

IMPACTS OF MODULAR GRIME ON TECHNICAL DEBT

by

Melissa Renee Dale

A thesis submitted in partial fulfillment
of the requirements for the degree

of

Master of Science

in

Computer Science

MONTANA STATE UNIVERSITY
Bozeman, Montana

April 2014

©COPYRIGHT

by

Melissa Renee Dale

2014

All Rights Reserved

ii

DEDICATION

I’d like to dedicate this thesis to my family, who have always supported my
pursuit of higher education, even when it looks like I’ll never finish. My parents Michael
and Nancy who have always encouraged me to work hard, my brother Nathan for taking
me out for a beer when things were rough, and my grandparents - Wayne Dale, Mary
Ann Dale, Leon Bowles, and Rita Bowles - who have given me strong roots and the
knowledge I’ll always have a home, no matter where I may go or what I may do.

iii

ACKNOWLEDGEMENTS

I’d like to acknowledge the people who’ve made this research possible. First and

foremost my adviser Dr. Clemente Izurieta. I am grateful for his patient guidance,

encouragement, and useful critiques of this research work. It was not always a smooth

journey, but I am very thankful that he gave me the opportunity to take it.

I would like to offer my special thanks to friend and mentor PhD candidate in

Industrial Engineering Jessica Mueller who used her statistical expertise to listen to my

proposed statistical analysis methods so that I may make sound statistical design

decisions, speak and write in a professional manner, and conduct better research.

I owe a thanks to my team at Webfilings, the XBRL services team. They have

allowed me a short time to intern with the company and actively apply technical debt

management techniques, as well as grow and learn as a software engineer.

Last but not least, I would like to express my very great appreciation to good

friend and colleague Lindsey Hanna, who used her experience as an active software

engineer in the field to provide technical input on the design of the grime injector tool

used in this research, as well as providing insight to technical debt management in the

industry.

iv

TABLE OF CONTENTS

1. INTRODUCTION .. 1

2. BACKGROUND .. 2

 Technical Debt ... 2

 What is Technical Debt? .. 3
 How to Measure Technical Debt?.. 5
 Managing Technical Debt .. 12
 Technical Debt in Industry ... 14

 A Technical Debt Framework .. 15
 Design Pattern Grime ... 16

 Scope: Internal or External .. 18
 Direction: Efferent or Afferent .. 18
 Strength: Temporary or Persistent ... 18

3. PROBLEM STATEMENT ... 20

4. METHODOLOGY ... 21

 Modeling Grime Growth .. 21
 Javassist .. 22

 Grime-Injector .. 23
 Input ... 23

 Pattern Class Names and Non Pattern Class Names 23
 Number of Grime Instances .. 24
 Number of Runs (Repeats).. 24
 Number of Versions (Iterations) ... 24

 Initialization ... 25
 Injection ... 26

 Overview of Injection Process ... 27
 Output .. 28

 JAD ... 29
 Modifying Java Projects ... 30
 Graphical User Interface .. 31

 SonarQube .. 31
 Example .. 33

5. EXPERIMENT ... 38

 Experimental Units ... 38
 Experimental Design .. 41

v

TABLE OF CONTENTS - CONTINUED

6. RESULTS AND ANALYSIS ... 43

 Assumptions ... 43

 Assumption of Normality .. 43
 Assumption of Homogeneity of Variance ... 44

 Results .. 45

7. DISCUSSION ... 48

8, THREATS TO VALIDITY .. 50

 Construct Validity .. 50
 Internal Validity ... 51
 External Validity .. 51

9. CONCLUSION ... 53

10. FUTURE RESEARCH ... 55

REFERENCES CITED ... 56

APPENDICES .. 61

 APPENDIX A: Java Checks Performed By Default Quality

 Profile in Sonarqube ... 62
 APPENDIX B: Technical Debt Scores Reported by Sonarqube 95
 APPENDIX C: SAS Results .. 102

vi

LIST OF TABLES

Table Page

1. Example of SQALE Quality Model ... 9

2. SQALE Analysis Model Example .. 9

3. Injected Variable Names for Version and Instance Number 36

4. Experiment Treatments and Blocks .. 42

vii

LIST OF FIGURES

Figure Page

1. Technical Debt Quadrant [8] .. 4

2. Nugroho's proposed equations for calculating technical debt 6

3. Software Value Pyramid ... 7

4. Example of Rating Indicator and Sonar Pyramid ... 10

5. Screenshot of SonarQube Quality Profile ... 11

6. CAST method for calculating technical debt [26] .. 16

7. Landscape of Design Pattern Rot and Grime [1] .. 17

8. Grime Taxonomy defined by Schanz and Izurieta [30] 19

9. Diagram of Java compilation and decompilation process 23

10. Strength of Coupling ... 26

11. Scope and Direction of Couplings .. 27

12. Overview of couple (to, from, strength) for Each Grime Type 29

13. Diagram of outputted directory structure.. 30

14. Example Sonar-properties.properties file ... 32

15. SonarQube Dashboard .. 33

16. Screenshot of Injector GUI ... 35

17. Outputted directory structure for example .. 37

18. Generic Observer Pattern UML as defined in Design Patterns:
Elements of Reusable Object-Oriented Software [38] 39

19. UML Diagram of Implemented Observer Design Pattern [39] 39

viii

LIST OF FIGURES - CONTINUED

Figure Page

20. Generic Decorator Pattern UML as defined in Design Patterns:
Elements of Reusable Object-Oriented Software [38] 40

21. UML for Implemented Decorator Design Pattern [39] 40

22. Generic Factory Pattern UML as defined in Design Patterns:
Elements of Reusable Object-Oriented Software [38] 41

23. UML Diagram of Factory Pattern [39] ... 41

24. Normality Assumption Analysis Graphs .. 44

25. HOV Assumption Analysis Graphs .. 44

26. ANOVA for 10 instances of grime ... 46

27. ANOVA for 50 instances of grime ... 46

28. ANOVA for 100 instances of grime ... 46

29. Tukey Grouping Test Results ... 47

ix

LIST OF EQUATIONS

Equation Page

1. CAST Equation for Calculating Technical Debt .. 5

x

GLOSSARY

ASA Automatic Static Analysis
BBQ Browse-by-Query
CCB Change Control Boards
HOV Homogeneity of Variance
PEAG Persistent External Afferent Grime
PEEG Persistent External Efferent Grime
PIG Persistent Internal Grime
RE Repair Effort
RF Rework Fraction
RV Rebuild Value
SIG Software Improvement Group
SS System Size
SQALE Software Quality Analysis based on Lifecycle Expectations
TEAG Temporary External Afferent Grime
TF Technology Factor
TEEG Temporary External Efferent Grime
TIG Temporary Internal Grime

xi

ABSTRACT

The purpose of this research is to study the effects of code changes that violate a
design pattern’s intended role on the quality of a project. We use technical debt as an
overarching surrogate measure of quality. Technical debt is a metaphor borrowed from
the financial domain used to describe the potential cost necessary to refactor a software
system to agreed upon coding and design standards. Previous research defined violations
in the context of design patterns as grime. Because technical debt can ultimately lead to
the downfall of a project, it is important to understand if and how grime may contribute
to a system’s technical debt.

To investigate this problem, we have developed a grime injector to model grime
growth on Java projects. We use SonarQube’s technical debt software to compare the
technical debt scores of six different types of modular. These six types can be classified
along three major dimensions: strength, scope, and direction.

We find that the strength dimension is the most important contributor to the
quality of a design and that temporary grime results in higher technical debt scores than
persistent grime. This knowledge will help to make design decisions which could help
manage a project’s technical debt.

1

INTRODUCTION

Design patterns are used in software engineering to reinforce consistent solutions

to common problems. However, as a system ages, changes are introduced as a result of

bug fixing or new features being added. As systems evolve, the coupling between pattern

and non-pattern classes tends to increase and the intended design patterns can become

obscured by code that violates the pattern’s intended purpose. Unintended additions were

defined by Izurieta and Bieman [1] as modular grime.

We are interested in investigating the effects that modular grime may potentially

have on the overall quality of a system when quantified as technical debt. Technical debt

is a metaphor borrowed from the financial domain and introduced by Ward Cunningham

[2]. It describes the amount of work needed to repay the debt incurred by taking

shortcuts, such as choosing decisively negative coding practices in order to meet a

deadline. We hypothesize that not all types of modular grime have the same impact on

the technical debt of a project. To investigate, we use SonarQube [3] to measure technical

debt and construct a grime injector to model instances of modular grime.

An overview of technical debt, including how it occurs, proposed methods for

measuring it, and management approaches are described in the Background section, as

well as a review of research related of design pattern decay and grime. We discuss the

process we use to model grime growth and collect technical debt measurements in the

Methodology section. In the Results and Analysis section, we analyze the findings of the

experiments and discuss Threats to Validity in the following section. Finally, we

summarize our findings and propose areas for future research.

2

BACKGROUND

 This research investigates the relationship between technical debt and modular

design pattern grime. In this section we discuss the background of technical debt (section

2.1), including a method to estimate technical debt (section 2.1.1) and a tool that reports

technical debt (section 2.1.2), as well as information about design pattern grime (section

2.2).

Technical Debt

The term ‘'technical debt”, coined by Ward Cunningham in 1992 [2], describes

the cost (which can be measured in terms of dollars or man-hours) that a design decision

will cost in the future at the expense of a short term gain. Like financial debt, technical

debt is necessary for a product to advance. For example, a software engineer may decide

to design a solution that will require reworking in the future. The engineer is aware that it

is not the best solution for the health of the system, but it is an intentional decision that

must be made in order to meet a release deadline. There was a short term benefit gained

by being able to meet the deadline, but in the future the time and effort that was saved

will have to be re-invested. In fact, more time and effort may need to be re-invested than

if the shortcut was not taken. This additional effort can be thought of as an interest that

must be repaid on the gain made by taking the shortcut.

Like financial debt, if a system incurs too much technical debt without a

repayment plan, it may become unstable and unable to be modified without significant

effort. Ward [2]states “Entire engineering organizations can be brought to a stand-still

3

under the debt load of unconsolidated implementation”. The decision described above to

incur intentional debt results in new system debt accumulation which will need to be

managed and repaid at some point in the future with interest.

 Before a plan to manage technical debt can be implemented, there must first be a

way to quantify it. In this study, we focus only on modular grime, a form of technical

debt found in designs. We evaluate this grime by evaluating source code using

SonarQube [3], which reports technical debt in both man days (how many 8 hour

developer days it takes to correct all the identified issues), and in terms of an estimation

of how much it will cost the organization to fix those issues in man days.

 There are multiple forms of debt, but this research focuses primarily on design

debt (sometimes referred to as architectural debt). In 2004 Kerievsky [4] defined design

debt as costs associated with architectural negligence. Neill and Laplante [5] identify

needs of managing design debt by pointing out that repairing decaying code often

requires more strategic approaches that address design deficiencies than simple syntactic

issues or coding standards violations.

What is Technical Debt?

 What qualifies as “Technical Debt”? In order to investigate the consequences of

technical debt we need to first understand more formally what is technical debt and how

it occurs.

 Kruchten et al. [6] claim that, “Most authors agree that the major cause of

technical debt is schedule pressure,” although they also point out that other issues can

4

come into play, such as carelessness, lack of education, and basic incompetence. Klinger

et al. [7] claims debt is result of stakeholders that lack effective means to communicate.

Fowler [8] presents a formal explanation on how technical debt can occur. He

points out an important distinction between prudent debt and reckless debt, as well as

deliberate and inadvertent. The quadrant shown in Figure 1 illustrates these concepts.

Figure 1: Technical Debt Quadrant [8]

In their study Zazworka et al. [9], find that technical debt has a negative impact

on software quality. In other words, if developers desire higher quality software, then

technical debt needs be identified and managed closely in the development process.

 Quality indicators alone are not sufficient to estimate technical debt. Zazworka et

al. [10] compare four different technical debt identification approaches, including code

smells, automatic static analysis (ASA) issues, grime buildup (discussed in Background

Section 2.2 Design Pattern Grime), and modularity violations. They studied

commonalities and differences between these identification techniques, and found that

only a small subset of technical debt indicators are related to quality indicators.

5

How to Measure Technical Debt?

 A number of authors have proposed various ways to quantify and measure

technical debt. In the following paragraphs we discuss proposed methods for measuring

technical debt.

Curtis et al. [11] evaluate technical debt using static analysis of defined good

architectural and coding practices that aims to evaluate quality within and across

application layers. They then present a formula for estimating the principal in dollars:

TD-Principal =
(high severity violations)x.5)x 1hr.)x75$)+

(medium severity violations)x.25)x 1hr.)x75$)+

(low severity violations)x.1)x 1hr.)x75$)

Equation 1: CAST Equation for Calculating Technical Debt [11]

The ability to customize which violations are considered high severity versus

which are considered low severity allows organizations to customize a model to estimate

how costly their technical debt is.

 Ariadi et al. [12] propose an approach based on an empirical assessment method

of software quality developed at the Software Improvement Group (SIG). The core part

of the technical debt calculation is constructed on the basis of empirical data of 44

systems that are currently being monitored by SIG. They propose that technical debt may

be thought of as the Repair Effort (RE), which can be estimated by using Rework

Fraction (RF) and Rebuild Value (RV). Where the RF is an estimate of the percentage of

lines of code that need to be changed to improve the quality of software to the next

6

quality level (assuming a 5 star quality rating) and RV is an estimate of effort that needs

to be spent rebuilding the system. RV is calculated by multiplying the System Size (SS)

in lines of code by Technology Factor (TF). The definitions in Figure 2 provide a

summary of the equation described above.

 𝑅𝐸 = 𝑅𝐹 ∗ 𝑅𝑉 ∗ 𝑅𝐴, where
 𝑅𝐹 = estimate of percentage of lines of codes that need to be changed
 𝑅𝑉 = 𝑆𝑆 ∗ 𝑇𝐹
 𝑅𝐴 = % 𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 𝑓𝑜𝑟 𝑏𝑒𝑛𝑒𝑓𝑖𝑐𝑖𝑎𝑙 𝑓𝑎𝑐𝑡𝑜𝑟𝑠, 𝑠𝑢𝑐ℎ 𝑎𝑠 𝑡𝑒𝑎𝑚 𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒

 Figure 2: Nugroho's proposed equations for calculating technical debt [12]

 This paper also explores the interest that technical debt occurs. It uses a

Maintenance Effort (ME) as a surrogate for interest. 𝑀𝐸 =
𝑀𝐹∗𝑅𝐹

𝑄𝐹
, where MF is the

maintenance fraction calculated by historical maintenance information and QF is the

quality factor used to account for the level of quality. QF is calculated by 𝑄𝐹 =

2(
𝑄𝑢𝑎𝑙𝑖𝑡𝑦𝐿𝑒𝑣𝑒𝑙−3

2
)), which gives factors from 1-star to 5-star respectively: 0.5, 0.7, 1.0, 1.4,

2.0.

Groot et al. [13] incorporate Nugroho’s methods to determine the production

value of software using a Software Value Pyramid. This Pyramid is displayed in Figure 3.

7

Figure 3: Software Value Pyramid [13]

 At the bottom of the pyramid there is the software development level. This level

represents the technical state of a system and are the main concern of the software

development team: Quality, Volume, and Technology. The next level is the Application

Portfolio Management and utilizes Nugroho's equations for calculating technical debt. At

the top, the enterprise management level, corporate executives consider software as assets

that can be acquired, maintained and exploited, or sold. At this level, the authors propose

three models. To illustrate the differences in these models, the authors describe buying a

car with a dent.

In the first model the validation model subtracts the repair effort from the repair

value, in much the same way one would subtract the cost to repair a dent from the overall

cost of a car.

The second model reduces the rebuild value by the fraction of the software system

that is of suboptimal quality, like replacing the dented part of the car with a new part

altogether.

8

The third model impairs rebuild value by the increased software maintenance

costs due to suboptimal quality. This is analogous to just living with the dent in the car

and accepting higher running or maintenance costs.

After applying these three models to a large collection of software, the authors

found that all three models report similar values. The authors also conducted several case

studies to understand how practitioners view the proposed models. Rather than preferring

one model over the other, the practitioners viewed all three models as complementary and

improvement over the strictly development cost in evaluating the value of their software.

Another proposed method used to calculate technical debt is the Software Quality

Assessment Based on Lifecycle Expectations (SQALE) method. The SQALE method is

used in this research. The SQALE method does not account for interest of debt in its

calculations and so it may not provide a complete picture of the technical debt of a

system. Letouzey [14] presented the SQALE methodology in 2012. SQALE utilizes four

key concepts to build a technical debt framework: quality model, analysis model, indices,

and indicators.

The SQALE quality model evaluates code quality based on a given set of rules,

for example, one rule might state that there should be no commented out blocks of code.

The quality model is a hierarchy composed of characteristic, sub-characteristic, and

requirement categories. Characteristic and Sub-Characteristic are the categories being

evaluated when considering technical debt, such as Maintainability, Readability,

Changeability, Security, etc. The Requirement is the rule that the Characteristic and Sub-

Characteristic should follow. An example is given in Table 1.

9

Table 1: Example of SQALE Quality Model

Characteristic Sub-Characteristic Requirement
Maintainability Readability There is no commented out block of code

The SQALE analysis model uses a normalized remediation index to evaluate how

much it will cost to fix the issues reported by the quality model. This model if formed

from the rule being checked (Requirement), how to fix the requirement if it is not met

(Remediation Details), and an estimate of how long it will take to fix the requirement

(Remediation Function). An example of a SQALE analysis model is given in Table 2.

Table 2: SQALE Analysis Model Example

Requirement Remediation Details Remediation Function
There is no commented
out block of code

Remove (because there is no
impact on compiled code) 2 minutes per occurrence

The SQALE Indices are a number of indices that connect data. The main index is

a global quality index that connects source code artifacts to the sum of remediation

indices (as defined by the remediation function in the SQALE Analysis Model) relating

to the characteristics of the quality model. SQALE also provides indices for testability,

reliability, changeability, efficiency, security, maintainability, portability, and reusability.

The SQALE Indicators highlight potential areas of concern in a system. They are

used for analysis and visual representations, such as dashboards. Two examples given in

Letouzey’s paper are Rating and SQALE Pyramid. Rating is a high level indicator

suggested by Gat [15] that visualizes the ratio between technical debt and development

cost. The SQALE Pyramid is used to visualize the distribution of technical debt over the

10

quality model. Figure 4 depicts an example given by Letouzey of Rating indicator (left)

and a SQALE Pyramid (right).

Figure 4: Example of Rating Indicator and Sonar Pyramid [14]

The tool used in this research to calculate technical debt of a project is SonarQube

[3]. SonarQube utilizes the SQALE methodology to measure a source code’s technical

debt. The baseline set of expectations in SonarQube are referred to as the “Developers’

Seven Deadly Sins”, which are: Bugs and Potential Bugs, Coding Standards Breach,

Duplications, Lack of Unit Tests, Bad Distribution of Complexity, Spaghetti Design, and

Not Enough or Too Many Comments. Each of the sins are tracked through rules defined

in SonarQube’s “Quality Profile” setting.

The “Quality Profiles” settings in SonarQube corresponds to the SQALE Quality

Model. Figure 5 displays the example Quality Profile for Java given on the SonarQube

documentation website [16]. A complete list of rules being checked can be found in

Appendix A.

11

Figure 5: Screenshot of SonarQube Quality Profile [14]

Every time SonarQube finds an instance which does not conform to the rules

given in the Quality Profile, it raises an issue. The technical debt value for each issue is

set at the rule level of the Quality Profile and is defined by seasoned professionals [17].

The commercial version of SonarQube allows for organizations to define technical debt

values that are individualized, but for the purposes of this research, the default values are

appropriate for our exploration. These costs relate to the remediation functions of the

SQALE Analysis Model. Technical debt is then calculated by summing the technical debt

accrued by each issue.

12

Managing Technical Debt

 It is unrealistic to think that developers can simply fix all technical debt artifacts

as they are discovered. The following section examines some proposed methods to

manage technical debt and incorporate repayment plans in the planning stages.

With so many different technical debt aspects, how do we know how to manage it

all? Brown et al. [18] lay the groundwork for understanding the need to manage technical

debt. They pose open research questions, including refactoring opportunities,

architectural issues, and identifying dominant sources of technical debt, as well as issues

that arise when measuring technical debt.

Zazworka et al. [19] and Seaman et al. [20] explore design debt through use of a

God class to answer how to prioritize and decide where to refactor based on estimating

cost and impact of the refactoring. Zazworka et al. [19] propose a method using cost

benefit matrices of refactoring effort and quality impact to help identify which refactoring

activities should be performed first because they are likely to be cheap to make have

significant effect, and which refactorings should be postponed due to high cost and low

payoffs. Seaman et al. [21] expanded on the authors’ initial work to include four

approaches to incorporate technical debt information into decisions made for release

planning. These four approaches are Simple Cost-Benefit Analysis, Analytic Hierarchy

Process, Portfolio Approach, and Options.

Simple cost-benefit analysis approach makes use of the cost-benefit matrices

discussed above. Analytic hierarchy process involves building a criteria hierarchy of

quantitative and qualitative criteria, assigning weights and scales to the criteria, and

13

performing a series of pair wise comparisons between the alternatives against the various

criteria. The portfolio approach relates to the financial domain in which investors apply

risk management strategies to maximize their return on investment. This approach can be

applied to technical debt management by determining the types and amounts of assets

that should be invested or divested and when the actions should occur to maximize the

return on investment. Lastly the Option approach considers investment in refactoring as

analogous to purchasing the option that will allow changes to be made in the future, but

with no immediate profit gained. While all approaches consider principal and interest, all

require different input from the user, and further investigation needs to be conducted to

determine differences in the application of these approaches to the decision making

process.

Snipes et al. [22] propose using Software Change Control Boards (CCBs) based

on a set of decision factors. A Software Change Control Board is a committee of

stakeholders that make decisions regarding whether or not proposed changes to a

software project should be implemented. The aim of the study was to determine how a

model of cost and benefits of incurring technical debt could be part of the CCB decision

process. The authors identified the cost categories and decision factors for fixing and

deferring defects as a result of interviews with CCB members and found that the decision

factors could incorporate the financial aspects when using the technical debt metaphor.

Ernst [23] explores measuring technical debt in requirements as the distance

between the implementation and the actual state of the world. Using the requirements

14

modeling tool RE-KOMBINE, the author represents technical debt using the notion of

optimal solutions to a requirements problem.

Technical Debt in Industry

 While technical debt is being actively researched in academia, there is also a

growing interest in technical debt in industry. The following paragraphs explore how

technical debt is being managed in practice and what lessons have been reported by those

actively evaluating and managing technical debt on real world systems.

To bridge the gap between theory and application, Lim et al. [24] conducted an

interview study to review how software practitioners perceive technical debt and

understand the context in which technical debt occurs. After conducting interviews with

35 practitioners, they found that 75 percent of participants weren’t familiar with the term

“technical debt”. After explaining the metaphor in terms of tradeoffs and shortcuts, most

participants recognized and understood it immediately. The authors compiled the

participants’ strategies for dealing with technical debt. The list includes doing nothing,

allocate some percentage of each release cycle to addressing technical debt, manage

stakeholders’ expectations by being open about debt’s implications, and conduct audits

with entire development teams to make technical debt visible and explicit.

Morgethaler et al. [25] discuss how Google approaches technical debt. Google

uses a variety of methods to pay off technical debt, including special Fixit days and teams

dedicated to locating and refactoring. For this study, they focus on the technical debt in

their build system. They found this debt hurts the company in two ways. First, it results in

lower productivity of engineers because of slower builds, brittle targets, and maintenance

15

of abandoned or broken libraries. Second, this debt results in increased computation costs

of the build and test infrastructure because of building and running unnecessary code and

tests. Furthermore, they suggest that prioritizing and dealing with technical debt cannot

always be left to individual teams, since many engineers resist these efforts on the

grounds that it would slow them down or encourage code duplication.

 The 2011/12 Crash report [26] evaluates structural quality of business application

software. They found on average there is $3.61 of debt per line of code, which means

$361,000 of debt for 100,000 lines of code. CAST has released a brochure to illustrate

their method of calculating technical debt described in Measuring and Managing

Technical Debt with CAST AIP [27]. Figure 6 displays the approach CAST takes to

calculating technical debt.

A Technical Debt Framework

In 2013, Tom et al. [28] proposed an encompassing framework of technical debt

based on a comprehensive survey of current literature. The framework categorizes

technical debt across dimensions and attributes, and explores proposed management

through precedents and outcomes.

The framework proposes dimensions of code debt, design and architectural debt,

environmental debt, documentation debt, and testing debt. It defines technical debt

attributes as monetary cost, amnesty, bankruptcy, interest and principal, leverage, and

repayment and withdrawal.

16

Figure 6: CAST method for calculating technical debt [26]

The authors also investigated precedents that influence how organizations take on

technical debt. Pragmatism and prioritization are two such precedents, as well as

development processes, attitudes, and ignorance and oversight.

Design Pattern Grime

In studying design pattern decay, two key concepts are rot and grime, as identified

by Izurieta and Bieman [29]. Rot is the breakdown of structural integrity of a design

17

pattern realization. The term “grime” refers to the accumulation of code that violates the

intended role of the design pattern, but does not break the structural integrity of that

design pattern. Rot and Grime are mutually exclusive.

Three types of grime were defined by Izurieta and Bieman [1]: organizational,

modular, and class. Organizational grime refers to the organization of the files and

namespaces that make up a pattern. Class grime refers to individual classes that make up

a pattern. This study focuses on modular grime, which refers to coupling between pattern

classes or pattern classes and non-pattern classes which violate the pattern’s intended

purpose. Izurieta and Bieman depict the landscape of design pattern rot and grime using a

Venn diagram, depicted in Figure 7.

Design Pattern Decay

Design pattern Rot Design pattern Grime

Class Modular

Organizational

Figure 7: Landscape of Design Pattern Rot and Grime [1]

 Schanz and Izurieta [30] defined taxonomy for modular grime along three

dimensions: the scope of the coupling, the direction of the coupling, and the strength of

the coupling.

18

Scope: Internal or External

The scope of the coupling refers to where the coupling occurs. If both classes that

are coupled reside in the design pattern, the scope is internal. If the coupling connects a

non-pattern class to a pattern class, the scope is external.

Direction: Efferent or Afferent

If the grime connects a pattern class to a non-pattern class, the direction of that

coupling is classified according to its origination source. An instance of grime that

originates inside a pattern and forms a relationship with a non-pattern class, is referred to

as efferent. If the grime originates outside of a pattern and forms a relationship with a

pattern class, then the grime is referred to as afferent.

Strength: Temporary or Persistent

Strength refers to the difficulty of removing the coupling [31]. Strength may be

either temporary or persistent. In temporary couplings, a class A uses a method with a

parameter, a return value, or a local variable of another class B. Persistent couplings

occur when a class A contains an attribute of class B.

Using these dimensions, Schanz and Izurieta defined six types of grime: Persistent

External Afferent Grime (PEAG), Persistent External Efferent Grime (PEEG), Persistent

Internal Grime (PIG), Temporary External Afferent Grime (TEAG), Temporary External

Efferent Grime (TEEG), and Temporary Internal Grime (TIG). The diagram in Figure 8

depicts the structure of the taxonomy.

19

Figure 8: Grime Taxonomy defined by Schanz and Izurieta [30]

Schanz and Izurieta conducted a pilot study using Vuze, a peer-to-peer file

sharing client that uses the bittorrent protocol over eight versions. They used a Browse-

by-Query (BBQ) plugin for eclipse to determine changes in the number of grime

couplings between versions. However, BBQ does not allow the user to differentiate

between internal and external scope of couplings. Therefore changes in PIG couplings are

reflected in PEAG and PEEG, and changes in TIG couplings are reflected in TEAG and

TEEG. After analyzing grime counts over eight versions and 38 months of development,

the authors found that in VUZE software instances of TEEG, TEAG, and PEAG tended

to increase, while PEAG did not.

20

PROBLEM STATEMENT

The relationships between technical debt and grime are important to understand

when considering the role grime plays in the technical debt of a system. Izurieta et al.

[32] identify design pattern grime as a component of the technical debt landscape.

Some initial work has been done to understand the negative impact of grime.

Izurieta and Bieman [33] find that as grime grows, so do testing requirements, which can

negatively impact system testability. Research to quantify grime in terms of technical

debt does not exist. This research will take the first steps in quantifying the effects of

modular design pattern grime on technical debt.

21

METHODOLOGY

Modeling Grime Growth

To study differences in the effects of different types of modular grime on

technical debt, we will first model the growth of modular grime on Java projects that use

design patterns to produce modified Java projects that can then be used to obtain and

analyze technical debt scores.

In order to model grime growth, we take a clean Java project and then create a

modified copy for each of the different types of modular grime defined by Schanz and

Izurieta [30]. The details of this modification process are described in the following

sections, but at a high level we model modular grime by creating couplings between

classes that represent that grime type. The process of injecting these couplings and how

these couplings differ for each type of modular grime are discussed in the Injection

section 4.3.3.

Javassist [34] is used to modify Java programs. It is a class library that allows a

developer to edit bytecodes in Java. Using Javassist, we developed a java injector

program to modify a given class file’s bytecode. Javassist files need modification before

they can be analyzed, we describe those modifications and then describe how the grime

injector manipulates class files to represent grime growth.

22

Javassist

When a program is written in Java it is saved to a .java file. When that code is

compiled, it is compiled to bytecode for the Java virtual machine (JVM) to execute. This

bytecode is saved in a class file (.class) that is executed by the JVM.

To edit a specific class, Javassist examines the JVM path to locate the bytecode of

that class. Once it finds the bytecode, the Javassist API can be used to modify the class.

For example if you wanted to edit a class named HelloWorld.java, you can use the get()

method API of Javassist to locate HelloWorld.class. Once Javassist has a reference to the

class file, it is possible to modify the bytecode, including changing existing methods or

adding new methods and variables.

The modified bytecode class file can be decompiled back to a .java file. JAD [35]

is a freeware java decompiler which takes class files and decompiles them back to java

files, which can be analyzed using tools such as SonarQube. JAD is discussed further in

the JAD subsection.

Figure 9 shows a diagram of the process described above. We start with a

HelloWorld.java source file, and compile it to bytecode (.class), which if executed by the

JVM would print “Hello World” to the terminal. However, if we modify the file

HelloWorld.class with the injector, we can produce modified bytecode that can be

executed on the JVM and would now print “Hello Universe” to the terminal. To analyze

the equivalent source (.java) file of a modified bytecode file, we must run it through a

decompiler to produce the modHelloWorld.java file.

23

Figure 9: Diagram of Java compilation and decompilation process

Grime-Injector

The tool used to model grime growth is herein referred to as the grime injector. It

is written in Java [36]and uses Javassist to perform all grime growth simulations. The

following subsections describe how the grime-injector works, including necessary inputs,

initialization, a description of how it performs the injections, and outputs. Finally an

example is given to illustrate all the aforementioned steps.

Input

To model grime growth, the user of the injector must provide the following

information. These items may be specified through the injector GUI, discussed towards

the end of this section.

Pattern Class Names and Non Pattern Class Names. The injector uses an arraylist

of strings that describe the pattern class names and an arraylist of strings that describe

non-pattern classes. Once the string arrays are passed to the injector, Javassist uses the

24

names of these classes to select the corresponding bytecode and create an arraylist of

pattern class bytecode files and an arraylist of non-pattern class bytecode files.

Number of Grime Instances. The injector uses an array of integers to specify the

number of grime instances to be injected. The array has size six, where each indexed

value represents a different type of modular grime (modular grime types are defined in

the BACKGROUND section). For example, if the user wants 10 instances of each type of

modular grime, then they would pass in an array of 10s [10,10,10,10,10,10]. Values are

given in alphabetical order, so if a user wanted to only model 10 instances of PEEG

grime type, they would pass in an array with only one 10 in the third index and the rest

0’s [0,0,10,0,0,0]. Using the GUI, the user can explicitly state the numbers of each grime

type (or a number for each). The GUI will then pass the appropriate array to the injector.

Number of Runs (Repeats). This is an optional parameter integer that specifies the

number of times to repeat the injections. This is useful when running experiments and

multiple sets of modified projects need to be obtained, such as for running statistical

analysis to determine means or determining statistical differences. The default value of

this parameter is 1.

Number of Versions (Iterations). The version option is intended to represent the

growth of grime over iterations of software. The injection begins by performing the

expected number of injections and outputting the injected bytecode into the appropriate

directory (the directory structure is explained below). Before exiting the program, the

injector will feed the outputted bytecode back into the injection process and inject over

25

the previously injected code thus compounding the grime. It continues this process for the

number of specified iterations before moving onto the next run. If no number of versions

is specified, the default value is 1.

Initialization

The injector performs a series of initialization steps. First an integer variable is

injected into every class file. This variable in injected so that when performing temporary

grime injections, the program can inject a variable that is guaranteed to exist.

Because the grime injector cannot at this time handle classes with non-empty

constructors, the injector catches the exception that arises when attempting to inject a

persistent grime type and it will add an empty constructor to the class. This works

because Java allows constructors to be overloaded. For example, a java class with a

constructor like: Foo(int bar) would throw an exception if Javassist attempted to

initialize an instance of that class because it does not have the required parameters to

initialize it. To avoid this exception, another constructor may be added to class Foo so

that it may be initialized by simply calling Foo().

Six copies of the pattern and non-pattern initialized bytecode arrays are made, one

for each modular grime type. These six identical copies serve as the clean foundations for

the modular grime to be modeled. The injector has been designed such that it will be

possible in the future to have the option to overlay all the different types of grime on top

of each other in a program.

26

Injection

This processes makes use of the grime taxonomy described in the background

section; coupling strength (temporary or persistent), the scope of the grime (internal or

external), and the direction of the grime (efferent or afferent). All the types of grime are

injected with the same method: couple (class to, class from, char strength).

The strength of the grime is handled through a char variable in the couple

method. If a “t” or “T” is passed in, the coupling is temporary and a local variable of the

“from” class type will be injected into the “to” class, creating a temporary coupling. If a

“p” or “P” is passed in, the coupling is persistent and an attribute of type “from” class

will be injected into the “to” class. Figure 10 depicts the strength relationship between the

‘from’ and ‘to’ class.

TEMPORARY

from to

PERSISTENT

from to

Figure 10: Strength of Coupling

The scope and direction can both be handled with the “to” and “from” classes in

the couple method. The coupling is performed by taking an instance of the “from” class

and injecting it into the “to” class file. This coupling will either be created by using an

attribute of type “from” class or a local variable of the “from” class depending on the

strength defined in the couple method (as described above).

If the scope is internal, the origin and the destination are irrelevant because both

are in the pattern itself. If the direction is afferent, a pattern class is randomly chosen and

27

injected as a “from” class into a randomly selected “to” class from the non-pattern

arraylist. If the direction is efferent, the “to” class is randomly selected from the pattern

class array and injected (depending on the strength defined in the couple method) into a

class randomly selected from the non-pattern class array. Figure 11 displays the scope

and direction relationships for each strength type.

SCOPE - DIRECTION

External - Efferent

Pattern Not Pattern

External - Afferent

Pattern Not Pattern

Internal – (direction does not matter)

Pattern Pattern

Pattern Pattern

PERSISTENT

SCOPE - DIRECTION

External - Efferent

Pattern Not Pattern

External - Afferent

Pattern Not Pattern

Internal – (direction does not matter)

Pattern Pattern

Pattern Pattern

TEMPORARY

Figure 11: Scope and Direction of Couplings

Overview of Injection Process

Figure 12 depicts the coupling process for couple(to, from, strength) for each

grime type. For each instance of grime, the couple method:

28

1. Randomly selects a “to” class (from the pattern-class array if direction is

internal or afferent, otherwise from the not-pattern-class aray if direction is

efferent).

2. Randomly selects a “from” class (from the not pattern class array if direction

is afferent, otherwise from the pattern class aray if direction is efferent or if

the scope is internal).

3. If strength is persistent, an attribute of type “from” class will be inserted into

the “to” class. Else if the strength is temporary, a local variable of the “from”

class will be inserted into the “to” class.

Output

Once the injector has completed the modifications, it outputs the modified class

files to a “Results” directory in the project’s directory hierarchy. The “Results” directory

contains several layers of subdirectories based on the variables passed into the injector.

The first level of subdirectories is the run directories. Each time the injection is

repeated (specified by the parameter number of runs) a separate directory is created for

the results of each run. Within each run directory, there are versions subdirectories (if

more than one version is specified). Lastly, each array of the project’s modified bytecode

is written to the appropriate grime type directory, where it is ready to be decompiled by

JAD. For each manipulated project, a sonar-properties properties file is generated so that

SonarQube may be launched against all the results with a script (a full explanation of this

process is given in the SonarQube subsection of the Methodologies section). A diagram

of the described directory hierarchy is displayed in Figure 13.

29

PEAG PEEG PIG

Pattern
Classes

Non Pattern
Classes

from to

P_class1 NP_class1

P_class2 NP_class2

P_class3 NP_class3

Pattern
Classes

Non Pattern
Classes

to from

P_class1 NP_class1

P_class2 NP_class2

P_class3 NP_class3

Pattern
Classes

Non Pattern
Classes

from, to

P_class1 NP_class1

P_class2 NP_class2

P_class3 NP_class3

TEAG TEEG TIG

Pattern
Classes

Non Pattern
Classes

from to

P_class1 NP_class1

P_class2 NP_class2

P_class3 NP_class3

Pattern
Classes

Non Pattern
Classes

to from

P_class1 NP_class1

P_class2 NP_class2

P_class3 NP_class3

Pattern
Classes

Non Pattern
Classes

from, to

P_class1 NP_class1

P_class2 NP_class2

P_class3 NP_class3

Figure 12: Overview of couple (to, from, strength) for Each Grime Type

JAD

JAD [35] is a command-line java decompiler. Once there is a “Results” directory

populated with modified .class files and the injection manipulation process has finished, a

batch file is executed that recursively traverses every directory, decompiling each .class

file into a .java file of the same name using JAD. Once it has traversed all available

directories, there are java files and class files available for analysis. The result is a set of

modified java source files that may be analyzed for grime-related and technical debt

metrics.

30

Results

Run1

Version1 Version2

PEAG PEEG PIG TEAG TEEG TIG

SRCSonar-
Properties

Pattern1.java Pattern1.class

Figure 13: Diagram of outputted directory structure

Modifying Java Projects

 The injector is run directly from Eclipse [37] as a Java project. To use the

injector, the user simply drops the experimental objects (i.e. the java files) into the

“analyze_this” package of the grime-injector program in Eclipse and then runs the

GUI.java file.

31

Graphical User Interface

The grime injector uses a graphical user interface (GUI) to allow the user to

specify the desired details of modeling grime growth. The user enters the pattern and

non-pattern class names, and the GUI will confirm if it is able to discover the requested

classes by displaying the class names in green if it was able to find them and in red if it

was unable to locate them. The user can then specify the specific numbers representing

each type of grime, or give one number for each grime type. Lastly, the user specifies the

number of runs and versions. If these fields are left blank, the default values are set to 1.

Once the user has specified all parameters, they simply click the “Inject” button,

and the injector launches. The bytecode is modified and outputted in accordance to the

methodology described above. Once the bytecode has been manipulated, the JAD script

is automatically launched to decompile the modified bytecode. A Results folder is now in

the top level directory of the grime injector and is ready to be used to for analysis.

SonarQube

 Once the modified projects are completed, we are ready to evaluate the associated

technical debt scores using SonarQube [3]. SonarQube is composed of two pieces:

SonarQube server and SonarQube Runner. To collect the scores from the Results

directory outputted described in section 4.3.5, the user must:

1. Launch the SonarQube server. The user launches the SonarQube server

StartSonar.bat from the command line. Now the user is ready to see the

32

technical debt analysis output from SonarQube Runner by navigating to

http://localhost:9000 in their browser.

2. Launch SonarQube Runner. To perform the technical debt calculations, the

SonarQube Runner must be run against a project which has an accompanying

sonar-properties.properties file. Similar to the SonarQube server, the

SonarQube runner is launched by a batch file from the command line (sonar-

runner.bat). An example of a sonar-properties file is given in Figure 14.

Figure 14: Example Sonar-properties.properties file.

During the injection process described in section 4.3, a unique Sonar-

properties.properties file is created for each modified project. Included in the Injector

project is a script that recursively traverses the Results directory until it finds a Sonar-

properties.properties file, at which point it will launch the SonarQube Runner against the

project in that directory. This allows the user to run one script and obtain a technical debt

33

score for each modified project. When the script has finished, the user navigates to

http://localhost:9000 and sees the results that SonarQube Runner has collected. The

dashboard lists each modified project and the user may investigate individual modified

projects by clicking on the link in the dashboard.

A small portion of the dashboard is given in Figure 15. In this figure, we see the

results for PEAG grime modeled over three versions. The “0-PEAG” indicates this is the

first run for a PEAG model. If the Results directory has multiple runs, the next run would

be named “1-PEAG” and so on.

Figure 15: SonarQube Dashboard

Example

 Let’s say a user wishes to model the growth of TEAG on a program modeled on

the science fiction television series Star Trek. The user plans to model grime growth over

3 version releases and then run SonarQube against the modified projects to see if the

technical debt score reported increases after the injection of 5 TEAG grime instances on

each version.

The user wants to repeat this experiment 5 times to obtain an average technical

debt score. Repeating the injection process 5 times will result in 5 modified projects.

34

Each modified project starts from the same clean foundation and will have the same

number of grime instances injected into it, but because the “to” and “from” classes are

randomly selected for each grime instance, there may be variability between each of the 5

modified projects.

First the user places a copy of the StarTrek program into the injector’s

“analyze_this” package in Eclipse, and then runs GUI.java to specify the details of their

desired grime growth model.

The first step is setting up the array of pattern classes and array of non-pattern

classes. The user successfully enters Kirk and Romulan (the injector is able to locate

Kirk.java and Romulan.java as indicated by the green font), but when the user attempts to

enter Klingon as a non-pattern class, the GUI echoes Klingon in a red font, which

indicates it is not able to locate Klingon.java and will ignore this entry. Next the user

specifies the number of TEAG instances to be injected (per version) while leaving the

rest of the fields as blank, indicating they should be 0, and enters 5 into the runs field and

3 into the versions field.

Once the fields are entered, the user clicks the “Inject” button and the grime

injector takes over. For simplicity, we exemplify the process using only one pattern class

(Kirk.java) and one non pattern class (Romulan.java). The injector will first load the

Kirk.class file into the pattern class array and the Romulan.class file into the non pattern

class array.

35

Figure 16: Screenshot of Injector GUI

Next, the injector will perform the initialization steps described in the

Initialization subsection. Only one copy is created because the user has specified they are

only interested in investigating TEAG. If the user had desired to investigate all types of

modular grime, 6 copies would have been created.

For each instance of TEAG we intend to model, a pattern class is randomly

chosen and a non pattern class is randomly chosen by the injector. In this case, the user

has stated there is 5 instances of TEAG modeled. Because the strength of TEAG is

temporary, and there is only one pattern class (Kirk.class) and one non-pattern class

(Romulan.class), the injector will use the local variable of Romulan class that was created

in the initialization steps and inject it into the Kirk class. This action will be performed 5

times – one time for each TEAG instance specified by the user. To keep collisions from

occurring, the injected variable is given the name v#grimed#, with the first # representing

the current version number and the second # representing the grime instance number.

36

After the first round of injections, the following variables are injected: v1grimed1,

v1grimed2, v1grimed3, v1grimed4, and v1grimed5. Once injection for this version is

complete and written to the Version1 directory of the Results directory, the modified

bytecode is inserted into the injector again, and 5 new instances of TEAG couplings are

injected overtop of the previously injected code.

Table 3 shows the all the variables created during this process for a single run. Each run

will produce the same variable names for each version because each run starts from the

clean foundation and there is no danger of collisions between variables of the same name.

Table 3: Injected Variable Names for Version and Instance Number

Version Injected Variable Names
1 v1grimed1, v1grimed2, v1grimed3, v1grimed4, v1grimed5

2 v1grimed1, v1grimed2, v1grimed3, v1grimed4, v1grimed5,
v2grimed1, v2grimed2, v2grimed3, v2grimed4, v2grimed5

3
v1grimed1, v1grimed2, v1grimed3, v1grimed4, v1grimed5,
v2grimed1, v2grimed2, v2grimed3, v2grimed4, v2grimed5,
v3grimed1, v3grimed2, v3grimed3, v3grimed4, v3grimed5

Now that all the instances for each version has been injected, the injector reverts

back to the original unmodified bytecode and performs all the above steps again for the

next run. This will happen 5 times in this example, as the user specified this injection

process to repeat 5 times.

To perform analysis on the modified bytecode, the user will open the Results

folder and see the following hierarchy:

37

Results

Run1

Version1 Version2

TEAG

SRCSonar-
Properties

Kirk.java Kirk.class

Version3

Run2 Run3 Run4 Run5

Romulan.java Romulan.class

TEAG TEAG

Figure 17: Outputted directory structure for example

 The user is now ready to run SonarQube against these modified projects. They

start the SonarQube server by running StartSonar.bat from the command line. Next the

user launches the sonar_drilldown script included in the Injector package. Once

sonar_drilldown has finished, the user can now go to http://localhost:9000 and collect

technical debt scores for each of the modified projects.

38

EXPERIMENT

We investigate the following research question: is there a difference in the

technical debt scores reported by SonarQube for the different types of modular grime?

Our hypotheses are:

𝐻𝑜: 𝜏𝑝𝑒𝑎𝑔 = 𝜏𝑝𝑒𝑒𝑔 = 𝜏𝑝𝑖𝑔 = 𝜏𝑡𝑒𝑎𝑔 = 𝜏𝑡𝑒𝑒𝑔 = 𝜏𝑡𝑖𝑔 . That is, there is no difference

in the treatment effects of the six different types of modular grime on technical debt.

𝐻𝛼: 𝜏𝑖 ≠ 𝜏𝑗 where 𝑖 ≠ 𝑗. There exists some modular grime type 𝑖 whose effect on

technical debt is different from some other modular grime type 𝑗.

Experimental Units

The experimental units are simple programs used to teach design patterns to a

software engineering course. We use three kinds of design patterns, one for each of the

categories of design patterns: behavioral, structural, and creational [38].

Behavioral design patterns help facilitate communications between objects. For

this experiment, an observer pattern is used as the behavioral block. The generic UML for

this design pattern is given in Figure 18 and the UML for the implemented pattern used in

this experiment is given in Figure 19.

39

Figure 18: Generic Observer Pattern UML as defined in Design Patterns: Elements of
Reusable Object-Oriented Software [38]

Figure 19: UML Diagram of Implemented Observer Design Pattern [39]

Structural design patterns define structures that enable creation of objects and

additional functionality to the objects. For this experiment, a decorator design pattern is

used as the structural block. The generic UML for this design pattern is given in Figure

20 and the UML for the implemented pattern used in this experiment is given in Figure

21.

40

Figure 20: Generic Decorator Pattern UML as defined in Design Patterns: Elements of
Reusable Object-Oriented Software [38]

Figure 21: UML for Implemented Decorator Design Pattern [39]

Lastly creational design patterns create objects, as opposed to the developer

directly creating them. For this experiment, a factory design pattern is used as the

creational block. The generic UML diagram for this design pattern is shown in Figure 22

and the UML for the implemented pattern used in this experiment is given in Figure 23.

41

Figure 22: Generic Factory Pattern UML as defined in Design Patterns: Elements of
Reusable Object-Oriented Software [38]

Figure 23: UML Diagram of Factory Pattern [39]

Experimental Design

 We use a Randomize Complete Block Design (RCBD) because we would like to

control the variability that comes from the different design patterns. The six modular

grime types are the treatments for this design, the design pattern categories are the blocks,

and the technical debt scores are reported by SonarQube are the response variables. For

42

each block and treatment, 5 scores are generated. Table 4 displays the experimental

design.

Table 4: Experiment Treatments and Blocks

Design RCBD

Independent Variables Grime Types, Number

of Grime instances

Dependent Variables Technical debt scores

Treatments PEAG, PEEG, PIG,

TEAG, TEEG, TIG

Blocks Behavioral DP,

Creational DP,

Structural DP

Alpha Level 0.05

Replications 5

43

RESULTS AND ANALYSIS

 To conduct this analysis, we repeated this experiment three times, one time with

10 instances, one time with 50 instances, and one with 100 instances of each modular

grime type. The following sections provide the results and analysis for each experiment.

Assumptions

 Before analysis, there are a few assumptions that should be verified so that we can

apply parametric statistics. These assumptions include the assumption of a normal

distribution and the homogeneity of variance assumptions.

Assumption of Normality

 We assume that errors are normally distributed when conducting statistical

analysis. To verify this assumption we can inspect the normality plots and a histogram of

the residuals. Residuals are the difference between the observed value and the associated

predicted value [40]. It tells us how far off the model’s prediction is at that point. The

pattern in normality plot should be close to linear when the residuals are approximately

normally distributed while the histogram should be bell-shaped.

Figure 24 displays the graphs described above for the 3 experimental runs. From

left to right it displays the 10 instances, 50 instances, and 100 instances injected. We can

see that the plots are reasonably linear and the histograms are approximately bell-shaped,

so the assumption of normality appears to hold.

44

Figure 24: Normality Assumption Analysis Graphs

Assumption of Homogeneity of Variance

The homogeneity of variance (HOV) assumption states that residuals should have

the same variance for each treatment. If this assumption is met, the residuals should be

centered about 0 and the spread of the residuals should be similar for each treatment.

Figure 25: HOV Assumption Analysis Graphs

45

Figure 25 displays the graphs used to analyze the HOV assumption as described

above for the 3 experimental runs. From left to right it displays the 10 instances, 50

instances, and 100 instances injected. We can see that the plots for 10 instances and 50

instances appear to be centered about 0 and the spread of the residuals should be similar

for each treatment, so we can reasonably say that there has been no serious violations in

the HOV assumption for the 10, 50, and 100 instances of grime.

Results

 Once verified, we can run our statistical tests on the measurements collected for

our randomized complete block design tests. The technical debt measurements reported

by SonarQube can be found in Appendix B.

 We use standard ANOVA tests to analyze variations. ANOVA (Analysis of

Variance) tests are used to analyze treatment effects between treatments. We can see that

for all cases, 10, 50, and 100 instances of modular grime there is sufficient evidence to

reject the null hypothesis that all types of grime have the same effect on technical debt.

Both cases have a p-value of <0.001, less than an alpha value of 0.05. In other words,

there is less than a .01% chance we observed these results purely by chance. Figure 26,

Figure 27, and Figure 28 show the associated ANOVAS for 10, 50, and 100 instances of

grime respectively.

46

Figure 26: ANOVA for 10 instances of grime.

Figure 27: ANOVA for 50 instances of grime.

Figure 28 ANOVA for 100 instances of grime.

 Now that we have rejected the null hypothesis that all treatment effects are equal

using ANOVA tests, we can perform a Tukey’s test to test all pairwise mean comparisons

to see which treatment effects are statistically different from each other. SAS Software

organizes these pairwise comparisons into groups that are statistically different from each

other (Figure 29 displays the results of the Tukey’s Test. From left to right, the tables are

for the 10 instances, 50 instances, and 100 instances of modeled modular grime growth).

We find all three types of persistent grime (PEAG, PEEG, PIG) showed significantly

higher technical debt scores than all three types of temporary grime (TEAG, TEEG,

TIG).

47

Figure 29: Tukey Grouping Test Results
The full statistical results given by SAS [41] can be viewed in Appendix C.

48

DISCUSSION

Our findings suggests that temporary coupling results in a higher technical debt

score than persistent coupling as reported by SonarQube. Further research can help

provide insight into the rates at which technical debt scores increase for the different

modular grime types, as well as metrics that identify grime as it occurs. These metrics

would allow for an automated means of identifying grime as it occurs and give

practitioners with a tool that provides the current state of technical debt of their system in

relation to modular grime.

The results obtained here were obtained from the SQALE Method for technical

debt. This methodology does not include calculations to incorporate interest, such as

Nugroho's proposed methodology. This suggests that perhaps further investigation is

warranted to explore the possibility of more sophisticated and complete means of

evaluating the true cost of the technical debt incurred. Investigation into the maintenance

cost associated with modular grime could provide a starting point to incorporate the

interest accrued on the principal of technical debt incurred by modular grime.

The results of their pilot study, Schanz and Izurieta [30] found that TEEG, TEAG,

and PEAG tended to increase, while PEAG did not. This finding, if found to be true for

most systems, is concerning because it will result in a larger increase in the technical debt

score reported by SonarQube. Further research to understand the rates at which modular

grime occurs in practice will allow us to understand the current state of grime and

technical debt in the industry.

49

The findings of this study may be incorporated into technical debt management

plans. With the understanding that temporary grime types results in higher technical debt

scores than persistent grime types, care can be taken to avoid temporary grime types and

keep track of temporary grime types if it is impossible to avoid, so that it may be

managed with other known technical debt items.

50

THREATS TO VALIDITY

Construct Validity

Construct validity concerns the validity of measurements and observations

collected on the construct being investigated. Feldt and Magazinus [42] summarize

construct validity using the following questions: Does the treatment correspond to the

actual cause we are interested in? Does the outcome correspond to the effect we are

interested in?

As discussed in the Background section, there is no agreed upon method for

measuring technical debt. Because there is no benchmark, the response variable

(technical debt) being reported by SonarQube is potentially a threat to the construct

validity of this research. SonarQube’s ability to accurately measure technical debt may

not accurately reflect the technical debt of a system.

 The injector tool we created for this research has not yet been evaluated to assess

if it accurately represents grime growth. A possible inconsistency is the potential to inject

false-positive grime. Because the injector works by selecting two random classes, there is

no assurance that the coupling of these two classes violate the design pattern’s intended

purpose and they may not in actuality be considered grime.

Another possible threat to the construct validity are the experimental units we’ve

chosen. They are simple programs used demonstrate a design pattern’s use, but may not

accurately represent design patterns used in practice.

51

Internal Validity

 Internal validity refers to the extent that results are attributable to the independent

variable and not some other factor. Feldt and Magazinus [42] summarize internal validity

using the following questions: Did the treatment/change we introduced cause the effect

on the outcome? Can other factors also have had an effect?

Javassist allows us to model grime growth by manipulating Java bytecode, but

going through this process manipulates the code in ways that potentially poses threats to

the internal validity. Elements of the original code, such as comments, are lost during the

compilation process. When the modified bytecode is decompiled to perform analysis,

JAD inserts its own comments to the decompiled code. When calculating the technical

debt scores, a portion of the score is calculated by the ratio of comments to code. Because

comments have been stripped away and then added again, it is possible the ratio of

comments to code in the decompiled code does not accurately represent the comment to

code ratio of the original, unmodified code. When analyzing differences between the

grime types, the risk is minimized by the fact that it will be equally skewed between each

modeled grime type. If attempting to perform analysis between original code and

modeled code, this factor needs to be taken into account.

External Validity

 External validity is the degree to which the results of an experiment can be

generalized. Feldt and Magazinus [42] summarize external validity using the following

52

questions: Is the cause and effect relationship we have shown valid in other situations?

Can we generalize our results? Do the results apply in other contexts?

 The research conducted used solely Java projects, therefore any findings can only

be generalized to Java projects. Further research will be needed to be able to generalize

findings to a larger code population.

 We have only measured technical debt using SonarQube. This is a threat to the

external validity as we cannot speak to how other means of calculating technical debt

might compare.

 Another threat to the external validity is that we have only used one representative

pattern for the design pattern categories construction, behavioral, and structural.

53

CONCLUSION

 Understanding the role modular grime plays in the technical debt field will help

lead to better understanding of the financial cost associated with grime and technical debt

management. Knowing the effects of different types of grime will allow software

engineers to make design decisions that result in lower technical debt and a more

comprehensive technical debt framework.

In this paper, we have discussed current techniques for identifying and managing

technical debt in the Background section. Grime has been identified as a design debt that

has negative impacts on the quality of a project. Our research is the first step to

quantifying those negative consequences in terms of technical debt.

 For our research, we used SonarQube to calculate a technical debt score for Java

projects modified by our grime injector to represent modular grime growth. We then

performed an ANOVA analysis on the collected technical debt scores to find that not all

types of modular grime results in equivalent treatment effects on technical debt.

Furthermore, Tukey’s test shows that that every type of temporary grime (TEAG, TEEG,

TIG) is statistically significantly higher technical debt score (as reported by SonarQube)

than every type of persistent grime (PEAG, PEEG, PIG).

Previous work has shown grime to correspond to negative software quality in

regards to testability and should be monitored as systems development to ensure higher

quality system. Our research provides further support for reasons to care not only about

grime, but also the type of grime. Knowing temporary grime types can be more costly

54

than persistent grime types, engineers can make better informed design decisions or

repayment decisions that will result in lower technical debt.

The injector tool created for this research also has the potential to expand findings

to include research into metrics which may correspond to grime growth, which could

alert engineers when grime occurs so that they may add it to their list of known technical

debt items to manage.

Quantifying grime in terms of technical debt is the first step to including grime in

a technical debt management plan. The findings of this research form a foundation to

continue exploring the relationship between design pattern grime and technical debt.

Further research will explore ways to provide a more holistic view of grime and technical

debt.

55

FUTURE RESEARCH

 While the research presented here are the first steps towards understanding the

role design pattern grime plays on technical debt, there is still more investigation to be

conducted. The following few paragraphs describe possible areas of future research.

 These experiments have only investigated Java programs. Expanding this research

to include different programming languages would provide a more complete picture of

the relationship between technical debt and grime.

 As discussed in the background section, there are two other forms of design

grime: organizational grime and class grime. This research could be expanded to include

investigations to the relationships of these other types of grime to technical debt and to

each other.

 Here we investigated differences between the different types of modular grime on

technical debt. Some of our findings here suggest that temporary grime types are not only

more costly in technical debt scores reported by SonarQube, but also accrues debt at a

quicker rate. Further investigation can be conducted to understand the rates at which

technical debt grows as grime instances increase.

 Lastly, SonarQube is only one tool that evaluates technical debt. Investigating

modified programs with other tools will expand our understanding of the true role grime

growth plays in technical debt.

56

REFERENCES CITED

57

[1] C. Izurieta and J. M. Bieman, "How Software Designs Decay: A Pilot Study of

Pattern Evolution," in ESEM, Madrid, Spain, 2007.

[2] W. Cunningham, "The WyCash portfolio management system," OOPSLA '92
Experience Report, vol. 4, no. 2, pp. 29-30, 1992.

[3] "SonarQube 3.7.4," 20 December 2013. [Online]. Available:
http://www.sonarqube.org/downloads/. [Accessed 13 January 2014].

[4] J. Kerievsky, Refactoring to patterns, Pearson Deutschland GmbH, 2005.

[5] C. J. Neill and P. A. Laplante, "Paying down design debt with strategic refactoring,"
Trans. Software Eng, vol. 27, no. 1, 2006.

[6] P. Kruchten, R. L. Nord and a. I. Ozkaya, "Technical Debt: From Metaphor to
Theory and Practice," IEEE Software, vol. 6, no. 29, 2012.

[7] "An Enterprise Perspective on Technical Debt," Proceedings of the 2nd Workshop
on Managing Technical Debt, pp. 35-38, 2011.

[8] M. Fowler, "TechnicalDebtQuadrant," 14 October 2009. [Online]. Available:
http://www.martinfowler.com/bliki/TechnicalDebtQuadrant.html. [Accessed 25
March 2014].

[9] N. M. A. S. F. S. a. C. S. Zazworka, "Investigating the impact of design debt on
software quality," Proceedings of the 2nd Workshop on Managing Technical Debt,
Vols. 17-23, 2011.

[10] N. Zazworka, A. Vetro, C. Izurieta, S. Wong, Y. Cai, C. Seaman and F. Shull,
"Comparing Four Approaches for Technical Debt Identification," Software Quality
Journal, pp. 1-24, 2013.

[11] B. Curtis, J. Sappidi and A. Szynkarski, "Estimating the Size, Cost, and Types of
Technical Debt," Managing Technical Debt (MTD), 2012 Third International
Workshop on., pp. 49-53, 2012.

[12] N. Ariadi, V. Joost and K. Tobias, "An Empirical Model of Technical Debt and
Interest," Proceedings of the 2nd Workshop on Managing Technical Debt, pp. 1-8,
2011.

58

[13] J. de Groot, A. Nugroho, T. Back and J. Visser, "What is the value of your

software?," Managing Technical Debt (MTD), 2012 Third International Workshop
on, pp. 37-44, 2012.

[14] J.-L. Letouzey, "The SQALE Method for Evaluating Technical Debt," in I C S E, Z
u r i c h , S w i t z e r l a n d , 2012.

[15] I. Gat, "Revolution in Software: Using Technical Debt Techniques to Govern the
Software Development Process," Agile Product and Project Management, Cutter
Consortium Executive Report, vol. 11, no. 4, 2010.

[16] O. Gaudin, "Quality Profiles," SonarQube, 05 Dec 2013. [Online]. Available:
http://docs.codehaus.org/display/SONAR/Quality+Profiles. [Accessed 21 February
2014].

[17] D. Racodon, "Technical Debt," SonarQube, 03 December 2013. [Online]. Available:
http://docs.codehaus.org/display/SONAR/Technical+Debt. [Accessed 08 March
2014].

[18] N. Brown, C. Yuanfang, G. Yuepu, K. Rick, K. Miryung, K. Philippe, L. Erin and e.
al, "Managing Technical Debt in Software-Reliant Systems," Proceedings of the
FSE/SDP workshop on Future of software engineering research, pp. 47-52, 2010.

[19] N. Zazworka, S. Carolyn and S. Forrest, "Prioritizing design debt investment
opportunities," Proceedings of the 2nd Workshop on Managing Technical Debt, pp.
39-42, 2011.

[20] N. Zazworka, M. A. Shaw, F. Shull and Seaman.Carolyn, "Investigating the impact
of design debt on software quality," Proceedings of the 2nd Workshop on Managing
Technical Debt, pp. 17-23, 2011.

[21] C. Seaman, Y. Guo, C. Izurieta, Y. Cai, N. Zazworka, F. Shull and A. Vetrò, "Using
technical debt data in decision making: Potential decision approaches," Managing
Technical Debt (MTD), 2012 Third International Workshop on, pp. 45-48, 2012.

[22] W. Snipes, B. Robinson, Y. Guo and C. Seaman, "Defining the Decision Factors for
Managing Defects: A Technical Debt Perspective," Managing Technical Debt
(MTD), 2012 Third International Workshop on, pp. 54-60, 2012.

[23] N. A. Ernst, "On the role of requirements in understanding and managing technical
debt," Managing Technical Debt (MTD), 2012 Third International Workshop on, pp.
61-64, 2012.

59

[24] E. Lim, N. Taksande and C. Seaman, "A balancing act: what software practitioners

have to say about technical debt," Software, IEEE, vol. 6, no. 29, pp. 22-27, 2012.

[25] J. D. Morgenthaler, M. Gridnev, R. Sauciuc and S. Bhansali, "Searching for build
debt: Experiences managing technical debt at google," Managing Technical Debt
(MTD), 2012 Third International Workshop on, pp. 1-6, 2012.

[26] CAST , "The CRASH Report - 2011/12 (CAST Report on Application Software
Health)," 2012.

[27] CAST, "Measuring and Managing Technical Debt," www.castsoftware.com.

[28] E. Tom, A. Aurum and R. Vidgen, "An exploration of technical debt," Journal of
Systems and Software , vol. 6, no. 86, pp. 1498-1516, 2013.

[29] C. Izurieta and J. M. Bieman, "A multiple case study of design pattern decay, grime,
and rot in evolving software systems," Software Quality Journal, vol. 21, no. 2, pp.
289-323, 2013.

[30] T. Schanz and C. Izurieta, "Object Oriented Design Pattern Decay: A Taxonomy," in
ESEM2010, Bolzano-Bozen, Italy , 2010.

[31] J. Vlissides, R. Helm, R. Johnson and E. Gamma, "Design Patterns: Elements of
Reusable Object-Oriented Software," 1995.

[32] C. Izurieta, A. Vetró, N. Zazworka, Y. Cai, C. Seaman and F. Shull, "Organizing the
Technical Debt Landscape," Managing Technical Debt (MTD) 2012 Third
International Workshop, pp. 23-36, 2012.

[33] C. Izurieta and a. J. M. Bieman, "Testing consequences of grime buildup in object
oriented design patterns," Software Testing, Verification, and Validation, 2008 1st
International Conference on., 2008.

[34] S. Chiba, "Javassist.org," JBoss, 3 June 2013. [Online]. Available:
http://www.csg.ci.i.u-tokyo.ac.jp/~chiba/javassist/. [Accessed 18 FEB 2014].

[35] P. Kouznetsov, "Jad - the fast JAva Decompiler," February 2013. [Online].
Available: http://varaneckas.com/jad/. [Accessed 15 April 2013].

[36] "Java Platform Standard Edition 7," ORACLE.

60

[37] "Eclipse Juno 4.2," http://help.eclipse.org/juno/index.jsp.

[38] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design patterns: Elements of
reusable object-oriented software, Addison-Wesley Professional, 1994.

[39] E. Freeman and E. Freeman, Head First Design Patterns, Sebastopol: O'Reilly, 2004.

[40] R. De Veaux, P. Velleman and D. Bock, Stats Data and Models, Pearson Education,
Inc., 2008.

[41] "SAS Web Editor 2.5," SAS Institute Inc., C, Cary, NC, USA, 2013.

[42] R. Feldt and A. Magazinius, "Validity Threats in Empirical Software Engineering
Research-An Initial Survey," SEKE, pp. 374-379, 2010.

61

APPENDICES

62

APPENDIX A

JAVA CHECKS PERFORMED BY DEFAULT

QUALITY PROFILE IN SONARQUBE

63

title Key plugin priority status

Abstract Class Without
Abstract Method

AbstractClassWithoutAbstract
Method pmd MAJOR ACTIVE

Abstract class without any
methods

AbstractClassWithoutAnyMet
hod pmd MAJOR ACTIVE

Abstract naming AbstractNaming pmd MAJOR ACTIVE

Accessor Class Generation AccessorClassGeneration pmd MAJOR ACTIVE

Add Empty String AddEmptyString pmd MAJOR ACTIVE

Anon Inner Length

com.puppycrawl.tools.checkst
yle.checks.sizes.AnonInnerLen
gthCheck checkstyle MAJOR ACTIVE

Append Character With Char AppendCharacterWithChar pmd MINOR ACTIVE

Assignment In Operand AssignmentInOperand pmd MAJOR ACTIVE

Assignment To Non Final
Static AssignmentToNonFinalStatic pmd MAJOR ACTIVE

At Least One Constructor AtLeastOneConstructor pmd MAJOR ACTIVE

Avoid Accessibility Alteration AvoidAccessibilityAlteration pmd MAJOR ACTIVE

Avoid Array Loops AvoidArrayLoops pmd MAJOR ACTIVE

Avoid Assert As Identifier AvoidAssertAsIdentifier pmd MAJOR ACTIVE

Avoid Calling Finalize AvoidCallingFinalize pmd MAJOR ACTIVE

Avoid Catching NPE AvoidCatchingNPE pmd MAJOR ACTIVE

Avoid Catching Throwable AvoidCatchingThrowable pmd CRITICAL ACTIVE

Avoid commented-out lines
of code CommentedOutCodeLine squid MAJOR ACTIVE

Avoid Constants Interface AvoidConstantsInterface pmd MAJOR ACTIVE

Avoid Decimal Literals In Big
Decimal Constructor

AvoidDecimalLiteralsInBigDeci
malConstructor pmd MAJOR ACTIVE

Avoid Deeply Nested If Stmts AvoidDeeplyNestedIfStmts pmd MAJOR ACTIVE

Avoid Duplicate Literals AvoidDuplicateLiterals pmd MAJOR ACTIVE

Avoid Enum As Identifier AvoidEnumAsIdentifier pmd MAJOR ACTIVE

Avoid Final Local Variable AvoidFinalLocalVariable pmd MAJOR ACTIVE

Avoid Instanceof Checks In
Catch Clause

AvoidInstanceofChecksInCatch
Clause pmd MINOR ACTIVE

Avoid instantiating objects in
loops

AvoidInstantiatingObjectsInLo
ops pmd MINOR ACTIVE

Avoid Multiple Unary
Operators AvoidMultipleUnaryOperators pmd MAJOR ACTIVE

Avoid Print Stack Trace AvoidPrintStackTrace pmd MAJOR ACTIVE

Avoid Protected Field In Final
Class

AvoidProtectedFieldInFinalCla
ss pmd MAJOR ACTIVE

Avoid Reassigning
Parameters AvoidReassigningParameters pmd MAJOR ACTIVE

64

title Key plugin priority status

Avoid Rethrowing Exception AvoidRethrowingException pmd MAJOR ACTIVE

Avoid StringBuffer field AvoidStringBufferField pmd MAJOR ACTIVE

Avoid Synchronized At
Method Level

AvoidSynchronizedAtMethodL
evel pmd MAJOR ACTIVE

Avoid Thread Group AvoidThreadGroup pmd CRITICAL ACTIVE

Avoid Throwing Null Pointer
Exception

AvoidThrowingNullPointerExc
eption pmd MAJOR ACTIVE

Avoid Throwing Raw
Exception Types

AvoidThrowingRawExceptionT
ypes pmd MAJOR ACTIVE

Avoid use of deprecated
method CallToDeprecatedMethod squid MINOR ACTIVE

Avoid Using Hard Coded IP AvoidUsingHardCodedIP pmd MAJOR ACTIVE

Avoid Using Native Code AvoidUsingNativeCode pmd MAJOR ACTIVE

Avoid Using Octal Values AvoidUsingOctalValues pmd MAJOR ACTIVE

Avoid Using Short Type AvoidUsingShortType pmd MAJOR ACTIVE

Avoid Using Volatile AvoidUsingVolatile pmd MAJOR ACTIVE

Bad Comparison BadComparison pmd MAJOR ACTIVE

Bad practice - Abstract class
defines covariant
compareTo() method CO_ABSTRACT_SELF findbugs MAJOR ACTIVE

Bad practice - Abstract class
defines covariant equals()
method EQ_ABSTRACT_SELF findbugs MAJOR ACTIVE

Bad practice - Certain swing
methods needs to be invoked
in Swing thread

SW_SWING_METHODS_INVO
KED_IN_SWING_THREAD findbugs MAJOR ACTIVE

Bad practice - Check for sign
of bitwise operation BIT_SIGNED_CHECK findbugs CRITICAL ACTIVE

Bad practice - Class defines
clone() but doesn't
implement Cloneable

CN_IMPLEMENTS_CLONE_BU
T_NOT_CLONEABLE findbugs MAJOR ACTIVE

Bad practice - Class defines
compareTo(...) and uses
Object.equals()

EQ_COMPARETO_USE_OBJEC
T_EQUALS findbugs CRITICAL ACTIVE

Bad practice - Class defines
equals() and uses
Object.hashCode() HE_EQUALS_USE_HASHCODE findbugs CRITICAL ACTIVE

Bad practice - Class defines
equals() but not hashCode() HE_EQUALS_NO_HASHCODE findbugs MAJOR ACTIVE

Bad practice - Class defines
hashCode() and uses
Object.equals()

HE_HASHCODE_USE_OBJECT_
EQUALS findbugs CRITICAL ACTIVE

65

title Key plugin priority status

Bad practice - Class defines
hashCode() but not equals() HE_HASHCODE_NO_EQUALS findbugs CRITICAL ACTIVE

Bad practice - Class
implements Cloneable but
does not define or use clone
method CN_IDIOM findbugs MAJOR ACTIVE

Bad practice - Class inherits
equals() and uses
Object.hashCode()

HE_INHERITS_EQUALS_USE_H
ASHCODE findbugs CRITICAL ACTIVE

Bad practice - Class is
Externalizable but doesn't
define a void constructor

SE_NO_SUITABLE_CONSTRUC
TOR_FOR_EXTERNALIZATION findbugs MAJOR ACTIVE

Bad practice - Class is not
derived from an Exception,
even though it is named as
such NM_CLASS_NOT_EXCEPTION findbugs MAJOR ACTIVE

Bad practice - Class is
Serializable but its superclass
doesn't define a void
constructor

SE_NO_SUITABLE_CONSTRUC
TOR findbugs MAJOR ACTIVE

Bad practice - Class names
shouldn't shadow simple
name of implemented
interface

NM_SAME_SIMPLE_NAME_AS
_INTERFACE findbugs MAJOR ACTIVE

Bad practice - Class names
shouldn't shadow simple
name of superclass

NM_SAME_SIMPLE_NAME_AS
_SUPERCLASS findbugs MAJOR ACTIVE

Bad practice - Classloaders
should only be created inside
doPrivileged block

DP_CREATE_CLASSLOADER_IN
SIDE_DO_PRIVILEGED findbugs MAJOR ACTIVE

Bad practice - clone method
does not call super.clone() CN_IDIOM_NO_SUPER_CALL findbugs MAJOR ACTIVE

Bad practice - Clone method
may return null

NP_CLONE_COULD_RETURN_
NULL findbugs CRITICAL ACTIVE

Bad practice - Comparator
doesn't implement
Serializable

SE_COMPARATOR_SHOULD_B
E_SERIALIZABLE findbugs MAJOR ACTIVE

Bad practice - Comparison of
String objects using == or !=

ES_COMPARING_STRINGS_WI
TH_EQ findbugs MAJOR ACTIVE

Bad practice - Comparison of
String parameter using == or
!=

ES_COMPARING_PARAMETER
_STRING_WITH_EQ findbugs MAJOR ACTIVE

Bad practice - Confusing NM_CONFUSING findbugs MAJOR ACTIVE

66

title Key plugin priority status

method names

Bad practice - Covariant
compareTo() method defined CO_SELF_NO_OBJECT findbugs MAJOR ACTIVE

Bad practice - Covariant
equals() method defined EQ_SELF_NO_OBJECT findbugs MAJOR ACTIVE

Bad practice - Creates an
empty jar file entry

AM_CREATES_EMPTY_JAR_FIL
E_ENTRY findbugs MAJOR ACTIVE

Bad practice - Creates an
empty zip file entry

AM_CREATES_EMPTY_ZIP_FIL
E_ENTRY findbugs MAJOR ACTIVE

Bad practice - Dubious
catching of
IllegalMonitorStateException IMSE_DONT_CATCH_IMSE findbugs MAJOR ACTIVE

Bad practice - Empty finalizer
should be deleted FI_EMPTY findbugs MAJOR ACTIVE

Bad practice - Equals checks
for noncompatible operand

EQ_CHECK_FOR_OPERAND_N
OT_COMPATIBLE_WITH_THIS findbugs MAJOR ACTIVE

Bad practice - equals method
fails for subtypes

EQ_GETCLASS_AND_CLASS_C
ONSTANT findbugs CRITICAL ACTIVE

Bad practice - Equals method
should not assume anything
about the type of its
argument

BC_EQUALS_METHOD_SHOUL
D_WORK_FOR_ALL_OBJECTS findbugs CRITICAL ACTIVE

Bad practice - equals()
method does not check for
null argument

NP_EQUALS_SHOULD_HANDL
E_NULL_ARGUMENT findbugs CRITICAL ACTIVE

Bad practice - Explicit
invocation of finalizer FI_EXPLICIT_INVOCATION findbugs MAJOR ACTIVE

Bad practice - Fields of
immutable classes should be
final

JCIP_FIELD_ISNT_FINAL_IN_I
MMUTABLE_CLASS findbugs MINOR ACTIVE

Bad practice - Finalizer does
not call superclass finalizer FI_MISSING_SUPER_CALL findbugs MAJOR ACTIVE

Bad practice - Finalizer does
nothing but call superclass
finalizer FI_USELESS findbugs MINOR ACTIVE

Bad practice - Finalizer
nullifies superclass finalizer FI_NULLIFY_SUPER findbugs CRITICAL ACTIVE

Bad practice - Finalizer nulls
fields FI_FINALIZER_NULLS_FIELDS findbugs MAJOR ACTIVE

Bad practice - Finalizer only
nulls fields

FI_FINALIZER_ONLY_NULLS_FI
ELDS findbugs MAJOR ACTIVE

67

title Key plugin priority status

Bad practice - Iterator next()
method can't throw
NoSuchElementException IT_NO_SUCH_ELEMENT findbugs MINOR ACTIVE

Bad practice - Method
doesn't override method in
superclass due to wrong
package for parameter

NM_WRONG_PACKAGE_INTE
NTIONAL findbugs MAJOR ACTIVE

Bad practice - Method
ignores exceptional return
value

RV_RETURN_VALUE_IGNORED
_BAD_PRACTICE findbugs MAJOR ACTIVE

Bad practice - Method
ignores results of
InputStream.read() RR_NOT_CHECKED findbugs MAJOR ACTIVE

Bad practice - Method
ignores results of
InputStream.skip() SR_NOT_CHECKED findbugs MAJOR ACTIVE

Bad practice - Method
invoked that should be only
be invoked inside a
doPrivileged block

DP_DO_INSIDE_DO_PRIVILEG
ED findbugs MAJOR ACTIVE

Bad practice - Method
invokes dangerous method
runFinalizersOnExit

DM_RUN_FINALIZERS_ON_EXI
T findbugs MAJOR ACTIVE

Bad practice - Method
invokes System.exit(...) DM_EXIT findbugs MAJOR ACTIVE

Bad practice - Method may
fail to close database
resource

ODR_OPEN_DATABASE_RESO
URCE findbugs CRITICAL ACTIVE

Bad practice - Method may
fail to close database
resource on exception

ODR_OPEN_DATABASE_RESO
URCE_EXCEPTION_PATH findbugs CRITICAL ACTIVE

Bad practice - Method may
fail to close stream OS_OPEN_STREAM findbugs CRITICAL ACTIVE

Bad practice - Method may
fail to close stream on
exception

OS_OPEN_STREAM_EXCEPTIO
N_PATH findbugs CRITICAL ACTIVE

Bad practice - Method might
drop exception DE_MIGHT_DROP findbugs MAJOR ACTIVE

Bad practice - Method might
ignore exception DE_MIGHT_IGNORE findbugs MAJOR ACTIVE

Bad practice - Method with
Boolean return type returns
explicit null NP_BOOLEAN_RETURN_NULL findbugs MAJOR ACTIVE

68

title Key plugin priority status

Bad practice - Needless
instantiation of class that
only supplies static methods

ISC_INSTANTIATE_STATIC_CLA
SS findbugs MAJOR ACTIVE

Bad practice - Non-
serializable class has a
serializable inner class SE_BAD_FIELD_INNER_CLASS findbugs MINOR ACTIVE

Bad practice - Non-
serializable value stored into
instance field of a serializable
class SE_BAD_FIELD_STORE findbugs CRITICAL ACTIVE

Bad practice - Random object
created and used only once

DMI_RANDOM_USED_ONLY_
ONCE findbugs CRITICAL ACTIVE

Bad practice - Serializable
inner class SE_INNER_CLASS findbugs MAJOR ACTIVE

Bad practice -
serialVersionUID isn't final

SE_NONFINAL_SERIALVERSIO
NID findbugs CRITICAL ACTIVE

Bad practice -
serialVersionUID isn't long

SE_NONLONG_SERIALVERSIO
NID findbugs MAJOR ACTIVE

Bad practice -
serialVersionUID isn't static

SE_NONSTATIC_SERIALVERSIO
NID findbugs MAJOR ACTIVE

Bad practice - Static initializer
creates instance before all
static final fields assigned

SI_INSTANCE_BEFORE_FINALS
_ASSIGNED findbugs CRITICAL ACTIVE

Bad practice - Store of non
serializable object into
HttpSession

J2EE_STORE_OF_NON_SERIALI
ZABLE_OBJECT_INTO_SESSION findbugs CRITICAL ACTIVE

Bad practice - Superclass
uses subclass during
initialization

IC_SUPERCLASS_USES_SUBCL
ASS_DURING_INITIALIZATION findbugs MAJOR ACTIVE

Bad practice - Suspicious
reference comparison RC_REF_COMPARISON findbugs CRITICAL ACTIVE

Bad practice - The
readResolve method must be
declared with a return type
of Object.

SE_READ_RESOLVE_MUST_RE
TURN_OBJECT findbugs MAJOR ACTIVE

Bad practice - toString
method may return null

NP_TOSTRING_COULD_RETUR
N_NULL findbugs CRITICAL ACTIVE

Bad practice - Transient field
that isn't set by
deserialization.

SE_TRANSIENT_FIELD_NOT_R
ESTORED findbugs MAJOR ACTIVE

Bad practice - Unchecked
type in generic call

GC_UNCHECKED_TYPE_IN_GE
NERIC_CALL findbugs CRITICAL ACTIVE

69

title Key plugin priority status

Bad practice - Usage of
GetResource may be unsafe
if class is extended

UI_INHERITANCE_UNSAFE_GE
TRESOURCE findbugs MAJOR ACTIVE

Bad practice - Use of
identifier that is a keyword in
later versions of Java

NM_FUTURE_KEYWORD_USE
D_AS_IDENTIFIER findbugs MAJOR ACTIVE

Bad practice - Use of
identifier that is a keyword in
later versions of Java

NM_FUTURE_KEYWORD_USE
D_AS_MEMBER_IDENTIFIER findbugs MAJOR ACTIVE

Bad practice - Very confusing
method names (but perhaps
intentional)

NM_VERY_CONFUSING_INTE
NTIONAL findbugs MAJOR ACTIVE

Big Integer Instantiation BigIntegerInstantiation pmd MAJOR ACTIVE

Boolean Expression
Complexity

com.puppycrawl.tools.checkst
yle.checks.metrics.BooleanExp
ressionComplexityCheck checkstyle MAJOR ACTIVE

Boolean Get Method Name BooleanGetMethodName pmd MAJOR ACTIVE

Boolean Instantiation BooleanInstantiation pmd MAJOR ACTIVE

Boolean Inversion BooleanInversion pmd MAJOR ACTIVE

Broken Null Check BrokenNullCheck pmd CRITICAL ACTIVE

Call Super In Constructor CallSuperInConstructor pmd MINOR ACTIVE

Check ResultSet CheckResultSet pmd MAJOR ACTIVE

Class Cast Exception With To
Array

ClassCastExceptionWithToArra
y pmd MAJOR ACTIVE

Clone method must
implement Cloneable

CloneMethodMustImplement
Cloneable pmd MAJOR ACTIVE

Clone Throws Clone Not
Supported Exception

CloneThrowsCloneNotSupport
edException pmd MAJOR ACTIVE

Collapsible If Statements CollapsibleIfStatements pmd MINOR ACTIVE

Compare Objects With Equals CompareObjectsWithEquals pmd MAJOR ACTIVE

Confusing Ternary ConfusingTernary pmd MAJOR ACTIVE

Consecutive Literal Appends ConsecutiveLiteralAppends pmd MINOR ACTIVE

Constant Name

com.puppycrawl.tools.checkst
yle.checks.naming.ConstantNa
meCheck checkstyle MINOR ACTIVE

Constructor Calls Overridable
Method

ConstructorCallsOverridableM
ethod pmd MAJOR ACTIVE

Correctness - "." used for
regular expression

RE_POSSIBLE_UNINTENDED_P
ATTERN findbugs CRITICAL ACTIVE

Correctness - A collection is
added to itself

IL_CONTAINER_ADDED_TO_IT
SELF findbugs CRITICAL ACTIVE

70

title Key plugin priority status

Correctness - A known null
value is checked to see if it is
an instance of a type NP_NULL_INSTANCEOF findbugs BLOCKER ACTIVE

Correctness - A parameter is
dead upon entry to a method
but overwritten

IP_PARAMETER_IS_DEAD_BU
T_OVERWRITTEN findbugs CRITICAL ACTIVE

Correctness - An apparent
infinite loop IL_INFINITE_LOOP findbugs CRITICAL ACTIVE

Correctness - An apparent
infinite recursive loop IL_INFINITE_RECURSIVE_LOOP findbugs CRITICAL ACTIVE

Correctness - Apparent
method/constructor
confusion

NM_METHOD_CONSTRUCTOR
_CONFUSION findbugs MAJOR ACTIVE

Correctness - Array
formatted in useless way
using format string

VA_FORMAT_STRING_BAD_C
ONVERSION_FROM_ARRAY findbugs MAJOR ACTIVE

Correctness - Bad attempt to
compute absolute value of
signed 32-bit hashcode

RV_ABSOLUTE_VALUE_OF_HA
SHCODE findbugs CRITICAL ACTIVE

Correctness - Bad attempt to
compute absolute value of
signed 32-bit random integer

RV_ABSOLUTE_VALUE_OF_RA
NDOM_INT findbugs CRITICAL ACTIVE

Correctness - Bad
comparison of nonnegative
value with negative constant

INT_BAD_COMPARISON_WIT
H_NONNEGATIVE_VALUE findbugs CRITICAL ACTIVE

Correctness - Bad
comparison of signed byte

INT_BAD_COMPARISON_WIT
H_SIGNED_BYTE findbugs CRITICAL ACTIVE

Correctness - Bad constant
value for month DMI_BAD_MONTH findbugs CRITICAL ACTIVE

Correctness - Bitwise add of
signed byte value BIT_ADD_OF_SIGNED_BYTE findbugs CRITICAL ACTIVE

Correctness - Bitwise OR of
signed byte value BIT_IOR_OF_SIGNED_BYTE findbugs CRITICAL ACTIVE

Correctness - Call to equals()
comparing different interface
types EC_UNRELATED_INTERFACES findbugs CRITICAL ACTIVE

Correctness - Call to equals()
comparing different types EC_UNRELATED_TYPES findbugs CRITICAL ACTIVE

Correctness - Call to equals()
comparing unrelated class
and interface

EC_UNRELATED_CLASS_AND_I
NTERFACE findbugs CRITICAL ACTIVE

71

title Key plugin priority status

Correctness - Call to equals()
with null argument EC_NULL_ARG findbugs CRITICAL ACTIVE

Correctness - Can't use
reflection to check for
presence of annotation
without runtime retention

DMI_ANNOTATION_IS_NOT_V
ISIBLE_TO_REFLECTION findbugs MAJOR ACTIVE

Correctness - Check for sign
of bitwise operation BIT_SIGNED_CHECK_HIGH_BIT findbugs CRITICAL ACTIVE

Correctness - Check to see if
((...) & 0) == 0 BIT_AND_ZZ findbugs CRITICAL ACTIVE

Correctness - Class defines
field that masks a superclass
field MF_CLASS_MASKS_FIELD findbugs MAJOR ACTIVE

Correctness - Class overrides
a method implemented in
super class Adapter wrongly

BOA_BADLY_OVERRIDDEN_A
DAPTER findbugs CRITICAL ACTIVE

Correctness - close() invoked
on a value that is always null NP_CLOSING_NULL findbugs BLOCKER ACTIVE

Correctness - Collections
should not contain
themselves

DMI_COLLECTIONS_SHOULD_
NOT_CONTAIN_THEMSELVES findbugs CRITICAL ACTIVE

Correctness - Covariant
equals() method defined for
enum

EQ_DONT_DEFINE_EQUALS_F
OR_ENUM findbugs MAJOR ACTIVE

Correctness - Covariant
equals() method defined,
Object.equals(Object)
inherited EQ_SELF_USE_OBJECT findbugs MAJOR ACTIVE

Correctness - Creation of
ScheduledThreadPoolExecut
or with zero core threads

DMI_SCHEDULED_THREAD_P
OOL_EXECUTOR_WITH_ZERO_
CORE_THREADS findbugs MINOR ACTIVE

Correctness - Dead store of
class literal

DLS_DEAD_STORE_OF_CLASS_
LITERAL findbugs CRITICAL ACTIVE

Correctness - Deadly
embrace of non-static inner
class and thread local

SIC_THREADLOCAL_DEADLY_E
MBRACE findbugs MAJOR ACTIVE

Correctness - Don't use
removeAll to clear a
collection

DMI_USING_REMOVEALL_TO_
CLEAR_COLLECTION findbugs CRITICAL ACTIVE

Correctness - Doomed
attempt to append to an
object output stream

IO_APPENDING_TO_OBJECT_
OUTPUT_STREAM findbugs CRITICAL ACTIVE

72

title Key plugin priority status

Correctness - Doomed test
for equality to NaN

FE_TEST_IF_EQUAL_TO_NOT_
A_NUMBER findbugs CRITICAL ACTIVE

Correctness - Double
assignment of field

SA_FIELD_DOUBLE_ASSIGNME
NT findbugs CRITICAL ACTIVE

Correctness -
Double.longBitsToDouble
invoked on an int

DMI_LONG_BITS_TO_DOUBLE
_INVOKED_ON_INT findbugs CRITICAL ACTIVE

Correctness - equals method
always returns false EQ_ALWAYS_FALSE findbugs BLOCKER ACTIVE

Correctness - equals method
always returns true EQ_ALWAYS_TRUE findbugs BLOCKER ACTIVE

Correctness - equals method
compares class names rather
than class objects

EQ_COMPARING_CLASS_NAM
ES findbugs MAJOR ACTIVE

Correctness - equals method
overrides equals in
superclass and may not be
symmetric

EQ_OVERRIDING_EQUALS_NO
T_SYMMETRIC findbugs MAJOR ACTIVE

Correctness - equals()
method defined that doesn't
override equals(Object) EQ_OTHER_NO_OBJECT findbugs MAJOR ACTIVE

Correctness - equals()
method defined that doesn't
override
Object.equals(Object) EQ_OTHER_USE_OBJECT findbugs MAJOR ACTIVE

Correctness - equals() used to
compare array and nonarray EC_ARRAY_AND_NONARRAY findbugs CRITICAL ACTIVE

Correctness - equals(...) used
to compare incompatible
arrays

EC_INCOMPATIBLE_ARRAY_C
OMPARE findbugs BLOCKER ACTIVE

Correctness - Exception
created and dropped rather
than thrown

RV_EXCEPTION_NOT_THROW
N findbugs CRITICAL ACTIVE

Correctness - Field not
initialized in constructor

UWF_FIELD_NOT_INITIALIZED
_IN_CONSTRUCTOR findbugs MINOR ACTIVE

Correctness - Field only ever
set to null UWF_NULL_FIELD findbugs CRITICAL ACTIVE

Correctness - File.separator
used for regular expression

RE_CANT_USE_FILE_SEPARAT
OR_AS_REGULAR_EXPRESSIO
N findbugs CRITICAL ACTIVE

Correctness - Format string
placeholder incompatible
with passed argument

VA_FORMAT_STRING_BAD_A
RGUMENT findbugs CRITICAL ACTIVE

73

title Key plugin priority status

Correctness - Format string
references missing argument

VA_FORMAT_STRING_MISSIN
G_ARGUMENT findbugs CRITICAL ACTIVE

Correctness - Futile attempt
to change max pool size of
ScheduledThreadPoolExecut
or

DMI_FUTILE_ATTEMPT_TO_C
HANGE_MAXPOOL_SIZE_OF_S
CHEDULED_THREAD_POOL_E
XECUTOR findbugs MINOR ACTIVE

Correctness - hasNext
method invokes next

DMI_CALLING_NEXT_FROM_H
ASNEXT findbugs CRITICAL ACTIVE

Correctness - Illegal format
string VA_FORMAT_STRING_ILLEGAL findbugs CRITICAL ACTIVE

Correctness - Impossible cast BC_IMPOSSIBLE_CAST findbugs BLOCKER ACTIVE

Correctness - Impossible
downcast BC_IMPOSSIBLE_DOWNCAST findbugs BLOCKER ACTIVE

Correctness - Impossible
downcast of toArray() result

BC_IMPOSSIBLE_DOWNCAST_
OF_TOARRAY findbugs BLOCKER ACTIVE

Correctness - Incompatible
bit masks (BIT_AND) BIT_AND findbugs CRITICAL ACTIVE

Correctness - Incompatible
bit masks (BIT_IOR) BIT_IOR findbugs CRITICAL ACTIVE

Correctness - instanceof will
always return false BC_IMPOSSIBLE_INSTANCEOF findbugs CRITICAL ACTIVE

Correctness - int value cast to
double and then passed to
Math.ceil

ICAST_INT_CAST_TO_DOUBLE
_PASSED_TO_CEIL findbugs CRITICAL ACTIVE

Correctness - int value cast to
float and then passed to
Math.round

ICAST_INT_CAST_TO_FLOAT_P
ASSED_TO_ROUND findbugs CRITICAL ACTIVE

Correctness - Integer multiply
of result of integer remainder

IM_MULTIPLYING_RESULT_OF
_IREM findbugs CRITICAL ACTIVE

Correctness - Integer
remainder modulo 1 INT_BAD_REM_BY_1 findbugs CRITICAL ACTIVE

Correctness - Integer shift by
an amount not in the range
0..31 ICAST_BAD_SHIFT_AMOUNT findbugs CRITICAL ACTIVE

Correctness - Invalid syntax
for regular expression

RE_BAD_SYNTAX_FOR_REGUL
AR_EXPRESSION findbugs CRITICAL ACTIVE

Correctness - Invocation of
equals() on an array, which is
equivalent to == EC_BAD_ARRAY_COMPARE findbugs CRITICAL ACTIVE

Correctness - Invocation of
hashCode on an array

DMI_INVOKING_HASHCODE_
ON_ARRAY findbugs CRITICAL ACTIVE

74

title Key plugin priority status

Correctness - Invocation of
toString on an anonymous
array

DMI_INVOKING_TOSTRING_O
N_ANONYMOUS_ARRAY findbugs CRITICAL ACTIVE

Correctness - Invocation of
toString on an array

DMI_INVOKING_TOSTRING_O
N_ARRAY findbugs CRITICAL ACTIVE

Correctness - JUnit assertion
in run method will not be
noticed by JUnit

IJU_ASSERT_METHOD_INVOK
ED_FROM_RUN_METHOD findbugs CRITICAL ACTIVE

Correctness -
MessageFormat supplied
where printf style format
expected

VA_FORMAT_STRING_EXPECT
ED_MESSAGE_FORMAT_SUPP
LIED findbugs MAJOR ACTIVE

Correctness - Method assigns
boolean literal in boolean
expression

QBA_QUESTIONABLE_BOOLEA
N_ASSIGNMENT findbugs CRITICAL ACTIVE

Correctness - Method
attempts to access a
prepared statement
parameter with index 0

SQL_BAD_PREPARED_STATEM
ENT_ACCESS findbugs CRITICAL ACTIVE

Correctness - Method
attempts to access a result
set field with index 0 SQL_BAD_RESULTSET_ACCESS findbugs CRITICAL ACTIVE

Correctness - Method call
passes null for nonnull
parameter NP_NULL_PARAM_DEREF findbugs CRITICAL ACTIVE

Correctness - Method call
passes null for nonnull
parameter
(ALL_TARGETS_DANGEROUS)

NP_NULL_PARAM_DEREF_ALL
_TARGETS_DANGEROUS findbugs CRITICAL ACTIVE

Correctness - Method call
passes null to a nonnull
parameter

NP_NONNULL_PARAM_VIOLA
TION findbugs CRITICAL ACTIVE

Correctness - Method defines
a variable that obscures a
field MF_METHOD_MASKS_FIELD findbugs MAJOR ACTIVE

Correctness - Method does
not check for null argument

NP_ARGUMENT_MIGHT_BE_
NULL findbugs MAJOR ACTIVE

Correctness - Method
doesn't override method in
superclass due to wrong
package for parameter NM_WRONG_PACKAGE findbugs MAJOR ACTIVE

Correctness - Method ignores
return value RV_RETURN_VALUE_IGNORED findbugs MINOR ACTIVE

75

title Key plugin priority status

Correctness - Method ignores
return value

RV_RETURN_VALUE_IGNORED
2 findbugs MAJOR ACTIVE

Correctness - Method may
return null, but is declared
@NonNull

NP_NONNULL_RETURN_VIOL
ATION findbugs CRITICAL ACTIVE

Correctness - Method must
be private in order for
serialization to work

SE_METHOD_MUST_BE_PRIV
ATE findbugs MAJOR ACTIVE

Correctness - Method
performs math using floating
point precision

FL_MATH_USING_FLOAT_PRE
CISION findbugs CRITICAL ACTIVE

Correctness - More
arguments are passed that
are actually used in the
format string

VA_FORMAT_STRING_EXTRA_
ARGUMENTS_PASSED findbugs MAJOR ACTIVE

Correctness - No previous
argument for format string

VA_FORMAT_STRING_NO_PR
EVIOUS_ARGUMENT findbugs CRITICAL ACTIVE

Correctness - No relationship
between generic parameter
and method argument GC_UNRELATED_TYPES findbugs CRITICAL ACTIVE

Correctness - Non-virtual
method call passes null for
nonnull parameter

NP_NULL_PARAM_DEREF_NO
NVIRTUAL findbugs CRITICAL ACTIVE

Correctness - Nonsensical
self computation involving a
field (e.g., x & x)

SA_FIELD_SELF_COMPUTATIO
N findbugs CRITICAL ACTIVE

Correctness - Nonsensical
self computation involving a
variable (e.g., x & x)

SA_LOCAL_SELF_COMPUTATI
ON findbugs CRITICAL ACTIVE

Correctness - Null pointer
dereference NP_ALWAYS_NULL findbugs CRITICAL ACTIVE

Correctness - Null pointer
dereference in method on
exception path

NP_ALWAYS_NULL_EXCEPTIO
N findbugs CRITICAL ACTIVE

Correctness - Null value is
guaranteed to be
dereferenced NP_GUARANTEED_DEREF findbugs BLOCKER ACTIVE

Correctness - Nullcheck of
value previously
dereferenced

RCN_REDUNDANT_NULLCHEC
K_WOULD_HAVE_BEEN_A_NP
E findbugs CRITICAL ACTIVE

Correctness - Number of
format-string arguments
does not correspond to

VA_FORMAT_STRING_ARG_M
ISMATCH findbugs CRITICAL ACTIVE

76

title Key plugin priority status

number of placeholders

Correctness - Overwritten
increment

DLS_OVERWRITTEN_INCREME
NT findbugs CRITICAL ACTIVE

Correctness - Possible null
pointer dereference NP_NULL_ON_SOME_PATH findbugs CRITICAL ACTIVE

Correctness - Possible null
pointer dereference in
method on exception path

NP_NULL_ON_SOME_PATH_E
XCEPTION findbugs CRITICAL ACTIVE

Correctness - Primitive array
passed to function expecting
a variable number of object
arguments

VA_PRIMITIVE_ARRAY_PASSE
D_TO_OBJECT_VARARG findbugs CRITICAL ACTIVE

Correctness - Primitive value
is unboxed and coerced for
ternary operator

BX_UNBOXED_AND_COERCED
_FOR_TERNARY_OPERATOR findbugs MAJOR ACTIVE

Correctness - Random value
from 0 to 1 is coerced to the
integer 0 RV_01_TO_INT findbugs MAJOR ACTIVE

Correctness - Read of
unwritten field NP_UNWRITTEN_FIELD findbugs MAJOR ACTIVE

Correctness - Repeated
conditional tests

RpC_REPEATED_CONDITIONA
L_TEST findbugs MAJOR ACTIVE

Correctness - Return value of
putIfAbsent ignored, value
passed to putIfAbsent reused

RV_RETURN_VALUE_OF_PUTI
FABSENT_IGNORED findbugs MAJOR ACTIVE

Correctness - Self assignment
of field SA_FIELD_SELF_ASSIGNMENT findbugs CRITICAL ACTIVE

Correctness - Self comparison
of field with itself SA_FIELD_SELF_COMPARISON findbugs CRITICAL ACTIVE

Correctness - Self comparison
of value with itself

SA_LOCAL_SELF_COMPARISO
N findbugs CRITICAL ACTIVE

Correctness - Signature
declares use of unhashable
class in hashed construct

HE_SIGNATURE_DECLARES_H
ASHING_OF_UNHASHABLE_CL
ASS findbugs CRITICAL ACTIVE

Correctness - Static
Thread.interrupted() method
invoked on thread instance

STI_INTERRUPTED_ON_UNKN
OWNTHREAD findbugs CRITICAL ACTIVE

Correctness - Store of null
value into field annotated
NonNull

NP_STORE_INTO_NONNULL_F
IELD findbugs CRITICAL ACTIVE

77

title Key plugin priority status

Correctness - Suspicious
reference comparison of
Boolean values

RC_REF_COMPARISON_BAD_
PRACTICE_BOOLEAN findbugs MAJOR ACTIVE

Correctness - Suspicious
reference comparison to
constant

RC_REF_COMPARISON_BAD_
PRACTICE findbugs MAJOR ACTIVE

Correctness - TestCase
declares a bad suite method IJU_BAD_SUITE_METHOD findbugs CRITICAL ACTIVE

Correctness - TestCase
defines setUp that doesn't
call super.setUp() IJU_SETUP_NO_SUPER findbugs CRITICAL ACTIVE

Correctness - TestCase
defines tearDown that
doesn't call super.tearDown() IJU_TEARDOWN_NO_SUPER findbugs CRITICAL ACTIVE

Correctness - TestCase has
no tests IJU_NO_TESTS findbugs CRITICAL ACTIVE

Correctness - TestCase
implements a non-static suite
method IJU_SUITE_NOT_STATIC findbugs CRITICAL ACTIVE

Correctness - The
readResolve method must
not be declared as a static
method. SE_READ_RESOLVE_IS_STATIC findbugs MAJOR ACTIVE

Correctness - The type of a
supplied argument doesn't
match format specifier

VA_FORMAT_STRING_BAD_C
ONVERSION findbugs CRITICAL ACTIVE

Correctness - Uncallable
method defined in
anonymous class

UMAC_UNCALLABLE_METHO
D_OF_ANONYMOUS_CLASS findbugs CRITICAL ACTIVE

Correctness - Uninitialized
read of field in constructor UR_UNINIT_READ findbugs MAJOR ACTIVE

Correctness - Uninitialized
read of field method called
from constructor of
superclass

UR_UNINIT_READ_CALLED_FR
OM_SUPER_CONSTRUCTOR findbugs MAJOR ACTIVE

Correctness - Unnecessary
type check done using
instanceof operator

SIO_SUPERFLUOUS_INSTANCE
OF findbugs CRITICAL ACTIVE

Correctness - Unneeded use
of currentThread() call, to call
interrupted()

STI_INTERRUPTED_ON_CURRE
NTTHREAD findbugs CRITICAL ACTIVE

Correctness - Unwritten field UWF_UNWRITTEN_FIELD findbugs MINOR ACTIVE

78

title Key plugin priority status

Correctness - Use of class
without a hashCode()
method in a hashed data
structure

HE_USE_OF_UNHASHABLE_CL
ASS findbugs CRITICAL ACTIVE

Correctness - Useless
assignment in return
statement

DLS_DEAD_LOCAL_STORE_IN_
RETURN findbugs CRITICAL ACTIVE

Correctness - Useless control
flow to next line

UCF_USELESS_CONTROL_FLO
W_NEXT_LINE findbugs CRITICAL ACTIVE

Correctness - Using pointer
equality to compare different
types

EC_UNRELATED_TYPES_USING
_POINTER_EQUALITY findbugs CRITICAL ACTIVE

Correctness - Vacuous call to
collections

DMI_VACUOUS_SELF_COLLEC
TION_CALL findbugs CRITICAL ACTIVE

Correctness - Value
annotated as carrying a type
qualifier used where a value
that must not carry that
qualifier is required

TQ_ALWAYS_VALUE_USED_W
HERE_NEVER_REQUIRED findbugs CRITICAL ACTIVE

Correctness - Value
annotated as never carrying a
type qualifier used where
value carrying that qualifier is
required

TQ_NEVER_VALUE_USED_WH
ERE_ALWAYS_REQUIRED findbugs CRITICAL ACTIVE

Correctness - Value is null
and guaranteed to be
dereferenced on exception
path

NP_GUARANTEED_DEREF_ON
_EXCEPTION_PATH findbugs CRITICAL ACTIVE

Correctness - Value required
to have type qualifier, but
marked as unknown

TQ_EXPLICIT_UNKNOWN_SO
URCE_VALUE_REACHES_ALW
AYS_SINK findbugs CRITICAL ACTIVE

Correctness - Value required
to not have type qualifier,
but marked as unknown

TQ_EXPLICIT_UNKNOWN_SO
URCE_VALUE_REACHES_NEVE
R_SINK findbugs CRITICAL ACTIVE

Correctness - Value that
might carry a type qualifier is
always used in a way
prohibits it from having that
type qualifier

TQ_MAYBE_SOURCE_VALUE_
REACHES_NEVER_SINK findbugs CRITICAL ACTIVE

Correctness - Value that
might not carry a type
qualifier is always used in a
way requires that type
qualifier

TQ_MAYBE_SOURCE_VALUE_
REACHES_ALWAYS_SINK findbugs CRITICAL ACTIVE

79

title Key plugin priority status

Correctness - Very confusing
method names NM_VERY_CONFUSING findbugs MAJOR ACTIVE

Coupling - excessive imports ExcessiveImports pmd MAJOR ACTIVE

Coupling between objects CouplingBetweenObjects pmd MAJOR ACTIVE

Cyclomatic Complexity

com.puppycrawl.tools.checkst
yle.checks.metrics.Cyclomatic
ComplexityCheck checkstyle MAJOR ACTIVE

Dataflow Anomaly Analysis DataflowAnomalyAnalysis pmd INFO ACTIVE

Default label not last in
switch statement

DefaultLabelNotLastInSwitchS
tmt pmd MAJOR ACTIVE

Default Package DefaultPackage pmd MINOR ACTIVE

Design For Extension

com.puppycrawl.tools.checkst
yle.checks.design.DesignForEx
tensionCheck checkstyle INFO ACTIVE

Do not call garbage collection
explicitly

DoNotCallGarbageCollectionE
xplicitly pmd CRITICAL ACTIVE

Do Not Extend Java Lang
Error DoNotExtendJavaLangError pmd MAJOR ACTIVE

Do Not Use Threads DoNotUseThreads pmd MAJOR ACTIVE

Dodgy - Ambiguous
invocation of either an
inherited or outer method

IA_AMBIGUOUS_INVOCATION
_OF_INHERITED_OR_OUTER_
METHOD findbugs MAJOR ACTIVE

Dodgy - Call to unsupported
method

DMI_UNSUPPORTED_METHO
D findbugs MAJOR ACTIVE

Dodgy - Check for oddness
that won't work for negative
numbers IM_BAD_CHECK_FOR_ODD findbugs CRITICAL ACTIVE

Dodgy - Class exposes
synchronization and
semaphores in its public
interface PS_PUBLIC_SEMAPHORES findbugs CRITICAL ACTIVE

Dodgy - Class extends Servlet
class and uses instance
variables

MTIA_SUSPECT_SERVLET_INS
TANCE_FIELD findbugs CRITICAL ACTIVE

Dodgy - Class extends Struts
Action class and uses
instance variables

MTIA_SUSPECT_STRUTS_INST
ANCE_FIELD findbugs CRITICAL ACTIVE

Dodgy - Class implements
same interface as superclass RI_REDUNDANT_INTERFACES findbugs MAJOR ACTIVE

Dodgy - Class is final but
declares protected field CI_CONFUSED_INHERITANCE findbugs MINOR ACTIVE

Dodgy - Class too big for SKIPPED_CLASS_TOO_BIG findbugs MINOR ACTIVE

80

title Key plugin priority status

analysis

Dodgy - Code contains a hard
coded reference to an
absolute pathname

DMI_HARDCODED_ABSOLUTE
_FILENAME findbugs CRITICAL ACTIVE

Dodgy - Complicated, subtle
or wrong increment in for-
loop

QF_QUESTIONABLE_FOR_LOO
P findbugs CRITICAL ACTIVE

Dodgy - Computation of
average could overflow

IM_AVERAGE_COMPUTATION
_COULD_OVERFLOW findbugs CRITICAL ACTIVE

Dodgy - Consider returning a
zero length array rather than
null

PZLA_PREFER_ZERO_LENGTH_
ARRAYS findbugs MAJOR ACTIVE

Dodgy - Dead store of null to
local variable

DLS_DEAD_LOCAL_STORE_OF
_NULL findbugs CRITICAL ACTIVE

Dodgy - Dead store to local
variable DLS_DEAD_LOCAL_STORE findbugs CRITICAL ACTIVE

Dodgy - Dereference of the
result of readLine() without
nullcheck

NP_DEREFERENCE_OF_READLI
NE_VALUE findbugs CRITICAL ACTIVE

Dodgy - Double assignment
of local variable

SA_LOCAL_DOUBLE_ASSIGNM
ENT findbugs CRITICAL ACTIVE

Dodgy - Exception is caught
when Exception is not
thrown REC_CATCH_EXCEPTION findbugs MAJOR ACTIVE

Dodgy - Immediate
dereference of the result of
readLine()

NP_IMMEDIATE_DEREFERENC
E_OF_READLINE findbugs CRITICAL ACTIVE

Dodgy - Initialization
circularity IC_INIT_CIRCULARITY findbugs CRITICAL ACTIVE

Dodgy - instanceof will
always return true BC_VACUOUS_INSTANCEOF findbugs CRITICAL ACTIVE

Dodgy - int division result
cast to double or float

ICAST_IDIV_CAST_TO_DOUBL
E findbugs CRITICAL ACTIVE

Dodgy - Invocation of
substring(0), which returns
the original value DMI_USELESS_SUBSTRING findbugs CRITICAL ACTIVE

Dodgy - Load of known null
value

NP_LOAD_OF_KNOWN_NULL
_VALUE findbugs CRITICAL ACTIVE

Dodgy - Method checks to
see if result of String.indexOf
is positive

RV_CHECK_FOR_POSITIVE_IN
DEXOF findbugs MINOR ACTIVE

81

title Key plugin priority status

Dodgy - Method directly
allocates a specific
implementation of xml
interfaces XFB_XML_FACTORY_BYPASS findbugs CRITICAL ACTIVE

Dodgy - Method discards
result of readLine after
checking if it is nonnull

RV_DONT_JUST_NULL_CHECK
_READLINE findbugs MAJOR ACTIVE

Dodgy - Method uses the
same code for two branches DB_DUPLICATE_BRANCHES findbugs CRITICAL ACTIVE

Dodgy - Method uses the
same code for two switch
clauses

DB_DUPLICATE_SWITCH_CLA
USES findbugs CRITICAL ACTIVE

Dodgy - Non serializable
object written to
ObjectOutput

DMI_NONSERIALIZABLE_OBJE
CT_WRITTEN findbugs CRITICAL ACTIVE

Dodgy - Non-Boolean
argument formatted using
%b format specifier

VA_FORMAT_STRING_BAD_C
ONVERSION_TO_BOOLEAN findbugs MAJOR ACTIVE

Dodgy - Parameter must be
nonnull but is marked as
nullable

NP_PARAMETER_MUST_BE_N
ONNULL_BUT_MARKED_AS_N
ULLABLE findbugs CRITICAL ACTIVE

Dodgy - Possible null pointer
dereference due to return
value of called method

NP_NULL_ON_SOME_PATH_F
ROM_RETURN_VALUE findbugs CRITICAL ACTIVE

Dodgy - Possible null pointer
dereference on path that
might be infeasible

NP_NULL_ON_SOME_PATH_
MIGHT_BE_INFEASIBLE findbugs CRITICAL ACTIVE

Dodgy - Potentially
dangerous use of non-short-
circuit logic

NS_DANGEROUS_NON_SHOR
T_CIRCUIT findbugs CRITICAL ACTIVE

Dodgy - private readResolve
method not inherited by
subclasses

SE_PRIVATE_READ_RESOLVE_
NOT_INHERITED findbugs MAJOR ACTIVE

Dodgy - Questionable cast to
abstract collection

BC_BAD_CAST_TO_ABSTRACT
_COLLECTION findbugs MAJOR ACTIVE

Dodgy - Questionable cast to
concrete collection

BC_BAD_CAST_TO_CONCRETE
_COLLECTION findbugs CRITICAL ACTIVE

Dodgy - Questionable use of
non-short-circuit logic NS_NON_SHORT_CIRCUIT findbugs MAJOR ACTIVE

Dodgy - Redundant
comparison of non-null value
to null

RCN_REDUNDANT_COMPARIS
ON_OF_NULL_AND_NONNULL
_VALUE findbugs CRITICAL ACTIVE

82

title Key plugin priority status

Dodgy - Redundant
comparison of two null
values

RCN_REDUNDANT_COMPARIS
ON_TWO_NULL_VALUES findbugs CRITICAL ACTIVE

Dodgy - Redundant nullcheck
of value known to be non-
null

RCN_REDUNDANT_NULLCHEC
K_OF_NONNULL_VALUE findbugs CRITICAL ACTIVE

Dodgy - Redundant nullcheck
of value known to be null

RCN_REDUNDANT_NULLCHEC
K_OF_NULL_VALUE findbugs CRITICAL ACTIVE

Dodgy - Remainder of 32-bit
signed random integer RV_REM_OF_RANDOM_INT findbugs CRITICAL ACTIVE

Dodgy - Remainder of
hashCode could be negative RV_REM_OF_HASHCODE findbugs CRITICAL ACTIVE

Dodgy - Result of integer
multiplication cast to long

ICAST_INTEGER_MULTIPLY_C
AST_TO_LONG findbugs CRITICAL ACTIVE

Dodgy - Self assignment of
local variable SA_LOCAL_SELF_ASSIGNMENT findbugs CRITICAL ACTIVE

Dodgy - Test for floating
point equality

FE_FLOATING_POINT_EQUALI
TY findbugs CRITICAL ACTIVE

Dodgy - Thread passed where
Runnable expected

DMI_THREAD_PASSED_WHER
E_RUNNABLE_EXPECTED findbugs MAJOR ACTIVE

Dodgy - Transient field of
class that isn't Serializable.

SE_TRANSIENT_FIELD_OF_NO
NSERIALIZABLE_CLASS findbugs MAJOR ACTIVE

Dodgy -
Unchecked/unconfirmed cast BC_UNCONFIRMED_CAST findbugs CRITICAL ACTIVE

Dodgy - Unsigned right shift
cast to short/byte

ICAST_QUESTIONABLE_UNSIG
NED_RIGHT_SHIFT findbugs CRITICAL ACTIVE

Dodgy - Unusual equals
method EQ_UNUSUAL findbugs MINOR ACTIVE

Dodgy - Vacuous bit mask
operation on integer value

INT_VACUOUS_BIT_OPERATIO
N findbugs CRITICAL ACTIVE

Dodgy - Vacuous comparison
of integer value INT_VACUOUS_COMPARISON findbugs CRITICAL ACTIVE

Dodgy - Write to static field
from instance method

ST_WRITE_TO_STATIC_FROM
_INSTANCE_METHOD findbugs CRITICAL ACTIVE

Dont Import Java Lang DontImportJavaLang pmd MINOR ACTIVE

Dont Import Sun DontImportSun pmd MINOR ACTIVE

Dont Nest Jsf In Jstl Iteration DontNestJsfInJstlIteration pmd MAJOR ACTIVE

Double checked locking DoubleCheckedLocking pmd MAJOR ACTIVE

Duplicate Imports DuplicateImports pmd MINOR ACTIVE

Empty Catch Block EmptyCatchBlock pmd CRITICAL ACTIVE

83

title Key plugin priority status

Empty Finalizer EmptyFinalizer pmd MAJOR ACTIVE

Empty Finally Block EmptyFinallyBlock pmd CRITICAL ACTIVE

Empty If Stmt EmptyIfStmt pmd CRITICAL ACTIVE

Empty Method In Abstract
Class Should Be Abstract

EmptyMethodInAbstractClass
ShouldBeAbstract pmd MAJOR ACTIVE

Empty Statement

com.puppycrawl.tools.checkst
yle.checks.coding.EmptyState
mentCheck checkstyle MINOR ACTIVE

Empty Statement Not In Loop EmptyStatementNotInLoop pmd MAJOR ACTIVE

Empty Static Initializer EmptyStaticInitializer pmd MAJOR ACTIVE

Empty Switch Statements EmptySwitchStatements pmd MAJOR ACTIVE

Empty Synchronized Block EmptySynchronizedBlock pmd CRITICAL ACTIVE

Empty Try Block EmptyTryBlock pmd MAJOR ACTIVE

Empty While Stmt EmptyWhileStmt pmd CRITICAL ACTIVE

Equals Hash Code

com.puppycrawl.tools.checkst
yle.checks.coding.EqualsHash
CodeCheck checkstyle CRITICAL ACTIVE

Equals Null EqualsNull pmd CRITICAL ACTIVE

Exception As Flow Control ExceptionAsFlowControl pmd MAJOR ACTIVE

Excessive Parameter List ExcessiveParameterList pmd MAJOR ACTIVE

Excessive Public Count ExcessivePublicCount pmd MAJOR ACTIVE

Final Class

com.puppycrawl.tools.checkst
yle.checks.design.FinalClassCh
eck checkstyle MAJOR ACTIVE

Final Field Could Be Static FinalFieldCouldBeStatic pmd MINOR ACTIVE

Finalize Does Not Call Super
Finalize

FinalizeDoesNotCallSuperFinal
ize pmd MAJOR ACTIVE

Finalize Only Calls Super
Finalize FinalizeOnlyCallsSuperFinalize pmd MAJOR ACTIVE

Finalize Overloaded FinalizeOverloaded pmd MAJOR ACTIVE

Finalize Should Be Protected FinalizeShouldBeProtected pmd MAJOR ACTIVE

For Loop Should Be While
Loop ForLoopShouldBeWhileLoop pmd MINOR ACTIVE

For Loops Must Use Braces ForLoopsMustUseBraces pmd MAJOR ACTIVE

Hidden Field

com.puppycrawl.tools.checkst
yle.checks.coding.HiddenField
Check checkstyle MAJOR ACTIVE

Hide Utility Class Constructor

com.puppycrawl.tools.checkst
yle.checks.design.HideUtilityCl
assConstructorCheck checkstyle MAJOR ACTIVE

Idempotent Operations IdempotentOperations pmd MAJOR ACTIVE

84

title Key plugin priority status

If Else Stmts Must Use Braces IfElseStmtsMustUseBraces pmd MAJOR ACTIVE

If Stmts Must Use Braces IfStmtsMustUseBraces pmd MAJOR ACTIVE

Illegal Throws

com.puppycrawl.tools.checkst
yle.checks.coding.IllegalThrow
sCheck checkstyle MAJOR ACTIVE

Immutable Field ImmutableField pmd MAJOR ACTIVE

Import From Same Package ImportFromSamePackage pmd MINOR ACTIVE

Inefficient Empty String
Check InefficientEmptyStringCheck pmd MAJOR ACTIVE

Inefficient String Buffering InefficientStringBuffering pmd MAJOR ACTIVE

Inner Assignment

com.puppycrawl.tools.checkst
yle.checks.coding.InnerAssign
mentCheck checkstyle MAJOR ACTIVE

Instantiation To Get Class InstantiationToGetClass pmd MAJOR ACTIVE

Insufficient String Buffer
Declaration

InsufficientStringBufferDeclara
tion pmd MAJOR ACTIVE

Integer Instantiation IntegerInstantiation pmd MAJOR ACTIVE

Internationalization -
Consider using Locale
parameterized version of
invoked method DM_CONVERT_CASE findbugs INFO ACTIVE

Java5 migration - Byte
instantiation ByteInstantiation pmd MAJOR ACTIVE

Java5 migration - Long
instantiation LongInstantiation pmd MAJOR ACTIVE

Java5 migration - Short
instantiation ShortInstantiation pmd MAJOR ACTIVE

Jumbled Incrementer JumbledIncrementer pmd MAJOR ACTIVE

Local Final Variable Name

com.puppycrawl.tools.checkst
yle.checks.naming.LocalFinalV
ariableNameCheck checkstyle MAJOR ACTIVE

Local Home Naming
Convention LocalHomeNamingConvention pmd MAJOR ACTIVE

Local Interface Session
Naming Convention

LocalInterfaceSessionNamingC
onvention pmd MAJOR ACTIVE

Local Variable Name

com.puppycrawl.tools.checkst
yle.checks.naming.LocalVariab
leNameCheck checkstyle MINOR ACTIVE

Logger Is Not Static Final LoggerIsNotStaticFinal pmd MAJOR ACTIVE

Long Variable LongVariable pmd MAJOR ACTIVE

Loose coupling LooseCoupling pmd MAJOR ACTIVE

85

title Key plugin priority status

Magic Number

com.puppycrawl.tools.checkst
yle.checks.coding.MagicNumb
erCheck checkstyle MINOR ACTIVE

Malicious code vulnerability -
Field is a mutable array MS_MUTABLE_ARRAY findbugs MAJOR ACTIVE

Malicious code vulnerability -
Field is a mutable Hashtable MS_MUTABLE_HASHTABLE findbugs MAJOR ACTIVE

Malicious code vulnerability -
Field isn't final and can't be
protected from malicious
code MS_CANNOT_BE_FINAL findbugs MAJOR ACTIVE

Malicious code vulnerability -
Field isn't final but should be MS_SHOULD_BE_FINAL findbugs MAJOR ACTIVE

Malicious code vulnerability -
Field should be both final and
package protected MS_FINAL_PKGPROTECT findbugs MAJOR ACTIVE

Malicious code vulnerability -
Field should be moved out of
an interface and made
package protected MS_OOI_PKGPROTECT findbugs MAJOR ACTIVE

Malicious code vulnerability -
Field should be package
protected MS_PKGPROTECT findbugs MAJOR ACTIVE

Malicious code vulnerability -
Finalizer should be protected,
not public

FI_PUBLIC_SHOULD_BE_PROT
ECTED findbugs MAJOR ACTIVE

Malicious code vulnerability -
May expose internal
representation by
incorporating reference to
mutable object EI_EXPOSE_REP2 findbugs MAJOR ACTIVE

Malicious code vulnerability -
May expose internal
representation by returning
reference to mutable object EI_EXPOSE_REP findbugs MAJOR ACTIVE

Malicious code vulnerability -
May expose internal static
state by storing a mutable
object into a static field EI_EXPOSE_STATIC_REP2 findbugs MAJOR ACTIVE

Malicious code vulnerability -
Public static method may
expose internal
representation by returning MS_EXPOSE_REP findbugs CRITICAL ACTIVE

86

title Key plugin priority status

array

Member name

com.puppycrawl.tools.checkst
yle.checks.naming.MemberNa
meCheck checkstyle MAJOR ACTIVE

Message Driven Bean And
Session Bean Naming
Convention

MDBAndSessionBeanNamingC
onvention pmd MAJOR ACTIVE

Misplaced Null Check MisplacedNullCheck pmd CRITICAL ACTIVE

Missing Break In Switch MissingBreakInSwitch pmd CRITICAL ACTIVE

Missing Serial Version UID MissingSerialVersionUID pmd MINOR ACTIVE

Missing Static Method In Non
Instantiatable Class

MissingStaticMethodInNonIns
tantiatableClass pmd MAJOR ACTIVE

Modifier Order

com.puppycrawl.tools.checkst
yle.checks.modifier.ModifierO
rderCheck checkstyle MINOR ACTIVE

More Than One Logger MoreThanOneLogger pmd MAJOR ACTIVE

Multithreaded correctness -
A thread was created using
the default empty run
method DM_USELESS_THREAD findbugs MAJOR ACTIVE

Multithreaded correctness -
A volatile reference to an
array doesn't treat the array
elements as volatile

VO_VOLATILE_REFERENCE_TO
_ARRAY findbugs MAJOR ACTIVE

Multithreaded correctness -
Call to static Calendar

STCAL_INVOKE_ON_STATIC_C
ALENDAR_INSTANCE findbugs CRITICAL ACTIVE

Multithreaded correctness -
Call to static DateFormat

STCAL_INVOKE_ON_STATIC_D
ATE_FORMAT_INSTANCE findbugs CRITICAL ACTIVE

Multithreaded correctness -
Class's readObject() method
is synchronized RS_READOBJECT_SYNC findbugs CRITICAL ACTIVE

Multithreaded correctness -
Class's writeObject() method
is synchronized but nothing
else is WS_WRITEOBJECT_SYNC findbugs CRITICAL ACTIVE

Multithreaded correctness -
Condition.await() not in loop WA_AWAIT_NOT_IN_LOOP findbugs CRITICAL ACTIVE

Multithreaded correctness -
Constructor invokes
Thread.start() SC_START_IN_CTOR findbugs CRITICAL ACTIVE

87

title Key plugin priority status

Multithreaded correctness -
Field not guarded against
concurrent access IS_FIELD_NOT_GUARDED findbugs CRITICAL ACTIVE

Multithreaded correctness -
Inconsistent synchronization IS_INCONSISTENT_SYNC findbugs MAJOR ACTIVE

Multithreaded correctness -
Inconsistent synchronization IS2_INCONSISTENT_SYNC findbugs CRITICAL ACTIVE

Multithreaded correctness -
Incorrect lazy initialization
and update of static field LI_LAZY_INIT_UPDATE_STATIC findbugs CRITICAL ACTIVE

Multithreaded correctness -
Incorrect lazy initialization of
static field LI_LAZY_INIT_STATIC findbugs CRITICAL ACTIVE

Multithreaded correctness -
Invokes run on a thread (did
you mean to start it instead?) RU_INVOKE_RUN findbugs MAJOR ACTIVE

Multithreaded correctness -
Method calls Thread.sleep()
with a lock held

SWL_SLEEP_WITH_LOCK_HEL
D findbugs CRITICAL ACTIVE

Multithreaded correctness -
Method does not release lock
on all exception paths

UL_UNRELEASED_LOCK_EXCE
PTION_PATH findbugs CRITICAL ACTIVE

Multithreaded correctness -
Method does not release lock
on all paths UL_UNRELEASED_LOCK findbugs CRITICAL ACTIVE

Multithreaded correctness -
Method spins on field SP_SPIN_ON_FIELD findbugs MAJOR ACTIVE

Multithreaded correctness -
Method synchronizes on an
updated field

ML_SYNC_ON_UPDATED_FIEL
D findbugs MAJOR ACTIVE

Multithreaded correctness -
Mismatched notify() MWN_MISMATCHED_NOTIFY findbugs CRITICAL ACTIVE

Multithreaded correctness -
Mismatched wait() MWN_MISMATCHED_WAIT findbugs CRITICAL ACTIVE

Multithreaded correctness -
Monitor wait() called on
Condition

DM_MONITOR_WAIT_ON_CO
NDITION findbugs MAJOR ACTIVE

Multithreaded correctness -
Mutable servlet field

MSF_MUTABLE_SERVLET_FIEL
D findbugs MAJOR ACTIVE

Multithreaded correctness -
Naked notify NN_NAKED_NOTIFY findbugs CRITICAL ACTIVE

88

title Key plugin priority status

Multithreaded correctness -
Static Calendar

STCAL_STATIC_CALENDAR_IN
STANCE findbugs CRITICAL ACTIVE

Multithreaded correctness -
Static DateFormat

STCAL_STATIC_SIMPLE_DATE_
FORMAT_INSTANCE findbugs CRITICAL ACTIVE

Multithreaded correctness -
Sychronization on getClass
rather than class literal

WL_USING_GETCLASS_RATHE
R_THAN_CLASS_LITERAL findbugs CRITICAL ACTIVE

Multithreaded correctness -
Synchronization on Boolean
could lead to deadlock

DL_SYNCHRONIZATION_ON_B
OOLEAN findbugs CRITICAL ACTIVE

Multithreaded correctness -
Synchronization on boxed
primitive could lead to
deadlock

DL_SYNCHRONIZATION_ON_B
OXED_PRIMITIVE findbugs CRITICAL ACTIVE

Multithreaded correctness -
Synchronization on boxed
primitive values

DL_SYNCHRONIZATION_ON_U
NSHARED_BOXED_PRIMITIVE findbugs CRITICAL ACTIVE

Multithreaded correctness -
Synchronization on field in
futile attempt to guard that
field

ML_SYNC_ON_FIELD_TO_GUA
RD_CHANGING_THAT_FIELD findbugs MAJOR ACTIVE

Multithreaded correctness -
Synchronization on interned
String could lead to deadlock

DL_SYNCHRONIZATION_ON_S
HARED_CONSTANT findbugs CRITICAL ACTIVE

Multithreaded correctness -
Synchronization performed
on java.util.concurrent Lock

JLM_JSR166_LOCK_MONITOR
ENTER findbugs CRITICAL ACTIVE

Multithreaded correctness -
Synchronize and null check
on the same field.

NP_SYNC_AND_NULL_CHECK_
FIELD findbugs MAJOR ACTIVE

Multithreaded correctness -
Unconditional wait UW_UNCOND_WAIT findbugs MAJOR ACTIVE

Multithreaded correctness -
Unsynchronized get method,
synchronized set method UG_SYNC_SET_UNSYNC_GET findbugs MAJOR ACTIVE

Multithreaded correctness -
Using notify() rather than
notifyAll() NO_NOTIFY_NOT_NOTIFYALL findbugs CRITICAL ACTIVE

Multithreaded correctness -
Wait not in loop WA_NOT_IN_LOOP findbugs CRITICAL ACTIVE

89

title Key plugin priority status

Multithreaded correctness -
Wait with two locks held TLW_TWO_LOCK_WAIT findbugs MAJOR ACTIVE

Naming - Avoid dollar signs AvoidDollarSigns pmd MINOR ACTIVE

Naming - Avoid field name
matching method name

AvoidFieldNameMatchingMet
hodName pmd MAJOR ACTIVE

Naming - Avoid field name
matching type name

AvoidFieldNameMatchingType
Name pmd MAJOR ACTIVE

Naming - Class naming
conventions ClassNamingConventions pmd MAJOR ACTIVE

Naming - Method naming
conventions MethodNamingConventions pmd MAJOR ACTIVE

Naming - Method with same
name as enclosing class

MethodWithSameNameAsEnc
losingClass pmd MAJOR ACTIVE

Naming - Misleading variable
name MisleadingVariableName pmd MAJOR ACTIVE

Naming - Short method name ShortMethodName pmd MAJOR ACTIVE

Naming - Suspicious constant
field name SuspiciousConstantFieldName pmd MAJOR ACTIVE

Naming - Suspicious equals
method name

SuspiciousEqualsMethodNam
e pmd CRITICAL ACTIVE

Naming - Suspicious
Hashcode method name

SuspiciousHashcodeMethodN
ame pmd MAJOR ACTIVE

Ncss Constructor Count NcssConstructorCount pmd MAJOR ACTIVE

Ncss Method Count NcssMethodCount pmd MAJOR ACTIVE

Ncss Type Count NcssTypeCount pmd MAJOR ACTIVE

No package NoPackage pmd MAJOR ACTIVE

Non Case Label In Switch
Statement

NonCaseLabelInSwitchStatem
ent pmd MAJOR ACTIVE

Non Static Initializer NonStaticInitializer pmd MAJOR ACTIVE

Non Thread Safe Singleton NonThreadSafeSingleton pmd MAJOR ACTIVE

NPath complexity NPathComplexity pmd MAJOR ACTIVE

Null Assignment NullAssignment pmd MAJOR ACTIVE

Only One Return OnlyOneReturn pmd MINOR ACTIVE

Optimizable To Array Call OptimizableToArrayCall pmd MAJOR ACTIVE

Override both equals and
hashcode

OverrideBothEqualsAndHashc
ode pmd CRITICAL ACTIVE

Package name

com.puppycrawl.tools.checkst
yle.checks.naming.PackageNa
meCheck checkstyle MAJOR ACTIVE

90

title Key plugin priority status

Parameter Name

com.puppycrawl.tools.checkst
yle.checks.naming.Parameter
NameCheck checkstyle MAJOR ACTIVE

Performance - Could be
refactored into a named
static inner class

SIC_INNER_SHOULD_BE_STAT
IC_ANON findbugs MAJOR ACTIVE

Performance - Could be
refactored into a static inner
class

SIC_INNER_SHOULD_BE_STAT
IC_NEEDS_THIS findbugs MAJOR ACTIVE

Performance - Explicit
garbage collection; extremely
dubious except in
benchmarking code DM_GC findbugs MAJOR ACTIVE

Performance - Huge string
constants is duplicated across
multiple class files

HSC_HUGE_SHARED_STRING_
CONSTANT findbugs CRITICAL ACTIVE

Performance - Inefficient use
of keySet iterator instead of
entrySet iterator

WMI_WRONG_MAP_ITERATO
R findbugs CRITICAL ACTIVE

Performance - Maps and sets
of URLs can be performance
hogs DMI_COLLECTION_OF_URLS findbugs BLOCKER ACTIVE

Performance - Method
allocates a boxed primitive
just to call toString

DM_BOXED_PRIMITIVE_TOST
RING findbugs MAJOR ACTIVE

Performance - Method
allocates an object, only to
get the class object DM_NEW_FOR_GETCLASS findbugs MAJOR ACTIVE

Performance - Method calls
static Math class method on
a constant value UM_UNNECESSARY_MATH findbugs CRITICAL ACTIVE

Performance - Method
concatenates strings using +
in a loop

SBSC_USE_STRINGBUFFER_CO
NCATENATION findbugs CRITICAL ACTIVE

Performance - Method
invokes inefficient floating-
point Number constructor;
use static valueOf instead DM_FP_NUMBER_CTOR findbugs MAJOR ACTIVE

Performance - Method
invokes inefficient new
String(String) constructor DM_STRING_CTOR findbugs MAJOR ACTIVE

Performance - Method
invokes toString() method on
a String DM_STRING_TOSTRING findbugs INFO ACTIVE

91

title Key plugin priority status

Performance - Method uses
toArray() with zero-length
array argument ITA_INEFFICIENT_TO_ARRAY findbugs CRITICAL ACTIVE

Performance - Primitive value
is boxed and then
immediately unboxed

BX_BOXING_IMMEDIATELY_U
NBOXED findbugs MAJOR ACTIVE

Performance - Primitive value
is boxed then unboxed to
perform primitive coercion

BX_BOXING_IMMEDIATELY_U
NBOXED_TO_PERFORM_COER
CION findbugs MAJOR ACTIVE

Performance - Should be a
static inner class

SIC_INNER_SHOULD_BE_STAT
IC findbugs MAJOR ACTIVE

Performance - The equals
and hashCode methods of
URL are blocking

DMI_BLOCKING_METHODS_O
N_URL findbugs BLOCKER ACTIVE

Performance - Unread field URF_UNREAD_FIELD findbugs MAJOR ACTIVE

Performance - Unread field:
should this field be static? SS_SHOULD_BE_STATIC findbugs MAJOR ACTIVE

Performance - Unused field UUF_UNUSED_FIELD findbugs MAJOR ACTIVE

Performance - Use the
nextInt method of Random
rather than nextDouble to
generate a random integer

DM_NEXTINT_VIA_NEXTDOUB
LE findbugs MAJOR ACTIVE

Position Literals First In
Comparisons

PositionLiteralsFirstInCompari
sons pmd MAJOR ACTIVE

Preserve Stack Trace PreserveStackTrace pmd MAJOR ACTIVE

Proper clone implementation ProperCloneImplementation pmd CRITICAL ACTIVE

Proper Logger ProperLogger pmd MAJOR ACTIVE

Redundant Modifier

com.puppycrawl.tools.checkst
yle.checks.modifier.Redundan
tModifierCheck checkstyle MINOR ACTIVE

Redundant Throws

com.puppycrawl.tools.checkst
yle.checks.coding.RedundantT
hrowsCheck checkstyle MINOR ACTIVE

Remote Interface Naming
Convention

RemoteInterfaceNamingConv
ention pmd MAJOR ACTIVE

Remote Session Interface
Naming Convention

RemoteSessionInterfaceNami
ngConvention pmd MAJOR ACTIVE

Replace Enumeration With
Iterator

ReplaceEnumerationWithItera
tor pmd MAJOR ACTIVE

Replace Hashtable With Map ReplaceHashtableWithMap pmd MAJOR ACTIVE

Replace Vector With List ReplaceVectorWithList pmd MAJOR ACTIVE

Return empty array rather ReturnEmptyArrayRatherThan pmd MINOR ACTIVE

92

title Key plugin priority status

than null Null

Return From Finally Block ReturnFromFinallyBlock pmd MAJOR ACTIVE

Security - A prepared
statement is generated from
a nonconstant String

SQL_PREPARED_STATEMENT_
GENERATED_FROM_NONCON
STANT_STRING findbugs CRITICAL ACTIVE

Security - Empty database
password DMI_EMPTY_DB_PASSWORD findbugs CRITICAL ACTIVE

Security - Hardcoded
constant database password

DMI_CONSTANT_DB_PASSWO
RD findbugs BLOCKER ACTIVE

Security - HTTP cookie
formed from untrusted input

HRS_REQUEST_PARAMETER_T
O_COOKIE findbugs MAJOR ACTIVE

Security - HTTP Response
splitting vulnerability

HRS_REQUEST_PARAMETER_T
O_HTTP_HEADER findbugs MAJOR ACTIVE

Security - JSP reflected cross
site scripting vulnerability

XSS_REQUEST_PARAMETER_T
O_JSP_WRITER findbugs CRITICAL ACTIVE

Security - Nonconstant string
passed to execute method on
an SQL statement

SQL_NONCONSTANT_STRING_
PASSED_TO_EXECUTE findbugs CRITICAL ACTIVE

Security - Servlet reflected
cross site scripting
vulnerability

XSS_REQUEST_PARAMETER_T
O_SEND_ERROR findbugs CRITICAL ACTIVE

Security - Servlet reflected
cross site scripting
vulnerability

XSS_REQUEST_PARAMETER_T
O_SERVLET_WRITER findbugs CRITICAL ACTIVE

Signature Declare Throws
Exception

SignatureDeclareThrowsExcep
tion pmd MAJOR ACTIVE

Simple Date Format Needs
Locale

SimpleDateFormatNeedsLocal
e pmd MAJOR ACTIVE

Simplify Boolean Expression

com.puppycrawl.tools.checkst
yle.checks.coding.SimplifyBool
eanExpressionCheck checkstyle MAJOR ACTIVE

Simplify Boolean Return

com.puppycrawl.tools.checkst
yle.checks.coding.SimplifyBool
eanReturnCheck checkstyle MAJOR ACTIVE

Simplify boolean returns SimplifyBooleanReturns pmd MINOR ACTIVE

Simplify Conditional SimplifyConditional pmd MAJOR ACTIVE

Simplify Starts With SimplifyStartsWith pmd MINOR ACTIVE

Singular Field SingularField pmd MINOR ACTIVE

Static EJB Field Should Be
Final StaticEJBFieldShouldBeFinal pmd MAJOR ACTIVE

Static Variable Name
com.puppycrawl.tools.checkst
yle.checks.naming.StaticVaria checkstyle MAJOR ACTIVE

93

title Key plugin priority status

bleNameCheck

Strict Exception - Do not
throw exception in finally

DoNotThrowExceptionInFinall
y pmd MAJOR ACTIVE

String Buffer Instantiation
With Char

StringBufferInstantiationWith
Char pmd MAJOR ACTIVE

String Instantiation StringInstantiation pmd MAJOR ACTIVE

String Literal Equality

com.puppycrawl.tools.checkst
yle.checks.coding.StringLiteral
EqualityCheck checkstyle MAJOR ACTIVE

String To String StringToString pmd MAJOR ACTIVE

Suspicious Octal Escape SuspiciousOctalEscape pmd MAJOR ACTIVE

Switch Density SwitchDensity pmd MAJOR ACTIVE

Switch statements should
have default

SwitchStmtsShouldHaveDefaul
t pmd MAJOR ACTIVE

System Println SystemPrintln pmd MAJOR ACTIVE

Too few branches for a
switch statement

TooFewBranchesForASwitchSt
atement pmd MINOR ACTIVE

Too Many Fields TooManyFields pmd MAJOR ACTIVE

Too many methods TooManyMethods pmd MAJOR ACTIVE

Too Many Static Imports TooManyStaticImports pmd MAJOR ACTIVE

Type Name

com.puppycrawl.tools.checkst
yle.checks.naming.TypeName
Check checkstyle MAJOR ACTIVE

Typecast Paren Pad

com.puppycrawl.tools.checkst
yle.checks.whitespace.Typeca
stParenPadCheck checkstyle MAJOR ACTIVE

Uncommented Empty
Constructor

UncommentedEmptyConstruc
tor pmd MAJOR ACTIVE

Uncommented Empty
Method UncommentedEmptyMethod pmd MAJOR ACTIVE

Unconditional If Statement UnconditionalIfStatement pmd CRITICAL ACTIVE

Unnecessary Case Change UnnecessaryCaseChange pmd MINOR ACTIVE

Unnecessary constructor UnnecessaryConstructor pmd MAJOR ACTIVE

Unnecessary Conversion
Temporary

UnnecessaryConversionTemp
orary pmd MAJOR ACTIVE

Unnecessary Final Modifier UnnecessaryFinalModifier pmd INFO ACTIVE

Unnecessary Local Before
Return

UnnecessaryLocalBeforeRetur
n pmd MAJOR ACTIVE

Unnecessary parentheses UnnecessaryParentheses pmd MINOR ACTIVE

Unnecessary Return UnnecessaryReturn pmd MINOR ACTIVE

94

title Key plugin priority status

Unnecessary Wrapper Object
Creation

UnnecessaryWrapperObjectCr
eation pmd MAJOR ACTIVE

Unsynchronized Static Date
Formatter

UnsynchronizedStaticDateFor
matter pmd MAJOR ACTIVE

Unused formal parameter UnusedFormalParameter pmd MAJOR ACTIVE

Unused Imports

com.puppycrawl.tools.checkst
yle.checks.imports.UnusedImp
ortsCheck checkstyle INFO ACTIVE

Unused local variable UnusedLocalVariable pmd MAJOR ACTIVE

Unused Modifier UnusedModifier pmd INFO ACTIVE

Unused Null Check In Equals UnusedNullCheckInEquals pmd MAJOR ACTIVE

Unused Private Field UnusedPrivateField pmd MAJOR ACTIVE

Unused private method UnusedPrivateMethod squid MAJOR ACTIVE

Unused protected method UnusedProtectedMethod squid MAJOR ACTIVE

Use Array List Instead Of
Vector UseArrayListInsteadOfVector pmd MAJOR ACTIVE

Use Arrays As List UseArraysAsList pmd MAJOR ACTIVE

Use Collection Is Empty UseCollectionIsEmpty pmd MINOR ACTIVE

Use Correct Exception
Logging UseCorrectExceptionLogging pmd MAJOR ACTIVE

Use Equals To Compare
Strings UseEqualsToCompareStrings pmd MAJOR ACTIVE

Use Index Of Char UseIndexOfChar pmd MAJOR ACTIVE

Use Locale With Case
Conversions

UseLocaleWithCaseConversio
ns pmd MAJOR ACTIVE

Use Notify All Instead Of
Notify UseNotifyAllInsteadOfNotify pmd MAJOR ACTIVE

Use Proper Class Loader UseProperClassLoader pmd CRITICAL ACTIVE

Use Singleton UseSingleton pmd MAJOR ACTIVE

Use String Buffer For String
Appends

UseStringBufferForStringAppe
nds pmd MAJOR ACTIVE

Use String Buffer Length UseStringBufferLength pmd MINOR ACTIVE

Useless Operation On
Immutable

UselessOperationOnImmutabl
e pmd CRITICAL ACTIVE

Useless Overriding Method UselessOverridingMethod pmd MAJOR ACTIVE

Useless String Value Of UselessStringValueOf pmd MINOR ACTIVE

Visibility Modifier

com.puppycrawl.tools.checkst
yle.checks.design.VisibilityMo
difierCheck checkstyle MAJOR ACTIVE

While Loops Must Use Braces WhileLoopsMustUseBraces pmd MAJOR ACTIVE

95

APPENDIX B

TECHNICAL DEBT SCORES REPORTED BY SONARQUBE

96

In
je

ct
e

d
In

je
ct

e
d

In
je

ct
e

d

10
D

P
R

u
n

1
2

3
4

5
20

D
P

R
u

n
1

2
3

4
5

30
D

P
R

u
n

1
2

3
4

5

3.
2

3.
1

3.
2

3.
2

3.
1

3.
2

3.
2

3.
2

3.
2

3.
2

3.
2

3.
2

3.
2

3.
2

3.
2

3.
6

3.
6

3.
6

3.
6

3.
6

3.
6

3.
5

3.
5

3.
5

3.
5

3.
6

3.
6

3.
6

3.
6

3.
6

3.
9

3.
9

3.
9

3.
9

3.
9

3.
9

3.
9

3.
9

3.
9

3.
9

3.
9

3.
9

3.
9

4.
2

3.
9

50
D

P
R

u
n

1
2

3
4

5
10

0
D

P
R

u
n

1
2

3
4

5
15

0
D

P
R

u
n

1
2

3
4

5

3.
2

3.
2

3.
5

3.
2

3.
7

3.
8

4.
1

3.
8

3.
8

4.
1

4.
2

4.
2

4.
2

4.
2

4.
2

3.
6

3.
6

3.
6

3.
6

3.
6

3.
7

3.
7

3.
7

3.
7

3.
7

3.
8

3.
8

3.
8

3.
8

3.
8

4.
5

4.
2

4.
5

4.
2

4.
2

4.
6

5.
1

4.
8

5
5.

1
5.

1
5.

1
5.

2
5.

1
5.

1

10
0

D
P

R
u

n
1

2
3

4
5

20
0

D
P

R
u

n
1

2
3

4
5

30
0

D
P

R
u

n
1

2
3

4
5

3.
8

4.
1

3.
8

4.
1

3.
8

4.
3

4.
3

4.
3

4.
3

4.
3

4.
5

4.
5

4.
5

4.
5

4.
5

3.
7

3.
7

3.
7

3.
7

3.
7

3.
9

3.
9

3.
9

3.
9

3.
9

4.
1

4.
1

4.
1

4.
1

4.
1

5.
1

5
5.

1
5.

1
4.

8
5.

2
5.

2
5.

2
5.

2
5.

2
5.

4
5.

4
5.

4
5.

4
5.

4

cl
e

an
_f

ac
to

ry

cl
e

an
_o

b
se

rv
e

r

cl
e

an
_f

ac
to

ry

cl
e

an
_o

b
se

rv
e

r

cl
e

an
_d

e
co

ra
to

r

V
e

rs
io

n
 3

cl
e

an
_d

e
co

ra
to

r

cl
e

an
_f

ac
to

ry

cl
e

an
_o

b
se

rv
e

r

cl
e

an
_d

e
co

ra
to

r

cl
e

an
_d

e
co

ra
to

r

cl
e

an
_f

ac
to

ry

cl
e

an
_o

b
se

rv
e

r

V
e

rs
io

n
 1

V
e

rs
io

n
 2

cl
e

an
_d

e
co

ra
to

r

cl
e

an
_f

ac
to

ry

cl
e

an
_o

b
se

rv
e

r

cl
e

an
_d

e
co

ra
to

r

cl
e

an
_f

ac
to

ry

cl
e

an
_o

b
se

rv
e

r

cl
e

an
_d

e
co

ra
to

r

cl
e

an
_f

ac
to

ry

cl
e

an
_o

b
se

rv
e

r

cl
e

an
_d

e
co

ra
to

r

cl
e

an
_f

ac
to

ry

cl
e

an
_o

b
se

rv
e

r

cl
e

an
_d

e
co

ra
to

r

cl
e

an
_f

ac
to

ry

cl
e

an
_o

b
se

rv
e

r

PE
A

G
 T

ec
hn

ic
al

 D
eb

t S
co

re
s

97

In
je

ct
e

d
In

je
ct

e
d

In
je

ct
e

d

10
D

P
R

u
n

1
2

3
4

5
20

D
P

R
u

n
1

2
3

4
5

30
D

P
R

u
n

1
2

3
4

5

3.
1

3.
2

3.
1

3.
1

3.
2

3.
2

3.
2

3.
2

3.
2

3.
2

3.
2

3.
2

3.
2

3.
2

3.
2

3.
5

3.
5

3.
5

3.
5

3.
6

3.
5

3.
5

3.
5

3.
5

3.
6

3.
6

3.
6

3.
6

3.
6

3.
6

4
3.

9
4

3.
9

3.
9

4
3.

9
3.

9
3.

9
3.

9
3.

9
3.

9
3.

9
3.

9
3.

9

50
D

P
R

u
n

1
2

3
4

5
10

0
D

P
R

u
n

1
2

3
4

5
15

0
D

P
R

u
n

1
2

3
4

5

3.
2

3.
5

3.
2

3.
5

3.
2

3.
8

3.
8

4.
1

3.
8

4.
1

4.
2

4.
2

4.
2

4.
2

4.
2

3.
6

3.
6

3.
6

3.
6

3.
6

3.
7

3.
7

3.
7

3.
7

3.
7

3.
8

3.
8

3.
8

3.
8

3.
8

4.
2

4.
2

4.
2

4.
2

4.
2

4.
8

4.
8

5
5

5.
1

5.
1

5.
1

5.
1

5.
1

5.
1

10
0

D
P

R
u

n
1

2
3

4
5

20
0

D
P

R
u

n
1

2
3

4
5

30
0

D
P

R
u

n
1

2
3

4
5

3.
6

3.
8

3.
8

4.
1

3.
8

4.
3

4.
3

4.
3

4.
3

4.
3

4.
5

4.
5

4.
5

4.
5

4.
5

3.
7

3.
7

3.
7

3.
7

3.
7

3.
9

3.
9

3.
9

3.
9

3.
9

4.
1

4.
1

4.
1

4.
1

4.
1

5.
1

4.
8

4.
8

4.
8

5
5.

2
5.

2
5.

2
5.

2
5.

2
5.

4
5.

4
5.

4
5.

4
5.

4

cl
e

an
_f

ac
to

ry
cl

e
an

_f
ac

to
ry

cl
e

an
_f

ac
to

ry

cl
e

an
_o

b
se

rv
e

r
cl

e
an

_o
b

se
rv

e
r

cl
e

an
_o

b
se

rv
e

r

cl
e

an
_d

e
co

ra
to

r
cl

e
an

_d
e

co
ra

to
r

cl
e

an
_d

e
co

ra
to

r

cl
e

an
_f

ac
to

ry
cl

e
an

_f
ac

to
ry

cl
e

an
_f

ac
to

ry

cl
e

an
_o

b
se

rv
e

r
cl

e
an

_o
b

se
rv

e
r

cl
e

an
_o

b
se

rv
e

r

cl
e

an
_d

e
co

ra
to

r
cl

e
an

_d
e

co
ra

to
r

cl
e

an
_d

e
co

ra
to

r

cl
e

an
_f

ac
to

ry
cl

e
an

_f
ac

to
ry

cl
e

an
_f

ac
to

ry

cl
e

an
_o

b
se

rv
e

r
cl

e
an

_o
b

se
rv

e
r

cl
e

an
_o

b
se

rv
e

r

V
e

rs
io

n
 1

V
e

rs
io

n
 2

V
e

rs
io

n
 3

cl
e

an
_d

e
co

ra
to

r
cl

e
an

_d
e

co
ra

to
r

cl
e

an
_d

e
co

ra
to

r

PE
EG

 T
ec

hn
ic

al
 D

eb
t S

co
re

s

98

In
je

ct
e

d
In

je
ct

e
d

In
je

ct
e

d

10
D

P
R

u
n

1
2

3
4

5
20

D
P

R
u

n
1

2
3

4
5

30
D

P
R

u
n

1
2

3
4

5

3.
1

3.
1

3.
1

3.
1

3.
1

3.
2

3.
2

3.
2

3.
2

3.
2

3.
2

3.
2

3.
2

3.
2

3.
2

3.
6

3.
5

3.
5

3.
5

3.
6

3.
6

3.
5

3.
5

3.
5

3.
5

3.
6

3.
6

3.
6

3.
6

3.
6

3.
9

3.
9

3.
9

3.
9

3.
9

3.
9

3.
9

3.
9

3.
9

3.
9

3.
9

3.
9

3.
9

3.
9

4.
2

50
D

P
R

u
n

1
2

3
4

5
10

0
D

P
R

u
n

1
2

3
4

5
15

0
D

P
R

u
n

1
2

3
4

5

3.
5

3.
2

3.
2

3.
5

3.
2

3.
8

4.
1

4.
1

3.
8

3.
8

4.
2

4.
2

4.
2

4.
2

4.
2

3.
6

3.
6

3.
6

3.
6

3.
6

3.
7

3.
7

3.
7

3.
7

3.
7

3.
8

3.
8

3.
8

3.
8

3.
8

4.
2

4.
2

4.
2

4
4.

5
5.

1
5.

1
5.

1
4.

8
5.

1
5.

1
5.

1
5.

1
5.

1
5.

2

10
0

D
P

R
u

n
1

2
3

4
5

20
0

D
P

R
u

n
1

2
3

4
5

30
0

D
P

R
u

n
1

2
3

4
5

4.
1

4.
1

4.
1

4.
1

4.
1

4.
3

4.
3

4.
3

4.
3

4.
3

4.
5

4.
5

4.
5

4.
5

4.
5

3.
7

3.
7

3.
7

3.
7

3.
7

3.
9

3.
9

3.
9

3.
9

3.
9

4.
1

4.
1

4.
1

4.
1

4.
1

5.
1

4.
8

5
5.

1
4.

8
5.

2
5.

3
5.

2
5.

2
5.

2
5.

4
5.

4
5.

4
5.

4
5.

4

cl
e

an
_f

ac
to

ry
cl

e
an

_f
ac

to
ry

cl
e

an
_f

ac
to

ry

cl
e

an
_o

b
se

rv
e

r
cl

e
an

_o
b

se
rv

e
r

cl
e

an
_o

b
se

rv
e

r

cl
e

an
_d

e
co

ra
to

r
cl

e
an

_d
e

co
ra

to
r

cl
e

an
_d

e
co

ra
to

r

cl
e

an
_f

ac
to

ry
cl

e
an

_f
ac

to
ry

cl
e

an
_f

ac
to

ry

cl
e

an
_o

b
se

rv
e

r
cl

e
an

_o
b

se
rv

e
r

cl
e

an
_o

b
se

rv
e

r

cl
e

an
_d

e
co

ra
to

r
cl

e
an

_d
e

co
ra

to
r

cl
e

an
_d

e
co

ra
to

r

cl
e

an
_f

ac
to

ry
cl

e
an

_f
ac

to
ry

cl
e

an
_f

ac
to

ry

cl
e

an
_o

b
se

rv
e

r
cl

e
an

_o
b

se
rv

e
r

cl
e

an
_o

b
se

rv
e

r

V
e

rs
io

n
 1

V
e

rs
io

n
 2

V
e

rs
io

n
 3

cl
e

an
_d

e
co

ra
to

r
cl

e
an

_d
e

co
ra

to
r

cl
e

an
_d

e
co

ra
to

r

PI
G

 T
ec

hn
ic

al
 D

eb
t S

co
re

s

99

10
D

P
R

u
n

1
2

3
4

5
20

D
P

R
u

n
1

2
3

4
5

30
D

P
R

u
n

1
2

3
4

5

3.
3

3.
3

3.
4

3.
3

3.
3

3.
6

3.
6

3.
6

3.
6

3.
6

3.
8

3.
8

3.
8

3.
8

3.
8

3.
8

3.
8

3.
7

3.
7

3.
8

4
3.

9
3.

9
3.

9
4

4.
2

4.
2

4.
2

4.
2

4.
2

4.
1

4.
1

4.
1

4.
1

4.
1

4.
5

4.
5

4.
5

4.
3

4.
4

4.
8

4.
7

5.
1

4.
8

4.
5

50
D

P
R

u
n

1
2

3
4

5
10

0
D

P
R

u
n

1
2

3
4

5
15

0
D

P
R

u
n

1
2

3
4

5

4.
3

4.
3

4.
5

4.
3

4.
3

5.
7

5.
9

6.
2

5.
7

5.
9

7.
3

7.
3

7.
3

7.
3

7.
3

4.
6

4.
6

4.
6

4.
6

4.
6

5.
8

5.
8

5.
8

5.
8

5.
8

6.
9

6.
9

6.
9

6.
9

6.
9

5.
4

5.
3

5.
5

5.
5

5.
7

7.
7

7.
7

7.
6

7.
6

7.
6

9.
2

9.
1

8.
8

9
9

10
0

D
P

R
u

n
1

2
3

4
5

20
0

D
P

R
u

n
1

2
3

4
5

30
0

D
P

R
u

n
1

2
3

4
5

6.
5

6.
2

5.
9

5.
7

6.
2

8.
4

8.
4

8.
4

8.
4

8.
4

10
.7

10
.7

10
.7

10
.7

10
.7

5.
8

5.
8

5.
8

5.
8

5.
8

8.
1

8.
1

8.
1

8.
1

8.
1

10
.4

10
.4

10
.4

10
.4

10
.4

7.
6

7.
8

7.
7

7.
7

7.
6

10
.4

10
.6

10
.4

10
.7

10
.5

13
.2

13
.5

13
.3

13
.4

13
.4

cl
e

an
_f

ac
to

ry
cl

e
an

_f
ac

to
ry

cl
e

an
_f

ac
to

ry

cl
e

an
_o

b
se

rv
e

r
cl

e
an

_o
b

se
rv

e
r

cl
e

an
_o

b
se

rv
e

r

cl
e

an
_d

e
co

ra
to

r
cl

e
an

_d
e

co
ra

to
r

cl
e

an
_d

e
co

ra
to

r

cl
e

an
_f

ac
to

ry
cl

e
an

_f
ac

to
ry

cl
e

an
_f

ac
to

ry

cl
e

an
_o

b
se

rv
e

r
cl

e
an

_o
b

se
rv

e
r

cl
e

an
_o

b
se

rv
e

r

cl
e

an
_d

e
co

ra
to

r
cl

e
an

_d
e

co
ra

to
r

cl
e

an
_d

e
co

ra
to

r

cl
e

an
_f

ac
to

ry
cl

e
an

_f
ac

to
ry

cl
e

an
_f

ac
to

ry

cl
e

an
_o

b
se

rv
e

r
cl

e
an

_o
b

se
rv

e
r

cl
e

an
_o

b
se

rv
e

r

V
e

rs
io

n
 1

V
e

rs
io

n
 2

V
e

rs
io

n
 3

cl
e

an
_d

e
co

ra
to

r
cl

e
an

_d
e

co
ra

to
r

cl
e

an
_d

e
co

ra
to

r

In
je

ct
e

d
In

je
ct

e
d

In
je

ct
e

d

TE
A

G
 T

ec
hn

ic
al

 D
eb

t S
co

re
s

100

10
D

P
R

u
n

1
2

3
4

5
20

D
P

R
u

n
1

2
3

4
5

30
D

P
R

u
n

1
2

3
4

5

3.
4

3.
4

3.
3

3.
4

3.
3

3.
6

3.
6

3.
6

3.
6

3.
6

3.
8

3.
8

3.
8

3.
8

3.
8

3.
7

3.
8

3.
8

3.
7

3.
8

3.
9

3.
9

3.
9

3.
9

4
4.

2
4.

2
4.

2
4.

2
4.

2

4.
3

4.
2

4.
1

4.
1

4.
1

4.
6

4.
6

4.
5

4.
5

4.
4

4.
9

4.
8

4.
8

4.
8

4.
6

50
D

P
R

u
n

1
2

3
4

5
10

0
D

P
R

u
n

1
2

3
4

5
15

0
D

P
R

u
n

1
2

3
4

5

4.
5

4.
3

4.
3

4.
5

4.
3

5.
7

6.
2

5.
9

6.
2

6.
2

7.
3

7.
3

7.
3

7.
3

4.
3

4.
6

4.
6

4.
6

4.
6

4.
6

5.
8

5.
8

5.
8

5.
8

5.
8

6.
9

6.
9

6.
9

6.
9

6.
9

5.
5

5.
6

5.
5

5.
8

5.
8

8
7.

8
7.

8
7.

6
7.

8
9.

7
9.

1
9.

2
9.

3
9.

1

10
0

D
P

R
u

n
1

2
3

4
5

20
0

D
P

R
u

n
1

2
3

4
5

30
0

D
P

R
u

n
1

2
3

4
5

5.
9

5.
9

6.
2

5.
9

6.
2

8.
4

8.
4

8.
4

8.
4

8.
4

10
.7

10
.7

10
.7

10
.7

10
.7

5.
8

5.
8

5.
8

5.
8

5.
8

8.
1

8.
1

8.
1

8.
1

8.
1

10
.4

10
.4

10
.4

10
.4

10
.4

7.
4

7.
6

7.
9

7.
6

7.
9

10
.5

10
.6

10
.6

10
.6

10
.5

13
.3

13
.3

13
.6

13
.5

13
.4

cl
e

an
_f

ac
to

ry
cl

e
an

_f
ac

to
ry

cl
e

an
_f

ac
to

ry

cl
e

an
_o

b
se

rv
e

r
cl

e
an

_o
b

se
rv

e
r

cl
e

an
_o

b
se

rv
e

r

cl
e

an
_d

e
co

ra
to

r
cl

e
an

_d
e

co
ra

to
r

cl
e

an
_d

e
co

ra
to

r

cl
e

an
_f

ac
to

ry
cl

e
an

_f
ac

to
ry

cl
e

an
_f

ac
to

ry

cl
e

an
_o

b
se

rv
e

r
cl

e
an

_o
b

se
rv

e
r

cl
e

an
_o

b
se

rv
e

r

cl
e

an
_d

e
co

ra
to

r
cl

e
an

_d
e

co
ra

to
r

cl
e

an
_d

e
co

ra
to

r

cl
e

an
_f

ac
to

ry
cl

e
an

_f
ac

to
ry

cl
e

an
_f

ac
to

ry

cl
e

an
_o

b
se

rv
e

r
cl

e
an

_o
b

se
rv

e
r

cl
e

an
_o

b
se

rv
e

r

V
e

rs
io

n
 1

V
e

rs
io

n
 2

V
e

rs
io

n
 3

cl
e

an
_d

e
co

ra
to

r
cl

e
an

_d
e

co
ra

to
r

cl
e

an
_d

e
co

ra
to

r

In
je

ct
e

d
In

je
ct

e
d

In
je

ct
e

d

TE
EG

 T
ec

hn
ic

al
 D

eb
t S

co
re

s

101

10
D

P
R

u
n

1
2

3
4

5
20

D
P

R
u

n
1

2
3

4
5

30
D

P
R

u
n

1
2

3
4

5

3.
3

3.
3

3.
4

3.
3

3.
4

3.
6

3.
6

3.
6

3.
6

3.
6

3.
8

3.
8

3.
9

3.
8

3.
8

3.
7

3.
8

3.
8

3.
8

3.
8

3.
9

4
4

3.
9

4
4.

2
4.

2
4.

2
4.

2
4.

2

4.
1

4.
1

4.
3

4.
2

4.
1

4.
5

4.
4

4.
6

4.
5

4.
5

4.
7

4.
8

4.
9

4.
7

4.
8

50
D

P
R

u
n

1
2

3
4

5
10

0
D

P
R

u
n

1
2

3
4

5
15

0
D

P
R

u
n

1
2

3
4

5

4.
3

4.
3

4.
3

4.
3

4.
3

5.
9

5.
9

5.
9

5.
9

5.
7

7.
3

7.
1

7.
3

7.
3

7.
3

4.
6

4.
6

4.
6

4.
6

4.
6

5.
8

5.
8

5.
8

5.
8

5.
8

6.
9

6.
9

6.
9

6.
9

6.
9

5.
5

5.
6

5.
9

5.
4

5.
4

7.
6

7.
8

7.
5

7.
8

7.
8

9.
1

9.
4

9.
2

9.
3

9.
3

10
0

D
P

R
u

n
1

2
3

4
5

20
0

D
P

R
u

n
1

2
3

4
5

30
0

D
P

R
u

n
1

2
3

4
5

5.
7

6.
2

6.
2

5.
9

6.
2

8.
4

8.
4

8.
4

8.
4

8.
4

10
.7

10
.7

10
.7

10
.7

10
.7

5.
8

5.
8

5.
8

5.
8

5.
8

8.
1

8.
1

8.
1

8.
1

8.
1

10
.4

10
.4

10
.4

10
.4

10
.4

7.
7

7.
9

7.
7

7.
8

8
10

.4
10

.8
10

.6
10

.8
11

13
.3

13
.7

13
.3

13
.7

13
.7

cl
e

an
_f

ac
to

ry
cl

e
an

_f
ac

to
ry

cl
e

an
_f

ac
to

ry

cl
e

an
_o

b
se

rv
e

r
cl

e
an

_o
b

se
rv

e
r

cl
e

an
_o

b
se

rv
e

r

cl
e

an
_d

e
co

ra
to

r
cl

e
an

_d
e

co
ra

to
r

cl
e

an
_d

e
co

ra
to

r

cl
e

an
_f

ac
to

ry
cl

e
an

_f
ac

to
ry

cl
e

an
_f

ac
to

ry

cl
e

an
_o

b
se

rv
e

r
cl

e
an

_o
b

se
rv

e
r

cl
e

an
_o

b
se

rv
e

r

cl
e

an
_d

e
co

ra
to

r
cl

e
an

_d
e

co
ra

to
r

cl
e

an
_d

e
co

ra
to

r

cl
e

an
_f

ac
to

ry
cl

e
an

_f
ac

to
ry

cl
e

an
_f

ac
to

ry

cl
e

an
_o

b
se

rv
e

r
cl

e
an

_o
b

se
rv

e
r

cl
e

an
_o

b
se

rv
e

r

V
e

rs
io

n
 1

V
e

rs
io

n
 2

V
e

rs
io

n
 3

cl
e

an
_d

e
co

ra
to

r
cl

e
an

_d
e

co
ra

to
r

cl
e

an
_d

e
co

ra
to

r

In
je

ct
e

d
In

je
ct

e
d

In
je

ct
e

d

TI
G

 T
ec

hn
ic

al
 D

eb
t S

co
re

s

102

APPENDIX C

SAS RESULTS

103

10 instances of Modular Grime

The GLM Procedure

Class Level Information

Class Levels Values

GrimeType 6 PEAG PEEG PIG TEAG TEEG TIG

DPattern 3 Deco Fact Obse

Number of Observations Read 90

Number of Observations Used 90

104

10 instances of Modular Grime

Source DF

Sum of

Squares Mean Square F Value Pr > F

Model 7 10.54777778 1.50682540 583.44 <.0001

Error 82 0.21177778 0.00258266

Corrected Total 89 10.75955556

R-Square Coeff Var Root MSE TehnicalDebt Mean

0.980317 1.395298 0.050820 3.642222

Source DF Type III SS Mean Square F Value Pr > F

GrimeType 5 1.09288889 0.21857778 84.63 <.0001

DPattern 2 9.45488889 4.72744444 1830.46 <.0001

Parameter Estimate

Standard

Error t Value Pr > |t|

Intercept 4.15444 B 0.01515155 274.19 <.0001

GrimeType PEAG -0.21333 B 0.01855678 -11.50 <.0001

GrimeType PEEG -0.23333 B 0.01855678 -12.57 <.0001

GrimeType PIG -0.25333 B 0.01855678 -13.65 <.0001

GrimeType TEAG -0.04000 B 0.01855678 -2.16 0.0341

GrimeType TEEG -0.00666 B 0.01855678 -0.36 0.7203

GrimeType TIG 0.00000 B . . .

DPattern Deco -0.79333 B 0.01312163 -60.46 <.0001

DPattern Fact -0.37000 B 0.01312163 -28.20 <.0001

DPattern Obse 0.00000 B . . .

Note: The X'X matrix has been found to be singular, and a generalized inverse was used to

solve the normal equations. Terms whose estimates are followed by the letter 'B' are

not uniquely estimable.

The GLM Procedure

Dependent Variable: TehnicalDebt

105

106

107

10 instances of Modular Grime

The GLM Procedure

108

10 instances of Modular Grime

The GLM Procedure

Tukey's Studentized Range (HSD) Test for TehnicalDebt

Note: This test controls the Type I experimentwise error rate.

Alpha 0.05

Error Degrees of Freedom 82

Error Mean Square 0.002583

Critical Value of Studentized Range 4.12696

Minimum Significant Difference 0.0542

Comparisons significant at the 0.05 level are

indicated by ***.

GrimeType

Comparison

Difference

Between

Means

Simultaneous

95% Confidence

Limits

TIG - TEEG 0.00667 -0.04749 0.06082

TIG - TEAG 0.04000 -0.01415 0.09415

TIG - PEAG 0.21333 0.15918 0.26749 ***

TIG - PEEG 0.23333 0.17918 0.28749 ***

TIG - PIG 0.25333 0.19918 0.30749 ***

TEEG - TIG -0.00667 -0.06082 0.04749

TEEG - TEAG 0.03333 -0.02082 0.08749

TEEG - PEAG 0.20667 0.15251 0.26082 ***

TEEG - PEEG 0.22667 0.17251 0.28082 ***

TEEG - PIG 0.24667 0.19251 0.30082 ***

TEAG - TIG -0.04000 -0.09415 0.01415

TEAG - TEEG -0.03333 -0.08749 0.02082

TEAG - PEAG 0.17333 0.11918 0.22749 ***

TEAG - PEEG 0.19333 0.13918 0.24749 ***

TEAG - PIG 0.21333 0.15918 0.26749 ***

PEAG - TIG -0.21333 -0.26749 -0.15918 ***

109

Comparisons significant at the 0.05 level are

indicated by ***.

GrimeType

Comparison

Difference

Between

Means

Simultaneous

95% Confidence

Limits

PEAG - TEEG -0.20667 -0.26082 -0.15251 ***

PEAG - TEAG -0.17333 -0.22749 -0.11918 ***

PEAG - PEEG 0.02000 -0.03415 0.07415

PEAG - PIG 0.04000 -0.01415 0.09415

PEEG - TIG -0.23333 -0.28749 -0.17918 ***

PEEG - TEEG -0.22667 -0.28082 -0.17251 ***

PEEG - TEAG -0.19333 -0.24749 -0.13918 ***

PEEG - PEAG -0.02000 -0.07415 0.03415

PEEG - PIG 0.02000 -0.03415 0.07415

PIG - TIG -0.25333 -0.30749 -0.19918 ***

PIG - TEEG -0.24667 -0.30082 -0.19251 ***

PIG - TEAG -0.21333 -0.26749 -0.15918 ***

PIG - PEAG -0.04000 -0.09415 0.01415

PIG - PEEG -0.02000 -0.07415 0.03415

110

10 instances of Modular Grime

The GLM Procedure

Tukey's Studentized Range (HSD) Test for TehnicalDebt

Note: This test controls the Type I experimentwise error rate, but it generally has

a higher Type II error rate than REGWQ.

Alpha 0.05

Error Degrees of Freedom 82

Error Mean Square 0.002583

Critical Value of Studentized Range 4.12696

Minimum Significant Difference 0.0542

Means with the same letter are not

significantly different.

Tukey Grouping Mean N GrimeType

A 3.76667 15 TIG

A

A 3.76000 15 TEEG

A

A 3.72667 15 TEAG

B 3.55333 15 PEAG

B

B 3.53333 15 PEEG

B

B 3.51333 15 PIG

111

50 instances of Modular Grime

The GLM Procedure

Class Level Information

Class Levels Values

GrimeType 6 PEAG PEEG PIG TEAG TEEG TIG

DPattern 3 Deco Fact Obse

Number of Observations Read 90

Number of Observations Used 90

112

50 instances of Modular Grime
The GLM Procedure

Dependent Variable: TehnicalDebt

Source DF

Sum of

Squares Mean Square F Value Pr > F

Model 7 46.14333333 6.59190476 329.46 <.0001

Error 82 1.64066667 0.02000813

Corrected Total 89 47.78400000

R-Square Coeff Var Root MSE TehnicalDebt Mean

0.965665 3.304909 0.141450 4.280000

Source DF Type III SS Mean Square F Value Pr > F

GrimeType 5 27.61866667 5.52373333 276.07 <.0001

DPattern 2 18.52466667 9.26233333 462.93 <.0001

Parameter Estimate

Standard

Error t Value Pr > |t|

Intercept 5.44333 B 0.04217227 129.07 <.0001

GrimeType PEAG -1.06000 B 0.05165027 -20.52 <.0001

GrimeType PEEG -1.11333 B 0.05165027 -21.56 <.0001

GrimeType PIG -1.10666 B 0.05165027 -21.43 <.0001

GrimeType TEAG -0.01333 B 0.05165027 -0.26 0.7969

GrimeType TEEG 0.05333 B 0.05165027 1.03 0.3048

GrimeType TIG 0.00000 B . . .

DPattern Deco -1.06666 B 0.03652226 -29.21 <.0001

DPattern Fact -0.80333 B 0.03652226 -22.00 <.0001

DPattern Obse 0.00000 B . . .

Note: The X'X matrix has been found to be singular, and a

generalized inverse was used to solve the normal equations.

Terms whose estimates are followed by the letter 'B' are not

uniquely estimable.

113

114

115

50 instances of Modular Grime

The GLM Procedure

116

50 instances of Modular Grime

The GLM Procedure

Tukey's Studentized Range (HSD) Test for TehnicalDebt

Note: This test controls the Type I experimentwise error rate.

Alpha 0.05

Error Degrees of Freedom 82

Error Mean Square 0.020008

Critical Value of Studentized Range 4.12696

Minimum Significant Difference 0.1507

Comparisons significant at the 0.05 level are

indicated by ***.

GrimeType

Comparison

Difference

Between

Means

Simultaneous

95% Confidence

Limits

TEEG - TIG 0.05333 -0.09739 0.20406

TEEG - TEAG 0.06667 -0.08406 0.21739

TEEG - PEAG 1.11333 0.96261 1.26406 ***

TEEG - PIG 1.16000 1.00927 1.31073 ***

TEEG - PEEG 1.16667 1.01594 1.31739 ***

TIG - TEEG -0.05333 -0.20406 0.09739

TIG - TEAG 0.01333 -0.13739 0.16406

TIG - PEAG 1.06000 0.90927 1.21073 ***

TIG - PIG 1.10667 0.95594 1.25739 ***

TIG - PEEG 1.11333 0.96261 1.26406 ***

TEAG - TEEG -0.06667 -0.21739 0.08406

TEAG - TIG -0.01333 -0.16406 0.13739

TEAG - PEAG 1.04667 0.89594 1.19739 ***

TEAG - PIG 1.09333 0.94261 1.24406 ***

TEAG - PEEG 1.10000 0.94927 1.25073 ***

PEAG - TEEG -1.11333 -1.26406 -0.96261 ***

117

Comparisons significant at the 0.05 level are

indicated by ***.

GrimeType

Comparison

Difference

Between

Means

Simultaneous

95% Confidence

Limits

PEAG - TIG -1.06000 -1.21073 -0.90927 ***

PEAG - TEAG -1.04667 -1.19739 -0.89594 ***

PEAG - PIG 0.04667 -0.10406 0.19739

PEAG - PEEG 0.05333 -0.09739 0.20406

PIG - TEEG -1.16000 -1.31073 -1.00927 ***

PIG - TIG -1.10667 -1.25739 -0.95594 ***

PIG - TEAG -1.09333 -1.24406 -0.94261 ***

PIG - PEAG -0.04667 -0.19739 0.10406

PIG - PEEG 0.00667 -0.14406 0.15739

PEEG - TEEG -1.16667 -1.31739 -1.01594 ***

PEEG - TIG -1.11333 -1.26406 -0.96261 ***

PEEG - TEAG -1.10000 -1.25073 -0.94927 ***

PEEG - PEAG -0.05333 -0.20406 0.09739

PEEG - PIG -0.00667 -0.15739 0.14406

118

50 instances of Modular Grime

The GLM Procedure

Tukey's Studentized Range (HSD) Test for TehnicalDebt

Note: This test controls the Type I experimentwise error rate, but it generally has
a higher Type II error rate than REGWQ.

Alpha 0.05

Error Degrees of Freedom 82

Error Mean Square 0.020008

Critical Value of Studentized Range 4.12696

Minimum Significant Difference 0.1507

Means with the same letter are not

significantly different.

Tukey Grouping Mean N GrimeType

A 4.87333 15 TEEG

A

A 4.82000 15 TIG

A

A 4.80667 15 TEAG

B 3.76000 15 PEAG

B

B 3.71333 15 PIG

B

B 3.70667 15 PEEG

119

100 instances of Modular Grime

The GLM Procedure

Class Level Information

Class Levels Values

GrimeType 6 PEAG PEEG PIG TEAG TEEG TIG

DPattern 3 Deco Fact Obse

Number of Observations Read 90

Number of Observations Used 90

120

100 instances of Modular Grime
The GLM Procedure

Dependent Variable: TehnicalDebt

Source DF

Sum of

Squares Mean Square F Value Pr > F

Model 7 165.7464444 23.6780635 503.03 <.0001

Error 82 3.8597778 0.0470705

Corrected Total 89 169.6062222

R-Square Coeff Var Root MSE TehnicalDebt Mean

0.977243 4.044357 0.216957 5.364444

Source DF Type III SS Mean Square F Value Pr > F

GrimeType 5 121.6888889 24.3377778 517.05 <.0001

DPattern 2 44.0575556 22.0287778 468.00 <.0001

Parameter Estimate

Standard

Error t Value Pr > |t|

Intercept 7.532222222 B 0.06468416 116.45 <.0001

GrimeType PEAG -2.340000000 B 0.07922160 -29.54 <.0001

GrimeType PEEG -2.413333333 B 0.07922160 -30.46 <.0001

GrimeType PIG -2.300000000 B 0.07922160 -29.03 <.0001

GrimeType TEAG -0.026666667 B 0.07922160 -0.34 0.7373

GrimeType TEEG -0.053333333 B 0.07922160 -0.67 0.5027

GrimeType TIG 0.000000000 B . . .

DPattern Deco -1.343333333 B 0.05601813 -23.98 <.0001

DPattern Fact -1.593333333 B 0.05601813 -28.44 <.0001

DPattern Obse 0.000000000 B . . .

Note: The X'X matrix has been found to be singular, and a generalized inverse was

used to solve the normal equations. Terms whose estimates are followed by the

letter 'B' are not uniquely estimable.

121

122

123

100 instances of Modular Grime

The GLM Procedure

124

100 instances of Modular Grime

The GLM Procedure

Tukey's Studentized Range (HSD) Test for TehnicalDebt

Note: This test controls the Type I experimentwise error rate.

Alpha 0.05

Error Degrees of Freedom 82

Error Mean Square 0.04707

Critical Value of Studentized Range 4.12696

Minimum Significant Difference 0.2312

Comparisons significant at the 0.05 level are

indicated by ***.

GrimeType

Comparison

Difference

Between

Means

Simultaneous

95% Confidence

Limits

TIG - TEAG 0.02667 -0.20452 0.25785

TIG - TEEG 0.05333 -0.17785 0.28452

TIG - PIG 2.30000 2.06882 2.53118 ***

TIG - PEAG 2.34000 2.10882 2.57118 ***

TIG - PEEG 2.41333 2.18215 2.64452 ***

TEAG - TIG -0.02667 -0.25785 0.20452

TEAG - TEEG 0.02667 -0.20452 0.25785

TEAG - PIG 2.27333 2.04215 2.50452 ***

TEAG - PEAG 2.31333 2.08215 2.54452 ***

TEAG - PEEG 2.38667 2.15548 2.61785 ***

TEEG - TIG -0.05333 -0.28452 0.17785

TEEG - TEAG -0.02667 -0.25785 0.20452

TEEG - PIG 2.24667 2.01548 2.47785 ***

TEEG - PEAG 2.28667 2.05548 2.51785 ***

TEEG - PEEG 2.36000 2.12882 2.59118 ***

PIG - TIG -2.30000 -2.53118 -2.06882 ***

PIG - TEAG -2.27333 -2.50452 -2.04215 ***

125

Comparisons significant at the 0.05 level are

indicated by ***.

GrimeType

Comparison

Difference

Between

Means

Simultaneous

95% Confidence

Limits

PIG - TEEG -2.24667 -2.47785 -2.01548 ***

PIG - PEAG 0.04000 -0.19118 0.27118

PIG - PEEG 0.11333 -0.11785 0.34452

PEAG - TIG -2.34000 -2.57118 -2.10882 ***

PEAG - TEAG -2.31333 -2.54452 -2.08215 ***

PEAG - TEEG -2.28667 -2.51785 -2.05548 ***

PEAG - PIG -0.04000 -0.27118 0.19118

PEAG - PEEG 0.07333 -0.15785 0.30452

PEEG - TIG -2.41333 -2.64452 -2.18215 ***

PEEG - TEAG -2.38667 -2.61785 -2.15548 ***

PEEG - TEEG -2.36000 -2.59118 -2.12882 ***

PEEG - PIG -0.11333 -0.34452 0.11785

PEEG - PEAG -0.07333 -0.30452 0.15785

126

100 instances of Modular Grime

The GLM Procedure

Tukey's Studentized Range (HSD) Test for TehnicalDebt

Note: This test controls the Type I experimentwise error rate, but it generally has a higher

Type II error rate than REGWQ.

Alpha 0.05

Error Degrees of Freedom 82

Error Mean Square 0.04707

Critical Value of Studentized Range 4.12696

Minimum Significant Difference 0.2312

Means with the same letter are not

significantly different.

Tukey Grouping Mean N GrimeType

A 6.55333 15 TIG

A

A 6.52667 15 TEAG

A

A 6.50000 15 TEEG

B 4.25333 15 PIG

B

B 4.21333 15 PEAG

B

B 4.14000 15 PEEG

