.6118(\% train)^3 + 2.1803(\% train)^2 + 29.189(\% train)$

Shear Stress-Strain Curve Best Fit Equations

Stress Direction	Coupon Orientation	Shear Stress Best Fit Equations
LT	LTZ	Shear Stress (MPa) = -0.034 (%strain) ⁶ + 0.5624(%strain) ⁵ – 3.7974(%strain) ⁴ + 14.06(%strain) ³ – 33.504(%strain) ² + 56.362(%strain)
LZ	LZT	Shear Stress (MPa) = 0.0328(%strain)⁵ - 0.7284(%strain)⁴ + 6.1254(%strain)³ - 25.332(%strain)² + 54.909(%strain)
TL	TLZ	Shear Stress (MPa) = -0.2925(%strain) ⁴ + 3.6075(%strain) ³ – 17.746(%strain) ² + 44.791(%strain)
TZ	TZL	Shear Stress (MPa) = 0.0634(%strain) ⁶ -1.0294(%strain) ⁵ + 6.1689(%strain) ⁴ - 15.38(%strain) ³ + 6.5506(%strain) ² + 34.848(%strain)
ZL	ZLT	Shear Stress (MPa) = -19.231(%strain) ⁴ +56.534(%strain) ³ – 69.789(%strain) ² + 64.356(%strain)
ZT	ZTL	Shear Stress (MPa) = 35.097(%strain)
	Neat Resin	Shear Stress (MPa) = $0.0023(\%$ strain) ⁴ - $0.03(\%$ strain) ³ - $0.5587(\%$ strain) ² + 10.608(\% strain)

Tensile Coupon Failure Photos (some grip areas removed for analysis after testing)

ZLT ZTL TZL TZL TLZ LZT LTZ tapered Compression Coupon Failure Photos

Figure 6 (a, b, c). Failed Coupon Photographs

Appendix A. Stress-strain curves for individual tests with best fit curves

(h) Longitudinal compression, LZT coupon orientation

Appendix B. Individual Tensile Test Results

Stress	Direction	Courses	Ultimate Tensile		Max. Strain,	Poisson's	First crack	First crack	Natao
Direction	Direction	Coupon	Stress, MPa	E, GPa	%	Ratio	Stress, MPa	Strain, %	Notes
L	LTZ	LT100	1209	40.2	3.1	0.270			
L	LTZ	LT101	1256	43.7	3.0	0.251			
L	LTZ	LT102	1139	42.7	2.8	0.260			
L	LTZ	LT103	1087	46.2	2.8	0.262			
L	LTZ	LT104	1206	43.4	2.9	0.272			
L	LZT	LZ110	1300	44.9	3.2	0.281			
L	LZT	LZ111	1294	43.0	3.2	0.242			
L	LZT	LZ112	1318	48.1	3.0	0.245			
L	LZT	LZ113	1263	47.0	3.1	0.280			
L	LZT	LZ114	1290	46.5	2.9	0.274			
Т	TLZ	TL200	73.9	18.0	0.46	0.091	46.3	0.33	
Т	TLZ	TL201	76.9	19.6	0.42	0.088	41.0	0.22	
Т	TLZ	TL202	66.9	14.6	0.47	0.084	44.8	0.31	
Т	TLZ	TL203	73.4	15.7	0.47	0.058	39.5	0.25	
Т	TLZ	TL204	71.8	18.2	0.41	0.074	46.3	0.26	
Т	TZL	TZ600	69.7	17.6	0.93	0.349	40.6	0.23	
Т	TZL	TZ601	61.0	17.5	0.25	0.389	42.1	0.25	
Т	TZL	TZ602	72.0	16.2	1.28	0.372	46.2	0.31	
Т	TZL	TZ603	63.5	17.8	0.27	0.357	44.8	0.27	
Т	TZL	TZ604	57.4	16.9	1.45	0.308	43.7	0.25	
Т	TZL	TZ620	50.9	16.8	0.69	0.346	30.7	0.19	tapered
Т	TZL	TZ621	59.8	16.6	0.94	0.335	51.0	0.37	tapered
Т	TZL	TZ622	78.3	16.0	1.75	0.340	49.0	0.38	tapered
Т	TZL	TZ623	81.4	16.0	1.90	0.351	50.7	0.36	tapered
Т	TZL	TZ624	60.5	15.8	1.44	0.375	39.0	0.26	tapered
Z	ZLT	ZL360	33.3	18.8	0.21	0.110			
Z	ZLT	ZL361	31.2	17.9	0.23	0.102			
Z	ZLT	ZL362	31.6	14.1	0.25	0.081			
Z	ZLT	ZL363	31.9	16.7	0.21	0.065			
Z	ZLT	ZL364	35.0	14.3	0.25	0.093			
Z	ZTL	ZT460	27.5	18.8	0.15	0.415			
Z	ZTL	ZT461	26.8	20.1	0.14	0.408			
Z	ZTL	ZT462	27.7	15.4	0.17	0.284			
Z	ZTL	ZT463	34.3	16.2	0.24	0.347			
Z	ZTL	ZT464	33.1	14.6	0.26	0.310			
		Resin1	76.2	3.43	3.8	0.345			
		Resin2	75.7	3.58	3.8	0.343			
		Resin3	76.7	3.52	4.0	0.342			
		Resin4	77.2	3.63	5.0	0.357			
		Resin5	75.8	3.49	4.2	0.346			

Individual Compression Test Results

Stress	Direction	Coupon	Ultimate Compressive	Ec, GPa	Min. Strain,	Notes
Direction	1 7 7	1 7000		44.0	70	
		LT300	-703	44.6	-1.3	
L		L1301	-770	40.9	-1.9	
L		L1302	-746	42.3	-1.8	
L		L1303	-/14	41.0	-1./	
L	LTZ	L1304	-710	46.3	-1.6	
L	LTZ	LT310	-852		-2.0	Bonded tabs
L	LTZ	LT311	-750		-1.8	Bonded tabs
L	LTZ	LT312	-791		-1.9	Bonded tabs
L	LTZ	LT313	-706		-1.7	Bonded tabs
L	LTZ	LT314	-808		-1.9	Bonded tabs
L	LTZ	LT320	-750	40.3	-1.9	tapered
L	LTZ	LT321	-734	41.8	-1.8	tapered
L	LTZ	LT322	-739	40.9	-1.8	tapered
L	LTZ	LT323	-721	40.7	-1.9	tapered
L	LTZ	LT324	-748	46.1	-1.7	tapered
L	LZT	LZ320	-801	41.9	-2.0	tapered
	1 <i>7</i> T	17321	-860	42.3	-2.2	tapered
	1.7T	17322	-790	41.3	-2.0	tapered
		17323	-889	41.5	-2.0	tapered
		17324	-796	42.3	-2.4	tapered
L		17220	-730	42.5	-2.0	Rondod tobo
		LZ330	-000	45.1	-1.0	Bonded taba
L		LZ331	-039	40.4	-1.9	Bonded tabs
		LZ332	-748	40.0	-1.7	Bonded tabs
L		LZ333	-904	44.8	-2.0	Bonded tabs
L		LZ334	-840	43.4	-1.9	Bonded tabs
L	LZI	L1320	-750	40.3	-1.9	tapered
L	LZT	LT321	-734	41.8	-1.8	tapered
L	LZT	LT322	-739	40.9	-1.8	tapered
L	LZT	LT323	-722	40.7	-1.9	tapered
L	LZT	LT324	-748	46.1	-1.7	tapered
L	LZT	LT310	-852		-2.0	Bonded tabs
L	LZT	LT311	-750		-1.8	Bonded tabs
L	LZT	LT312	-791		-1.9	Bonded tabs
L	LZT	LT313	-706		-1.7	Bonded tabs
L	LZT	LT314	-808		-1.9	Bonded tabs
L	LZT	LZ310	-701	42.4	-1.5	
L	LZT	LZ311	-697	45.5	-1.5	
L	LZT	LZ312	-757	40.5	-1.8	
L	LZT	LZ313	-742	43.6	-1.9	
L	LZT	LZ314	-739	43.7	-1.5	
Т	TLZ	TL401	-185	16.3	-1.2	
Т	TI Z	TI 402	-193	16.6	-1.2	
T	TI 7	TI 403	-192	14.7	-1.3	
T		TL 400	-185	19.2	-0.94	
<u>,</u> Т		TL 405	_190	15.2	_1 3	
т		TZ500	-190	19.1	-1.5	
	T7I	T7501	-173	16.1	-1.1	
		TZ501	-100	17.6	-1.2	
		12002	-100	17.0	-1.2	
		12503	-1/3	14.9	-1.2	
		12504	-142	14.4	-1.1	
	TZL	TZ940	-211	14.5	-0.99	tapered
Т	TZL	TZ941	-193	14.9	-1.4	tapered
Т	TZL	TZ942	-160	14.2	-1.2	tapered
T	TZL	TZ943	-143	16.0	-0.95	tapered

Т	TZL	TZ944	-134	15.8	-0.98	tapered
Z	ZLT	ZL900	-177	14.5	-1.4	
Z	ZLT	ZL901	-173	13.0	-1.5	
Z	ZLT	ZL902	-180	13.1	-1.5	
Z	ZLT	ZL903	-182	13.6	-1.5	
Z	ZLT	ZL904	-190	14.7	-1.3	
Z	ZTL	ZT850	-194	15.2	-1.4	
Z	ZTL	ZT851	-186	13.6	-1.5	
Z	ZTL	ZT852	-200	14.2	-1.5	
Z	ZTL	ZT853	-185	16.3	-1.3	
Z	ZTL	ZT854	-182	13.6	-1.4	
		Resin1	-91.1	2.98	-5.8	
		Resin2	-88.5	2.94	-5.3	
		Resin3	-89.7	2.98	-5.5	
		Resin4	-90.4	2.99	-4.8	
		Resin5	-90.6	2.99	-5.5	
		Resin6	-93.2		-6.7	
		Resin7	-92.1		-6.4	
		Resin8	-91.8		-6.4	
		Resin9	-91.9		-6.1	
		Resin10	-91.3		-6.7	
		Resin11	-91.1		-6.1	

Individual Shear Test Results

Stress	Direction	Coupon	0.2% Offset Shear	Maximum Shear	Shear Strain at			
Direction	Direction		Stress, MPa	Stress, MPa	Maximum Stress ¹ , %	G, GPa		
LT	LTZ	l12_100	44.2	56.5	5	3.42		
LT	LTZ	l12_101	35.0	54.9	5	3.15		
LT	LTZ	112_102	40.8	55.2	5	4.15		
LT	LTZ	112_103	36.1	56.7	5	3.47		
LT	LTZ	112_104	37.4	55.6	5	3.28		
LZ	LZT	113_100	36.1	51.0	5	3.76		
LZ	LZT	113_101	38.2	55.7	5	3.73		
LZ	LZT	113_102	39.1	54.3	5	3.94		
LZ	LZT	113_103	38.3	53.6	5	3.38		
LZ	LZT	113_104	43.6	57.4	5	4.03		
TL	TLZ	l21_100	39.0	54.4	5	3.09		
TL	TLZ	l21_101	37.5	52.3	4.6	2.84		
TL	TLZ	l21_102	37.7	52.4	4.8	3.49		
TL	TLZ	l21_103	32.0	50.0	4.6	2.54		
TL	TLZ	l21_104	44.0	51.0	4.2	3.26		
ΤZ	TZL	123_100	37.1	45.2	5	3.28		
ΤZ	TZL	I23_101	37.8	42.2	5	4.31		
ΤZ	TZL	I23_102	34.6	44.0	5	3.26		
ΤZ	TZL	123_103	31.2	46.3	5	2.95		
ΤZ	TZL	I23_104	40.7	50.2	5	3.52		
ZL	ZLT	131_100		34.8	0.89	3.79		
ZL	ZLT	131_101		35.0	1.5	2.96		
ZL	ZLT	131_102		39.3	1.3	3.15		
ZL	ZLT	131_103		35.9	1.1	3.38		
ZL	ZLT	131_104		24.6	0.88	2.82		
ZT	ZTL	132_100		30.3	0.75	4.02		
ZT	ZTL	132_101		30.5	1.1	2.93		
ZT	ZTL	132_102		22.6	0.51	3.25		
ZT	ZTL	132_103		27.2	0.65	3.82		
ZT	ZTL	132_104		31.3	1.0	3.47		
	Resin	H4	23.8	38.0	5	1.04		
	Resin	H5	30.8	35.5	5	0.78		
	Resin	H6	23.6	39.5	5	1.16		
¹ ASTM D5379 limits the maximum shear strain to 5%.								