# These notes largely concern autocorrelation

# **Issues Using OLS with Time Series Data**

Recall main points from Chapter 10:

• Time series data <u>NOT randomly sampled</u> in same way as cross sectional—each obs not i.i.d

Why?

Data is a "stochastic process"—we have one realization of the process from a set of all possible realizations

Leads to a Number of Common problems:

- 1. Errors correlated over time—high errors today→ high next time (biased standard errors but not biased coefficients)
- 2. Effects may take a while to appear → difficult to know how long should wait to see effects (tax cuts—is growth in Clinton years due to Clinton? Reagan?) (specification problem)
- Feedback effects (x→ y but after seeing y, policy makers adjust x) (specification problem—can lead to biased coeffs)
- 4. Trending data over time→ data series can look like they are related, but really is "spurious" (biased coeffs)

Related Issue: **Prediction**—often want a prediction of future prices, GDP, etc.—Need to use properties of existing series to make that prediction

#### Recall Chapter 10 Models

These models dealt with problems 2 and 4 listed above

- 1. Static model-- Change in z has an immediate effect—in same period—on y  $y_t = \beta_0 + \beta_1 z_t + u_t$  t=1,2,...n
- 2. Finite Distributed lag Model  $y_t = \alpha + \delta_0 z_t + \delta_1 z_{t-1} + \delta_2 z_{t-2} + u_t$  t=1,2,...n Know number of lags
- 3. Trending Data: Add a trend yt =  $\alpha 0 + \alpha 1t + et$ , t= 1,2 Or Detrend the data

Note that if DO NOT correctly specify the model (e.g., with lagged data), can generate serial correlation. Correct specification is the first problem to address.

# **P&R 6.2** Serial Correlation: What is serial correlation and why is it a problem?

- Serial correlation comes when errors from one time period are carried over into future time periods (problem # 1 listed above)
- Can also occur spatially—errors in this area are correlated with errors in adjacent area
- Most authors use serial and auto-correlation interchangeably. Some use auto corr to refer to serial correlation within a series itsel and serial correlation to refer to lagged correlation between two time series. I'll use them interchangeably.

Positive serial correlation often caused by

--Inertia—some economic time series have "momentum" (?)

--Correlation in omitted variables over time

--Correlation in measurement error component of error term

--Theoretical predictions--adaptive expectations, some partial adjustment process

--Misspecification—e.g., omitted dynamic terms (lagged dependent or independent variables, trends)

--Data is already interpolated (e.g., data between Census years)

--Non-stationarity-will discuss later

#### **Example: AR(1) Process**

Very common form of serial correlation

First Order Autoregressive process: AR(1)

True model:  $y_t = \beta_0 + \beta_1 x_{1t} + \beta_2$  $\varepsilon_t = \rho \varepsilon_{t-1} + v_t$ 

$$y_{t} = \beta_{0} + \beta_{1}x_{1t} + \beta_{2}x_{2t} + \dots + \beta_{k}X_{kt} + \varepsilon_{t}$$
  

$$\varepsilon_{t} = \rho\varepsilon_{t-1} + v_{t} \qquad 0 \le |\rho| \le 1$$
  
[If had 2 lags, would be AR(2)]

- $v_t$  is the idiosyncratic part of the error, Indep of other errors over time,  $N(0, \sigma_v^2)$
- $e_t$  is NOT indep of other errors over time,  $N(0, \sigma^2_{\epsilon})$
- error in time t is determined by the diminishing value of error in previous period ( $\rho$ ) + addition of random variable v, with EV(0)

 $\rightarrow$ Implies that error in any period is reflected in all future periods

$$\begin{aligned} & \text{Var}(\epsilon_t) = E(\epsilon_t^2) = E[(\rho\epsilon_{t-1} + v_t)^2] = E[\rho^2 \epsilon_{t-1}^2 + v_t^2 + 2\rho\epsilon_{t-1}v_t] \\ &= \rho^2 E(\epsilon_{t-1}^2) + E(v_t^2) \qquad \text{b/c } \epsilon_{t-1} \text{ and } v_t \text{ are indep} \\ & \rightarrow \text{Var}(\epsilon_t) = \rho^2 \text{Var}(\epsilon_t) + \sigma_v^2 \text{ if } (\epsilon_t) \text{ is homoskedastic} \\ & \rightarrow \text{Var}(\epsilon_t) = \text{Var}(\epsilon_{t-1}) \end{aligned}$$

Algebra  $\rightarrow$  Var( $\varepsilon_t$ )=  $\sigma_v^2/(1-\rho^2)$  Note that when  $\rho$ =0, no autocorrel.

How are the errors related over time?

$$\begin{aligned} Cov(\epsilon_{t,} \epsilon_{t-1}) &= E(\epsilon_{t,} \epsilon_{t-1}) = E[(\rho \epsilon_{t-1} + v_t) \epsilon_{t-1}] = E(\rho \epsilon_{t-1}^2 + \epsilon_{t-1} v_t) = \\ \rho E(\epsilon_{t-1}^2) &= \rho Var(\epsilon_t) = \rho \sigma_{\epsilon}^2 \end{aligned}$$

Similarly,  $Cov(\epsilon_{t,} \epsilon_{t-2}) = \rho^2 \sigma_{\epsilon}^2$ ,  $Cov(\epsilon_{t,} \epsilon_{t-3}) = \rho^3 \sigma_{\epsilon}^2$ Similarly,  $Cov(\epsilon_{t,} \epsilon_{t-s}) = \rho^s \sigma_{\epsilon}^2$  Note that  $\rho$  is the correlation coefficient between errors at time t and t-1. Also known as coefficient of autocorrelation at lag 1

#### **Stationarity:**

Critical that  $|\rho| < 1$ —otherwise these variances and covariances are undefined.

If  $|\rho| < 1$ , we say that the series is stationary. If  $\rho=1$ , nonstationary.

Chapter 11 in your book discusses concept of stationarity. For now, brief definition. If mean, variance, and covariance of a series are time invariant, series is stationary.

Will discuss later tests of stationarity and what to do if data series is not stationary.

#### Serial correlation leads to biased standard errors

If y is positively serially correlated and x is positively serially correlated, will understate the errors

- Show figure 6.1 for why
- Note that 1<sup>st</sup> case have positive error initially, second case have negative error initially
- Both cases equally likely to occur $\rightarrow$  unbiased
- But OLS line fits the data points better than true line

With algebra:

Usual OLS Estimator  $y_t = \beta_0 + \beta_1 x_{1t} + \varepsilon_t$ 

$$var(\widehat{\beta_1}) = \frac{\sigma^2}{\sum x_i^2}$$

With AR(1)  $var(\widehat{\beta_{1}}) = \frac{\sigma^{2}}{\sum x_{t}^{2}} \left[ 1 + 2\rho \frac{\sum x_{t} x_{t-1}}{\sum x_{t}^{2}} + 2\rho^{2} \frac{\sum x_{t} x_{t-2}}{\sum x_{t}^{2}} + \dots + 2\rho^{n-1} \frac{\sum x_{t} x_{n}}{\sum x_{t}^{2}} \right]$ 

How does this compare with standard errors in OLS case? Depends on sign of p and type of autocorrelation in xs

If x is positively correlated over time and p is positive, OLS will understate true errors



# → R2 wrong

See Gujarati for a Monte Carlo experiment on how large these mistakes can be

# **Tests for Serial Correlation**

1. Graphical method

Graph (residuals) errors in the equation---very commonly done.

Can also plot residuals against lagged residuals—see Gujarati fig 12.9

#### 2. Durbin Watson Test Oldest test for serial correlation

P&R goes through extension when have lagged y's in model—see 6.2.3 for details

Null hypothesis: No serial correlation  $\rho=0$ Alternative:  $\rho\neq 0$  (two tailed)  $\rho>0$  (one tailed)

Test statistic:

- Step 1: Run OLS model  $y_t = \beta_0 + \beta_1 x_{1t} + \beta_2 x_{2t} + \dots + \beta_k X_{kt} + \varepsilon_t$
- Step 2: Calculate predicted residuals

Step 3: Form test statistic

$$DW = \frac{\sum_{t=2}^{T} (\hat{\varepsilon}_t - \hat{\varepsilon}_{t-1})^2}{\sum_{t=1}^{T} (\hat{\varepsilon}_t)^2} \cong 2(1 - \hat{\rho}) \quad \text{(See Gujarati pg 435 to derive)}$$

Assumptions:

- 1. Regression includes intercept term
- 2. Xs are fixed in repeated sampling—non-stochastic (problematic in time series context)
- 3. Can only be used for 1<sup>st</sup> order autoregression processes
- 4. Errors are normally distributed
- 5. No lagged dependent variables—not applicable in those models
- 6. No missing obs

This statistic ranges from 0 to 4

- $\hat{\varepsilon}_t$  are close to each other  $\rightarrow$  Positive serial correlation  $\rightarrow$  DW will be close to zero (below 2)
- No serial correlation  $\rightarrow$  DW will be close to 2
- Negative serial correlation  $\rightarrow$  DW will be large (above 2)

Exact interpretation difficult because sequence of predicted error terms depends on x's as well  $\rightarrow$  if x's are serially correlated, correlation of predicted errors may be related to this and not serial correlation of  $\epsilon$ s

 $\rightarrow$  2 critical values d<sub>L</sub> and d<sub>U</sub>

--see book for chart

STATA: estat dwstat

# 3. Breusch-Godfrey test This is yet another example of an LM test

Null hypothesis: Errors are serially independent up to order p

One X:

Step 1: Run OLS model  $y_t = \beta_0 + \beta_1 x_{1t} + \varepsilon_t$ (Regression run under the null)

| Step 2: | Calculate predicted residuals |
|---------|-------------------------------|
|---------|-------------------------------|

- Step 3: Run auxiliary regression  $\hat{\varepsilon}_t = \alpha 1 + \alpha 2X + \rho \hat{\varepsilon}_{t-1} + v_t$
- Step 4: T-test on  $\hat{\rho}$

STATA: estat bgodfrey, lags(\*\*)

Multiple X, multiple lags

Step 1: Run OLS model  $y_t = \beta_0 + \beta_1 x_{1t} + \beta_2 x_{2t} + \dots + \beta_k X_{kt} + \varepsilon_t$ (Regression run under the null)

Step 2: Calculate predicted residuals

Step 3: Run auxiliary regression  $\hat{\varepsilon}_t = \alpha 1 + \alpha 2Xs + \rho_1 \hat{\varepsilon}_{t-1} + \rho_2 \hat{\varepsilon}_{t-1} + \dots + \rho_p \hat{\varepsilon}_{t-p} + v_t$ with higher order lags—Bruesch-Godfrey test

Step 4:  $(n-p)R^2 \sim \chi^2_{(p)}$ 

BP test is more general than DW test—cam include laggesd Ys, moving average models

Do need to know p—order or the lag. Will talk some about this choice later.

#### **Correcting for Serial Correlation**

- Check—is it model misspecification?

   -trend variable?
   -quadratics?
   -lagged variables?
- 2. Use GLS estimator—see below
- 3. Use Newey West standard errors—like robust standard errors

GLS Estimators:

**Correction1: Known**  $\rho$ : Adjust OLS regression to get efficient parameter estimates

Want to transform the model so that errors are independent

 $\varepsilon_t = \rho \varepsilon_{t-1} + v_t$   $\rightarrow$  want to get rid of  $\rho \varepsilon_{t-1}$  part

How? Linear model holds for all time periods.

 $y_{t-1} = \beta_0 + \beta_1 x_{1t-1} + \beta_2 x_{2t-1} + \dots + \beta_k X_{kt-1} + \varepsilon_{t-1}$ 

- 1. Multiply above by  $\rho$
- 2. Subtract from base model:

 $\begin{aligned} y^*{}_t &= \beta_0(1\text{-}\rho) + \beta_1 x^*{}_{1t} + \beta_2 x^*{}_{2t} + \dots \beta_k X^*{}_{kt} + v_t \\ \text{Where } y^*t &= y_t \text{-} \rho y_{t\text{-}1} \text{, same for } xs \end{aligned}$ 

Note that this is like a first difference, only are subtracting part and not whole of yt-1 $\rightarrow$ *Generalized differences* 

Now error has a mean =0 and a constant variance

 $\rightarrow$  Apply OLS to this transformed model $\rightarrow$  efficient estimates

This is the BLUE estimator

PROBLEM: don't know  $\rho$ 

#### Correction2: Don't Know p--Cochrane-Orcutt

Idea: start with a guess of  $\rho$  and iterate to make better and better guesses

Step 1: Run ols on original model  $y_t = \beta_0 + \beta_1 x_{1t} + \beta_2 x_{2t} + \dots \cdot \beta_k X_{kt} + \epsilon_t$ 

```
Step 2: Obtain predicted residuals and run following regression

\hat{\varepsilon}_t = \rho \hat{\varepsilon}_{t-1} + v_t
```

Step 3: Obtain predicted value of  $\rho$ . Transform data using generalized differencing transformation  $y_t^* = y_t - \hat{\rho} y_{t-1}$ , same for X\*

Step 4: Rerun regression using transformed data

$$y_t^* = \beta_0 (1 - \hat{\rho}) + \beta_1 x_{1t}^* + \dots + \beta_k x_{kt}^* + v_t$$

Obtain new estimates of betas-- $\hat{\beta}$ 

Step 5: Form new estimated residuals using newly estimated betas and ORIGINAL data (not transformed data)

 $\hat{\hat{\varepsilon}}_t = yt - (\hat{\hat{\beta}}_0 + \hat{\hat{\beta}}_1 x_{1t} + \dots + \hat{\hat{\beta}}_k x_{kt}$ 

Iterate until new estimates of  $\rho$  are "close" to old estimates (differ by .01 or .005)

#### Correction3: Don't Know p--Hildreth-Lu (less popular)

Numerical minimization method Minimize sum of squared residuals for various guesses of  $\rho$  for

$$y_{t}^{*} = \beta_{0}(1-\rho) + \beta_{1}x_{1t}^{*} + \beta_{2}x_{2t}^{*} + \dots + \beta_{k}X_{kt}^{*} + v_{t}$$

Choose range of potential  $\rho$  (e.g., 0, .1, .2, .3, ..., 1.0), identify best one (e.g., .3), pick other numbers close by (e.g., .25, .26, ..., .35), iterate

# **Correction 4:** First difference Model

 $\rho$  lies between 0 and 1. Could run a first differenced model as the other extreme. This is the appropriate correction when series is non-stationary—talk about next time.

# **Recall: Correcting for Serial Correlation**

- Check—is it model misspecification?

   -trend variable?
   -quadratics?
   -lagged variables?
- 2. Use GLS estimator—see below
- 3. Use Newey –West standard errors—like robust standard errors

#### Newey –West standard errors

Extension of White standard errors for heteroskedasticity Only valid in large samples

Final Notes:

Should you use OLS or FGLS or Newey-West errors?

OLS: --unbiased --consistent --asymptotically normal --t,F, r2 not appropriate EGLS/Newey West

FGLS/Newey West --efficient --small sample properties not well documented—not unbiased --in small samples, then, might be worse --Griliches and Rao rule of thumb—is sample is small (<20, iffy 20-50) and  $\rho {<}.3,$  OLS better than FGLS