
Outline Chapter 15 

 

1. The identification problem—when do we need instruments 

 

2. What makes a good instrument—conditions 

 

3. The IV/2SLS estimator—single variable case 

a. How IV estimator is constructed 

b. Proof that is consistent  

c. How 2SLS estimator is constructed 

d. Proof is same as IV estimator with single var 

 

4. Comparison of OLS and IV estimators 

a. Comparing bias when have weak instruments 

b. Comparing standard errors 

 

5. Multiple variable case 

a. Multiple exogenous vars 

b. Multiple instruments 

c. Multiple endogenous vars and multiple instruments 

 

6. Testing for endogeneity 

a. Endogeneity of X: Hausman test 

b. Endogeneity of Z: overid tests 

 



Primary Concerns in Estimation: 

 

1. Biased coefficients—incorrect magnitude/sign    

2. Biased standard errors—efficiency, incorrect inferences 

 

Sources of biased coefficients 

 

1. Mis-measured X / errors-in-variables—attenuation bias  (bias to zero) 

 

2. Omitted Variables (ZX, ZY and therefore if omit Z is in error) 

 

3. Reverse causation (XY, YX) 

 

Chapter 13/14: panel models one way to deal with time invariant forms of 

omitted variables.    

Chapter 15: another method for dealing with omitted variables – 

instrumental variables (IV). IV can be used to solve error-in-variables and 

simultaneous causality problems as well as omitted variables. 

 

The basic idea: 

If x is correlated with u, we can think about decomposing x into two 

components,  

(1) the part that is uncorrelated with u and  

(2) the part that is correlated with u.  

 

If we can find information that allows us to isolate the first part we can use 

that part of the variation in x to consistently estimate β1 

 

In Chapter 13/14, relied on assumption that it is often the fixed (time 

invariant) part of X that is correlated with u.  Estimating with dummy 

variables removed that variation. 

 

 



The Basic Model 

 

yi =β0 +β1xi +ui and  (yi , xi, zi ) i= 1,..., n 

 

where i denotes entities, y is the dependent variable, and x is an explanatory 

variable for each entity and z is an instrument. 

 

If Cov(xi ,ui ) ≠ 0 the OLS estimator is inconsistent. 

 

IV uses an additional variable z to isolate the part of x that is 

uncorrelated with u. 

 

Conditions for Valid Instruments 

 

(1) Instrument Relevance  Cov(zi, xi) ≠ 0 

 

(2) Instrument Exogeneity  Cov(zi, ui) = 0 

 

Together these imply that Z only affects Y through X 

 

Note: We can test whether Cov(zi, xi) ≠ 0 (How?) 

We usually cannot test whether Cov(zi, ui) = 0 (Why not?) 

 



  

Identification—Construction of IV estimator in single variable case 

 

Identification of a parameter in this context means that we can write β1 in 

terms of population moments (parameters) that can be estimated using 

sample data. 

 

From 

yi =β0 +β1xi +ui and  (yi , xi, zi ) i= 1,..., n 

 

Recall that β1 = Cov(yi, xi)/Var(xi) = xy/x
2
 

 

We can write this in terms of how vary with z: 

 

Cov(yi, zi) = β1Cov(zi, xi) + Cov(zi, ui) 

 

Cov(zi, ui)=0 so 

 

β1 = Cov(yi, zi) / Cov(zi, xi) = zy/zx 

 

Sample analog:  
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Again note: if Z=X, then get OLS estimator 

 

 

In matrix notation: 

 

   
               



Large Sample Properties—Is this a consistent estimator of beta? 

 

1

?

1
ˆ

ˆ
ˆ 






p

zx

zyIV
  

 

Work with numerator: 
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Now apply LLN: 
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As N gets large, second term gets small assuming that Cov(z,u) = 0  

consistent estimator 

In small samples, in practice usually biased.  This is because if x is 

correlated with u, in practice is very rarely case that z and u have exactly 

zero correlation.  Underlines importance of large n with IV for consistency. 



The Two Stage Least Squares Estimator 

 

Assumptions: 

1. Linear in parameters yi =β0 +β1xi +ui 

2. (yi , xi, zi ) are iid draws—random sampling 

3. No perfect collinearity—rank condition 

4. E(ui) = 0 and Cov(zi, ui) = 0—Exogenous IVs 

 

1-4 give us consistency 

 

5.  E(u
2

i|zi) = 
2
 Homoskedasticy Efficiency. 

 

 

If the assumption are satisfied, β1 can be estimated using a particular IV 

estimator called two stage least squares (2SLS or TSLS).   

 

2SLS 

 

First stage: 

iiiii zxvzx 1010 ˆˆˆ    

 

zi is exogenous iz10    represents the part of xi that can be 

predicted by zi  this part is therefore also exogenous 

 

The other part of xi is the vi  this is the part that must be related to ui 

 

So 2SLS uses the exogenous part and disregards the vi 

 

Second stage: 

iii uxy  ˆ10    This gives us the 2SLS estimates of β0 and β1 

 

  



Consistency of 2SLS 

 

Is the same as the formula for the IV estimator we already wrote down and 

proved was consistent?  Does TSLSIV  ˆˆ  ? 

 

Does this equal 
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Does it converge in probability to zy/zx ? 
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Work with numerator: 
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Work with denominator: 
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So,  
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With a single var these two estimators are identical 

  



Comparison of Bias in OLS and 2SLS & Importance of Testing For 

Instrument Relevance 

 

Again, recall 2 conditions for a valid instrument 

 

1.  Instrument Relevance  Cov(zi, xi) ≠ 0 

2. Instrument Exogeneity  Cov(zi, ui) = 0 

 

 

The Weak Instruments Problem 

 

Question:  What if (1) x and z are weakly correlated and (2) z and u are 

weakly correlated?  Is using the instrument better than OLS or not?   

 

Result:  Weak correlation between x and z can lead to large asymptotic bias 

even if z and u are only moderately correlated. 

 

Go back to Consistency proof.  At end showed 
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because Corr = Cov/stddev 

 

Asymptotic bias will be big when  

(1)zi and ui are highly correlated,  

(2) zi and ui are not very correlated, but zi and xi are not very 

correlated either 

 

Recall that showed for OLS: 
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So which one will be less biased depends on the relative magnitude of these 

correlations. 

 

 

Rule of Thumb Test:  If F statistic for z vars (test that coeffs on zs are all 

equal to zero in first stage where regress x on the z’s) is less than 10, you 

have weak instruments 

 

More complex forms of this test when have multiple instruments, multiple 

endogenous variables (Bound, Jaeger Baker; Shea; Anderson test stats) 

 

  



2SLS Estimation in Multiple Variable Case—One Endogenous 

Explanatory Variable, 1 instrument, multiple exogenous vars 

 

Digression: 

 

How do we come up with estimators? 

 One method is least squares method—OLS came from minimizing 

sum of squared errors 

 Another method is known as “method of moments”.  A different class 

of estimators.  These come from matching up sample statistics 

(functions of data) to some function of population parameters.  Turns 

out (surprise) OLS is also a MOM estimator (covariance/variance) 

Going to show a MOM estimator here 

 Later, we’ll also describe maximum likelihood estimators.  There pick 

estimators by choosing parameters that maximize likelihood of 

drawing our particular sample.  Will do later with binary dependent 

variable models. 

 

 

Notation:  Here use y for the dependent var, x for endogenous independent 

var, w for exogenous independent vars, and z for the instruments.  

Wooldridge uses y for the dependent var and all endogenous independent 

vars, z for exogenous independent vars and all instruments. 

Again: endogenous means correlated with error 

 

Suppose model is yi =β0 +β1x1i + β2w1i+ui 

 

This is the structural model:  β1 represents the causal effect of x1 on y 

 

If x1 is endogenous (correlated with u), then all coefficients will be 

biased. 

Recall need an instrument z that is both exogenous and relevant 

How do we express these conditions in the multiple variable case? 

   

  



1
st
 condition: Instrument Exogeneity: Need instrument for z for x1 where  

E(u) =0, Cov(w1, u) = 0 and cov(z, x1) = 0 

 

Express as “Moment conditions”—get estimators for β0 ,β1, β2 by solving 

 













i

iiii

i

iiii

i

iii

wxyz

wxyw

wxy

0)ˆˆˆ(

0)ˆˆˆ(

0)ˆˆˆ(

12110

121101

12110







 

 

2
nd

 condition: Instrument Relevance: Need z to be correlated with x1, though 

now we have to also take w1 into account as well.   

Easiest to write this relevance condition down by writing the reduced form: 

 

iiii vzwx  2110  --Endogenous variables as functions of 

ONLY exogenous variables 

Need π2 0 

 

Note that this reduced form is also the 1
st
 stage.  All of this generalizes 

easily if have multiple ws. 

 

 

 



2SLS Estimation in Multiple Variable Case—Single Endogenous 

Explanatory Variable, Multiple Instruments 

 

 

First stage: 
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This is also called the “Reduced Form” 

 

Run a regression of endogenous independent var on ALL exogenous 

vars (instruments and other exogenous vars in model) 

 

Need to have at least one π 0 

 

If we have just one instrument (as before), we say that the model is 

“just identified” or “exactly identified” 

 

If we have more than one instrument, we say the model is 

“overidentified” 

 

 

Second stage: 
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2SLS Estimation in Multiple Variable Case—Multiple Endogenous 

Explanatory Variable, Multiple Instruments 

 

 

Model is yi =β0 +β1x1i + . . . +βkxki + βk+1w1i+ui 

Again, generalized easily.  Now have multiple equations to estimate in the 

first stage—1 for each of the Xs.  In second stage will plug the predicted 

values for each into equation for Y. 

 

How many instruments do we need?  At least one for every endogenous 

variable.  Order condition.  Again, if have more instruments than Xs, have 

an overidentified model. 

 

 

 

STATA note: 

 
ivreg yvar indepvar (xvars = ivvars) 

 

will report just the second stage estimates. 

 
ivreg yvar indepvar (xvars = ivvars), first 

 

will report all the first stage results as well 

 

  



Comparing OLS and IV Estimators 

 

1.  Consistency: 

 

Recall that OLS is biased if x is correlated with u.  IV is biased if z is 

correlated with u, and even if that correlation is small, bias may be 

larger than OLS bias if z is weakly correlation with x. 

 

2. Comparison of OLS and 2SLS standard errors 

 

Recall sample analog for OLS estimator standard error: 
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Sample analog: 
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Don’t need to know formula, do need to know  

Implications: 

 Like OLS estimator, variance gets smaller as n grows 

 R
2
 is less than 12SLS/IV se will be larger than OLS ones (so want 

to use OLS unless OLS bias is smaller than IV bias) 

 when R
2

xz is small (weak instrument) SE will be particularly large 

 when z=x R
2

xz=1OLS variance 

 

 

 

 

  



Testing For Endogeneity 

 

Checking if x is endogenous;  Checking if z is endogenous 

 

Again, recall 2 conditions for a valid instrument 

 

1.  Instrument Relevance  Cov(zi, xi) ≠ 0 

2. Instrument Exogeneity  Cov(zi, ui) = 0 

 

Exogeneity hard to satisfy.  Can we check if z is truly exogenous? 

 

Also recall that standard errors for IV are larger than OLS—do we even 

need IV estimates?  Is x really endogenous or not? 

 

  



Testing Endogeneity of Xs—The Hausman test 

 

yi =β0 +β1x1i + β2w1i+ui 

 

Suppose are not sure if Cov(xi ,ui ) = 0 , but do have a valid instrument for 

x. 

 

Like Hausman test for FE/RE, here have 2 estimators: 

Null:  Cov(xi ,ui ) = 0 

OLS: Unbiased, efficient under null, Biased until alternative 

TSLS: Unbiased in either case, but under null is less efficient 

 

Hausman (1978) Is the difference between OLS and IV estimates 

statistically significant?  If it is, then x must be endogenous. 

 

(Wooldridge method) Construction of test statistic: 

 

(1) Estimate reduced form for x by regressing it on all exogenous vars 

(all ws and zs) get residuals iv̂  

 

Since all zs are uncorrelated with ui, then testing if x is uncorrelated 

with ui is equivalent to testing if vi are uncorrelated with ui 

 

(2) Add residuals to structural equation:   

 

(3) Regress y on x, w, and iv̂  

Test if coefficient on iv̂ =0.  If not, then x is endogenous 

 

Note that the coeff on x in this regression will be same as coeff in a 

TSLS regression 

 

Multiple variables do an F-test 

 

Alternative construction-- just like Hausman test with FE vs RE: 
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Where k is # of parameters in structural model.  Also t test version 

just like before as well when have single x and single z 



 

STATA—just like Hausman test with FE vs RE: 

 

--Run OLS model 

--estimates store  betaols 

--Run IV model 

--estimates store betaiv 

--Hausman betaiv betaols 

--Null: betaiv = betaols  If reject, use IV estimates 

 

 

When will Hausman test fail to reject?  (Prefer OLS) 

 

 x really is exogenous 

 var-cov matrix is large—large IV standard errors because z is weakly 

correlated with x 

 Have a bad instrument—z is not really exogenous and so IV and OLS 

are the same because BOTH of them are biased in same direction 

 

Last 2 reasons why need theory and not just this test.



Testing Endogeneity of Zs—The Overidentification test 

 

If our model is exactly identified (exactly same number of zs as endogenous 

xs), can’t test whether z are exogenous or not.  Why not? 

 

But if overidentified (extra zs), turns out can test.  Another LM test. 

 

Null: All zs are uncorrelated with ui 

Alternative:  At least one is correlated with ui 

 

Construction of test statistic: 

 

(1) Estimate under the null:  Compute 2SLS estimates for structural 

equation get residuals iû  

 

(2) Regress  iû  on all ws, zs.  None of these should be correlated with ui 

if null is true. 

 

(3) Calculate nR
2
 from that regression ~ 2 with # of overidentifying 

parameters (# of Zs - # of endogenous Xs)  If nR
2
 is big, then we 

reject the nullat least one of our instrument is not valid. 

 

Note that is model is exactly identified, the R
2
 will be nearly zero. 

 

 

Alterative construction: Check whether each estimator using just identified 

first stages (using subsets of Z’s one at a time)—compare alternative 

estimators to see if are equal with these subsets of Z 

 

 

Caveats for Over id tests: 

Null: All zs are uncorrelated with ui 

 

 Potential for Type II error:    If IV estimates are imprecise (big 

standard errors) get low test statistics and will fail to reject null that 

estimates using alternative Z’s are the same.  However, may not be 

that the Z’s are exogenous, just that they are weakly correlated with x 

(see formula for standard error) 



 Potential for Type I error:  Alternatively, may have very precisely 

estimated IVs.  However, the implied “treatment” from the IVs may 

have different effects.  In other words, IV estimates pick up effect of x 

on that marginal population (the population whose choice of x is 

affected by z).  An alternative estimator using a different z may affect 

a different marginal population.  If those populations have different 

(heterogenous) effects of x on y, the IV estimates will be very 

different.  This is NOT because the IVs are invalid/endogenous, but 

because the treatment effects implied by each IV are different. 

 

 

Other sections we are skipping: 

 

--Interpretation of R2 

--Autocorrelation/Heteroskedasticity/Panel data 

If your project involves this type of data, read it! 

 

 

 

Summary of all of these tests: 

 

1.  Are the x’s exogenous?  (Correlated with errors?) 

 Hausman test.  Need a valid instrument to perform it 

 Back it up with theory 

 

2. Is z relevant?  Is it corr with the xs? 

 Simplest version--F test of joint significance of z’s in the 

first stage—want F>10 

 

3. Is z exogenous?  Is it correlated with the errors in the structural 

model?   

Over id test.  Need multiple instruments to perform it 

Back it up with theory 

 



Applications of IV:  Errors-in-Variables 

 

--Have already mentioned that can use IV if have omitted vars that are 

correlated with Xs.  Next chapter will show how IV works when reverse 

causation. 

 

Final reason why coeff on X might be biased?  Measurement error in X 

 

 Solution  1: Use another measure as an instrument: 

Suppose that have 2 “bad” measures of true x*: x1 and x2 

 

Can use one as an instrument for other.  Recall first stage will only 

pick up the part of x1 that is related to x2.  If the measurement error in 

the two vars is independent, only the “true” part will remain. 

 

 Solution  2: Use another exogenous var as an instrument.   

 

 


