
Covers Chapter 10-12, some of 16, some of 18 in Wooldridge 

 

Regression Analysis with Time Series Data 

 

Obviously time series data different from cross section in terms of source of 

variation in x and y—temporal ordering 

 

2
nd

 difference—NOT randomly sampled in same way as cross sectional—

each obs not i.i.d 

Why? 

Data over time is a “stochastic process”—we have one realization of 

the process from a set of all possible realizations 

 

A number of common features of Time Series Data:  (Put up and fill in what 

problem is later) 

 

o errors correlated over time—high errors today high next 

time problem in estimating standard errors (but not a bias 

problem) 

 

o effects may take a while to show up difficult to know how 

long should wait to see effects (tax cuts—is growth in Clinton 

years due to Clinton?  Reagan?) (specification problem—

incorrect specification leads to bias) 

 

o feedback effects (x y but after seeing y, people adjust x.  

Hmk example: interest rates may affect unemployment, but 

after looking at unemployement, Fed ) (bias problem) 

 

o trending data over time data series can look like they are 

related, but really is “spurious” (bias problem) 

 

 

I.  Finite Sample Properties of OLS under Classical Assumptions 

 

Have time series analogs to all Gauss Markov assumptions 

Use this to identify common problems in time-series data 

 

TS1  Linear in Parameters—ok here 

TS2 No perfect collinearity—ok here 



TS3  Zero conditional mean 

 

Two ways to express this:  Strongest condition: 

 E(ut|X)=0, t=1,2,…n 

o error at time t (ut) is uncorrelated with each explanatory 

variable in EVERY time period 

o known as STRICT exogeneity 

o need this condition for unbiasedness 

 

 E(ut, xt1, xt2, . . . . .xtk) = E(ut|xt) = 0 

o if holds for same period (ut uncorrelated with xt) that is 

contemporaneous exogeneity 

o  this assumption is sufficient for consistency 

 

Why would STRICT EXOGENEITY assumption fail? 

1. As before, omitted vars and measurement error 

2. Lagged effects of x 

look at model yt = 0 + 1zt + ut 

 

ut can’t be correlated with zt, or with past or future zt 

 z can’t have a lagged effect on y (if does, have specified model 

incorrectly—use distributed lag) 

BUT As noted above, often DO have effects that emerge over time 

 

3. no feedback of y on future values of z—example of this? 

(book: murder rate and police) 

Again, as noted above, often DO have feedback effects 

 

4. Lagged effects of y—will discuss later 

 

 

 

TS4 Homoskedasticity 

TS5 NO serial correlation 

 

 Corr(ut,us|X)=0 for all ts 

 

 If violated, errors exhibit autocorrelation 

 

 



Problem  Autocorrelation (Chapter 12) 

 

See earlier autocorrelation notes t = t-1 + vt  

 

Bottom line:  Leads to biased standard errors although coefficients are 

unbiased and consistent 

 

Test:    Durbin-Watson test 

 

Solution:  Apply a generalized difference model 

y*t = β0(1-) + β1x*1t + β2x*2t + . . . .βkX*kt + vt 

Where y*t = yt - yt-1 , same for xs 

 

Estimate  using Hidreth-Lu or Cochrane-Orcutt procedures  

For Both Idea: start with a guess of  and iterate to make better and 

better guesses 

 

 

 

Problem Effects are not Instantaneous (Section 10.2) 

Many regression models rely on use of lags 

 

1. Static models--Model a contemporaneous change  

 

yt = 0 + 1zt + ut    t=1,2,…n 

 

 

What assumptions does this embody?  Change in z has an immediate 

effect—in same period—on y 

 

Can you give me an example of this?  (Books uses Phillips curve—

tradeoff between unemployment and inflation) 

 

2. Finite Distributed Lag Models (FDL) 

 

yt =  + 0zt + 1zt-1 + 2zt-2 + ut    t=1,2,…n 

 

 



What assumptions does this embody?  Change in z has a lagged 

effect—some effects contemporaneous, some effects in next period, 

period after that 

 

 dynamic effect—effect changes over time 

 

 Know number of lags 

 

Or—estimate successive models and test for significant of 

additional lags  

Problem with this approach: reduces degrees of freedom as add 

lags, multicollinearity becomes a problem, issues of “data 

mining” 

 

 

Digression on Data Mining 

 

 

Suppose have a model with c potential X variables.  Not sure exactly 

which ones to include.  Could start with a parsimonious model and 

then test significance level of additional x’s. 

 

However, this approach is not legitimate. 

Lovell (1983) shows that if have c candidate X’s, choose k 

 

α * = 1 – (1-α) 
c/k

  where α * is the true level of significance and α is 

the nominal level 

α *≈ (c/k)α 

   

so, for example, if c=15, k=5, α=5%, α *=(15/5)5 = 15% 

 

 Assume  follow a specific pattern 

e.g., Koyck distributed lags follow k = 0λ
k
 

 

 May be more interested in Long run propensity/long run multiplier 

(LRP)—sum of all the deltas 

  effect of a permanent increase of one unit in z 

 



Note that there is often substantial correlation in zs over time—so 

may have issues with multicollinearity can’t necessarily estimate 

separate s, but can use other methods to get LRP 

 

Homework has you work through this 

 

 

 

3. Autoregressive models   yt =  + 0zt + 1yt-1 + ut    t=1,2,…n is an  

 



These notes from P&R—see Gujarati for another presentation 

Problem:  Time Trends and Spurious Correlation 

 

Many economic time series have a common tendency to grow over time 

 

Ex:  yt = 0 + 1t + et , t= 1,2, . . ..  linear time trend 

 

y = yt – yt-1 = 1 

 

Problem—could end up with spurious regression if time is driving both x 

and y Biased coefficients 

 

Like an omitted variable bias 

 

 

 





 

 

 

 

 

Solution 1—add a Deterministic time trend 

 

 

Some relevant Deterministic time trend models: 

 

(Deterministic models make no use of randomness in y, simply describe the 

time series.) 

 

Example 1: 

 

yt = ao + a1t + a2t
2
 + a3t

3
 + . . . .+ ant

n
 

t=0 in base period, increases by 1 in each successive period 

 

n=T-1  line will pass through every point of the data 

 

Note that could also have a quadratic, cubic—as add more t terms, can 

capture series more and more exactly, but then none of our 

explanatory vars matter. 

 

 

Example 2: Exponential growth curve 

 

yt = f(t) =Ae
rt 

 

 log yt = c1 + c2t  (c1=logA, c2=r) 

 

c2 is growth rate 

 

Caution—too many t terms will explain the whole series 

Caution—interpreting R
2
 is more problematic—high R

2
 may be 

because time trend captures most of variation in y, not because xs do. 

 

Solution 2: Detrend the data 

 

tttt yeety  ˆ10    which is the “detrended” y 



 

Do the same thing for the xs. 

Run 21, ttt xxony   

 

Makes interpretation of R
2
 easier. 

 

Both approaches: 

Nice thing about including t is that useful even if yt is not trending and 

one of the x’s is.  May be that deviations in x from its trend matter for 

changes in y. 



Chapter 11 

Problem: Stationarity and Weakly Dependent Time Series—Is y 

growing?  Or Does it follow a Random Walk? 

 

Suppose y grows over time: 

Consider the model 

yt = + t +yt-1 + t  

 

Is y growing because there is a trend? >0 or because follows a random 

walk with positive drift (>0,  =0,  >0)? 

 

Has important implications for modeling.   

Recall: one of GM assumptions was random sampling. 

 

Need random sampling to get consistent estimates. 

 

With time series data, don’t have random sampling.  When can we use the 

realization we have to make inferences?  What is the time-series counterpart 

to random sampling assumption? 

 

1. Definition of stationarity 

2. Why series need to be stationary for inference/prediction 

3. How to test if data series is stationary 

4. What to do if it is not  

If stationary, just include t.   

If not, may need to difference the data to get consistent estimates. 

 

 

 

 

 

 

 

 



Stationary and Nonstationary Time Series 

 

Does the stochastic process vary with time?  (If Yes—non-stationary) 

 

Stochastic process: collection of random variables ordered in time.   

Example: GDP and temperature are random variables.  Temperature 

today, a random variable.  Temp yesterday was a RV.  65 degrees is a 

particular realization.   

 

 

Want a model where 

 Stochastic properties are time invariant 

 Can model process with a single equation with fixed coefficients—

equation is invariant with respect to time 

 

Note that many time series do not satisfy these characteristics.  BUT—can 

often transform data into a series that DOES satisfy these properties  

 

Need to work with stationary models to make inference/predictions. 

 

Definition of a Stationary process:  

 y1, y2, . . . . .yt one realization (one outcome) drawn from joint 

probability distribution function:  P(y1, y2, . . . . .yt) 

 

 Future observation yt+1 drawn from conditional probability 

distribution:  

P(yt+1|y1, . . . . , yt) 

 

 Stationary process: joint and conditional distributions are invariant 

with respect to time 

More formally P(yt, . . . . .yt+k) = P(yt+m, . . . . .yt+k+m) 

 

P(yt) = P(yt+m) 

 

 One example: White noise process.  Stochastic process is purely 

random if has zero mean , constant variance, and is serially 

uncorrelated.  Usual assumptions for error term in classic model. 



Implications of Stationarity: 

 

 Mean is stationary:  y = E(yt) = E(yt+m) 

Constant mean (equilibrium) level 

These time series will exhibit mean reversion 

 

 Variance is stationary: 
2

y = E[(yt - y)
2
] = E[(yt+m - y)

2
] 

Probability of fluctuation from mean level is same at any point in 

time 

 

 Covariance (for any lag k) is stationary: γk = Cov(yt, yt+k) = E[(yt - y) 

(yt+k - y)] 

= E[(yt+m - y) (yt+m+k - y)] 

 

Implies that covariance only depends on lag length, not on point in 

time  

 

 Since P(yt) is same for all t, observations y1, y2, . . . . .yt can be used 

for inference 
 

o Shape approximated by histogram 

 

o Sample mean ( y ) an estimator of population mean y 

 

o Sample variance an estimator for 
2

y 

 

Need stationarity for unbiased estimates.  Wooldridge 11.1 discusses a 

weaker condition for OLS Estimates to be consistent:  Weak dependency 

 

Definition is loose.  Stationarity deals with joint distribution being same 

over time.  Weak dependency deals with how strongly related xt and xt+k are 

as distance (h) gets large.  As k increases, if xt and xt+k are “almost 

indepdendent,” then is weakly stationary.  Wooldridge states is no real 

formal definition because can’t cover all cases.   

 

Weak dependency/stationarity:  This assumption replaces assumption of 

random sampling allows LLN and CLT to hold to get consistent OLS 

estimates. 

 



 

Show graphs of stationary and non-stationary series.   

 

 



16.2.1 Homogenous Non-stationary Processes 

Let’s see what problems have if series is not stationary: 

 

1. Definition of Random walk—A non-stationary series 

Example: in efficient capital mkt hypothesis, stock prices are a random walk 

and there is no scope for speculation 

 

yt = yt-1 + t  E(t) =0,  E(ts) = 0 for ts 

[Random walk with drift: yt = α+ yt-1 + t]  

 

Example: coin flips—tails = -1, heads = +1 

 

Random walk (with or without drift) known as a unit root process 

 

yt = yt-1 + t where  lies between -1 and 1  AR(1) model 

If  =1, this is a Random walk 

 

(Nonstationarity, random walk, unit root, stochastic trend all 

interrelated concepts) 

 

 

2. Forecasting with Random Walk: 

Show figure 16.1—block out forecast 

 

What would forecast be one period ahead? 

  

 ŷ t+1 = E(yt+1|y1, . . . . , yt) = yt + E(t+1) = yt 

  

 

What about 2 periods ahead?  

 

ŷ t+2= E(yt+2|y1, . . . . , yt) = yt+1 + E(t+2) =  E(yt + t+1 + t+2)   = 

yt 

 

So no matter how far in the future look, best forecast of yt+k is yt 

Idea is that with a stationary series, best guess of yt+1 is  

y=0  or y=0+1x  or y = 0+1x +2 t 

 

With a non-stationary series, best guess is yt 



 

Contrast with AR(1):  yt = 1yt-1 + t   where |1| < 1   

 Further and further into future, best forecast is yt = 0 

 

What about variance of forecast error? 

 

 one period:  E(
2

t+1) = 
2
 

 

two periods:  E[(t+1 + t+2)
2
] = E(

2
t+1) + E(

2
t+2) +  2E(t+1 + t+2)  

     =
2
 

 

Show figure 16.1—with forecast 

 

 

What is variance of the series? 

E [(yt)
2
] = E[(yt-1 + t)

2
] = E(yt-1)

2
 +

2
 

 = E(yt-2)
2
 + 2

2
 

   = E(yt-n)
2
 + n

2
 

 

Note that according to this, the variance is infinite and therefore 

undefined!  (Recall that this violates on of the G-M  

 

 

 

3. Phenomenon of Spurious Regression 

 

If have two time series that are random walks 

 

yt = yt-1 + ut  

xt = xt-1 + vt and regress one on the other, usually get highly significant 

results. 

 

--when R2 is low and DW d value suggests strong autocorrelation, likely 

have a spurious relationship 

 

--Rule of thumb from Granger and Newbold: R2>d  suspect spurious 

regression 

 

 



Summary of Problems Caused by Non-stationarity: 

1. OLS estimates will not be consistent 

2. Nonstationarity can lead to autocorrelation—transforming to get a 

stationary series can (sometimes) correct the problem of 

autocorrelation 

3. Non-stationary series regressed on each other can lead to spurious 

correlation 

4. Series does not revert to some mean—temporary shocks lead to 

permanent effects 

5. Time series data are specific to particular period—can’t be used to 

generalize to other time periods.  Forecasting is futile if series exhibits 

a random walk.   

6. Causality tests (like Granger causality) assume stationarity 

 

 Stationarity means can use sample to make inferences about probability 

distribution of the ys!!!  This is the counterpart to random sampling in a 

time series context.  If not stationary, can’t 

 

So our goal is to (1) identify when series are NOT stationary (2) transform 

non-stationary series into stationary series 

 



Solutions for Non-Stationarity 

 

Very few time series are actually stationary  

However, if difference (differentiate) 1 or more times, most become 

stationary 

 If true, Homogenous 

 Number of times need to difference (differentiate) is “order of 

homogeneity” (Or integrated of degree ***) 

 

 

Here ∆yt = yt -  yt-1 = t (First difference) 

 

Since t are independent over time, this is stationary 

 

 Random walk is 1
st
 order homogenous or Integrated of order 

1--I(1) 

0 =1, k =0 for all k 

 

 Often use 1
st
 difference of data in OLS regressions  

 

 

 

 

 

 

 

 



So how can we tell the difference between stationary and non-stationary 

series?  Or weakly and strongly dependent series? 

 

16.2 Characterizing Time Series: The Autocorrelation Function 

 

1. Autocorrelation Function and Correlogram 

 

One of the key properties we would like to model is the correlation over 

time.  Turns out to be key to identifying stationary, weakly dependent  

series. 

 

Autocorrelation function will provide a description of correlation over time: 
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In practice, estimate this using sample averages for means 

 

Note that this is symmetric k = k  

 

Note that if 0k for all k>0 In that case, yt = t  “white noise” 

  No value in using a time series model to forecast the series 

 

Wooldridge: Weak dependency means this function goes to zero 

“sufficiently quickly” as k 

 

 

Show Figures 16.3 and 16.4 

    

Note that 16.3 appears to be stationary.  Autocorrelation function  in 

16.4 falls off quickly—can use the function to test for stationarity 

 

Show Figures 16.6—autocorrelation function of a non-stationary 

series 



Difference until autocorrelation function exhibits this “dropping off” 

pattern 

 

Wooldridge: Weak dependency means this function goes to zero 

“sufficiently quickly” as k 

 

Can use Q statistic  or Ljung-Box (LB) statistic to examine joint 

significance that  up to certain lag are equal to zero 

 

2
1

k

m

k

nQ 


  (should have hat) m is lag length~chi squared m



Examples of stationary, weakly dependent series: 

 

 MA(1) xt = et + 1et-1  t=1,2,. . . .T 

 

 Note that adjacent terms are correlated. 

 However, if are 2 or more time periods apart, are independent  

  

 Stable AR(1) yt = 1yt-1 + t   where |1| < 1   

 

Wooldridge shows that this process has finite variance, correlation 

gets smaller and smaller as lags get large 

 

 

 

 

 

 

 

 

 

 



16.3 Testing for random walks: 

 

Is the series a random walk?  (Difference once) 

 

Note that  

(1) If it is, G-M theorem won’t hold 

  will get spurious results when regress one against the other 

 

 (2) First differencing will lead to stationary series 

 

(3) Has important policy implications—means that series does not 

revert to some mean, but that temporary shocks lead to permanent 

effects 

 

 

How determine number of times need to differentiate? 

How do we decide when a series is stationary? 

 

 

 



2. Dickey-Fuller unit-root test—test for random walk 

 

In Wooldridge, this is in chapter 18 

 

Consider the model 

yt = + t + yt-1 + t  

 

Is y growing because there is a deterministic  trend? (Model it with t) 

>0  OR does is follow a random walk with drift (difference it)? 

 

Can we just estimate that model and test if =1?  No—turns out sampling 

distribution is very different when is close to 1 than if is far from 1 

 

But—do first difference 

 

Yt – yt-1 = ρYt-1  - Yt-1 + ut 

= (ρ-1)Yt-1 + ut 

So basic idea is to take difference, regress on lagged y 

 

 

Dickey Fuller test of  = 0,    = 1: 

 Run unrestricted regression: yt - yt-1 =  + t +(-1) yt-1  

 Run restricted regression: yt - yt-1 =   

 Like F test: (N-k)(ESSR – ESSUR)/q(ESSUR)  

 But not distributed as an F stat—have to use Dickey-Fuller 

table for critical values 

 

A number of variations—Yt is random walk, random walk with drift, 

random walk with drift around deterministic time trend—all different test 

 

 

Augmented Dickey-Fuller test—allows for autocorrelation in t 

 Run unrestricted regression: 




 
p

j

jtjttt yytyy
1

11 )1(   

where number of j lags is selected by econometrician 

 Run restricted regression 






 
p

j

jtjtt yyy
1

1   

 Calculate test statistic as above, use D-F tables 

 

 

 

A NUMBER of other unit root tests—see Gujarati for details 

 

Why?  Due to size and power of tests.  SIZE of test mean level of 

significance—probability of committing a type I error.  What is that? 

Reject true hypothesis.  POWER of test is 1- prob of committing a type II 

error—reject null, when null is false.  EX: power = .8 means 20% chance of 

committing a type II error. 

 

Most unit root tests have low power—allow us to reject hypothesis that 

variable is not a random walk, but also means accept null of a unit root more 

frequently than is warranted (see gujarait 759 for more info on this) 

 

 



16.4 Co-integrated Time Series 

 

As have said, regressing one random walk on another can lead to spurious 

correlation Difference the time series in question before running the 

regression 

 

Note however, that this loses information—suppose trend up in x really is 

related to trend up in y—now only have information from deviations in trend 

to identify the relationship 

 

Can we ever regress y on x without differencing if they are random walks? 

 

Is linear combination of the two variables stationary? 

If so, can run OLS and will get consistent estimates 

 zt = xt - yt 

 

 Examples:  

aggregate consumption and disposable income 

 Both are random walks 

 expect that should move together over time 

 linear combination should be stationary 

Stock prices and dividends 

Exchange rates and interest differentials 

 

 

(1) Test whether x and y are random walks—Dickey-Fuller tests 

(2) Run a co-integrating regression 

 

xt =  +  yt + t 

 

(3) Test whether the residuals from this regression are stationary 

a. Can run Dickey-Fuller test on residuals 

b. Or can look at Durbin-Watson statistic from co-integrating 

regression 
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
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

 if  is a random walk, numerator should be zero—

test DW=0 

 


