

TECHNICAL DEBT MANAGEMENT IN RELEASE PLANNING –

A DECISION SUPPORT FRAMEWORK

by

Isaac Daniel Griffith

A thesis submitted in partial fulfillment
of the requirements for the degree

of

Master of Science

in

Computer Science

MONTANA STATE UNIVERSITY
Bozeman, Montana

August 2014

©COPYRIGHT

by

Isaac Daniel Griffith

2014

All Rights Reserved

ii

DEDICATION

This thesis is dedicated to my father, Gordon Charles Griffith. He is the person
who initially sparked my interest in Logic, Computer Science, and (unwittingly) Software
Engineering. It was through his guidance that I wrote my first programs. It was also my
father who made me want to dedicate my life to understanding and making software
engineering practice better and easier for others.

iii

ACKNOWLEDGEMENTS

 When I began this work 3 years ago I was more interested in understanding the

world through the eyes of philosophy instead of the eyes of science. At the time, I was

eager to develop tools rather than conduct research and had a hard time understanding

what science meant in the context of software engineering. I would like to thank my

advisor Clemente Izurieta whose wisdom and guidance have enlightened me to a better

understanding of research and science. It was through his subtle suggestions and high

expectations that I was able to complete this thesis. He provided a continual reminder that

one must strive to find a balance in life which allows one to center themselves within a

world of ever more intriguing question and problems.

 I am also grateful for the members of the Software Engineering Laboratory as

well as other fellow graduate students who have, perhaps unbeknownst to them, pushed

me to exceed my own boundaries of knowledge and understanding.

 Finally, I am most grateful to my parents Gordon and Connie Griffith, who have

always supported me and my goals. I would like to thank the most caring and wonderful

woman in the world, Lora Whitmore, who has supported me in both my daily life and

academic pursuits. Finally, I would like to thank my daughter, Dakotah Clausen, who

unbeknownst to her, who has provided an incredible drive to complete my work and

better myself every day.

iv

TABLE OF CONTENTS

1. INTRODUCTION .. 1

Motivation .. 1
Summary of the Approach ... 2
Summary of Contributions ... 2
Organization ... 3

2. RELATED WORK ... 4

Introduction .. 4
Technical Debt ... 4

Technical Debt – Metaphor, Definition, and Properties ... 5
Technical Debt Management .. 7
Impact and Consequences of Technical Debt ... 10
Technical Debt Measurement ... 11

Release Planning .. 13
Strategic Release Planning .. 13
Operational Release Planning ... 15
Release Re-Planning ... 18

Game Theory .. 21
Game Theory and Software Engineering .. 21
Coalition Formation Games .. 21

Hedonic Games ... 22
Weighted Voting Games ... 22

Software Process Simulation Modeling ... 22
Contributions .. 24

3. DECISION SUPPORT FRAMEWORK .. 27

Introduction .. 27
Problem Definitions ... 27

Technical Debt Management .. 27
Technical Debt Management – Remediation (TDM-R) 27
Technical Debt Management – Debt Acquisition(TDM-DA) 28

Strategic Release Planning (SRP) ... 28
Operational Release Planning (ORP) .. 29
Release Re-Planning (RRP) .. 29
Combining Technical Debt Management and Release Planning 29

Decision Support Framework ... 33

4. UNIFIED META-MODEL ... 37

Introduction .. 37
Unified Meta-Model ... 37

v

TABLE OF CONTENTS - CONTINUED

The System.. 37
Teams .. 38
Evolution Sequence and Technical Debt List ... 39
Work Items.. 40

Evolution Items ... 43
Technical Debt Items .. 43
Technical Debt Decision Variables .. 44

Tasks ... 44
Repository ... 47

Modules... 47
Namespaces ... 47
Program Entities .. 47

Product Owners, Stakeholders, and Priorities... 48
Software Engineers ... 49
Releases, Sprints, and Iterations ... 51
Constraints .. 52
Estimates, Values, and Probabilities ... 52
Release Plans .. 54

Conclusion .. 55

5. COALITION FORMATION GAMES APPROACH ... 56

Introduction .. 56
Approach .. 58

Model .. 58
Work Items.. 58
Developers .. 60
Teams .. 61
Systems ... 62

Simulation Process .. 62
Hedonic Game .. 63
Weighted Voting Game .. 65

Methods .. 66
Random System Generation ... 66
Experiment 1 ... 67
Experiment 2 ... 67

Results and Analysis .. 69
Experiment 1 ... 70
Experiment 2 ... 70

Research Question 2.1 (RQ2.1) .. 71
Research Question 2.2 (RQ2.2) .. 71
Research Question 2.3 (RQ2.3) .. 71

Analytical Summary ... 72

vi

TABLE OF CONTENTS - CONTINUED

Threats to Validity .. 73
Construct Validity ... 73
Content Validity .. 74
External Validity ... 75
Internal Validity .. 75
Conclusion Validity .. 75

Conclusions and Future Work .. 76

6. INITIAL SIMULATION STUDY .. 78

Contribution of Authors and Co-Authors ... 78
Manuscript Information Page ... 79
Introduction .. 80
Conceptual Model .. 81

The Simulation Process... 84
Experimental Design .. 88

Experiments .. 88
Data Generation .. 90

Results and Analysis .. 90
Conclusion .. 93

7. AN EXTENDED SIMULATION FRAMEWORK ... 95

Introduction .. 95
Simulation Model ... 95

Conceptual Model ... 95
Simulation Process .. 98

Work Item Generation and Lifecycle ... 98
Task Generation and Lifecycle ... 101
Technical Debt Generation ... 103
Software Engineer Generation and Lifecycle ... 107
Release Planning Process .. 109
Project Process .. 109
Major Release Process .. 111
Minor Release Process .. 113
Development Phases ... 114
Re-Planning Process ... 116

Simulation Parameters .. 119
Experimental Design .. 119

The Baseline Release Plan .. 119
Technical Debt Strategy Impact Analysis ... 119
Uncertainty Impact Analysis ... 121

Conclusion .. 122

vii

TABLE OF CONTENTS - CONTINUED

8. CONCLUSIONS AND FUTURE WORK ... 124

REFERENCES CITED ... 126

APPENDIX A: Normal Q-Q Plots for Coaltion Formation Game
Experiments ... 138

viii

LIST OF TABLES

Table Page

1. Mapping of constraints to the RP and TDM problems. 30

2. Experimental conditions for experiment 1. ... 67

3. Developer characteristics for experiment 2. .. 68

4. System characteristics for experiment 2. .. 68

5. Attributes associated with work items in the model. .. 82

6. Attributes associated with software engineers in the model. 83

7. Description of the backlogs used in the model. .. 83

8. Input parameters, their descriptions and default values
used during simulation. ... 86

9. Summary of the models and strategies developed for
comparative analysis. .. 89

10. Average differences for each metric from each
comparative analysis. .. 90

11. Parameters for the extended simulation framework. 118

12. Developer productivities for each task type. ... 120

13. Triangular distributions of parameters to be used for
stochastic analysis of technical debt remaining comparison
to a given baseline plan. .. 120

14. Distribution of values for uncertainty factors across
pessimism level [42]. .. 121

ix

LIST OF FIGURES

Figure Page

1. The Technical Debt Management Framework as proposed
by Seaman and Guo [17]. ... 8

2. Mapping of problems to phases of the generic iterative
software development life cycle. .. 30

3. Decision Support System architecture for software
engineering decision support in the areas of technical debt
management and release planning. .. 35

4. The combination of release planning and the TDMF [17],
(where the dashed lines indicate information
dependencies between processes). ... 36

5. Meta-model section describing the components of a system. 38

6. Meta-model section representing the components of a team. 39

7. Meta-model section representing the components of the
evolution sequence and technical debt list. .. 39

8. Meta-model section representing the work item, its
subtypes and their components. ... 40

9. Depiction of architectural dependencies. .. 42

10. Depiction of the types of dependency constraints between
tasks .. 46

11. Meta-model section describing the repository and its
components. ... 48

12. Meta-model section describing stakeholders, product
owners, software engineers and priorities .. 50

13. Meta-model section describing releases and iterations
and their components. .. 51

14. Meta-model section describing constraints. .. 52

15. Meta-model section describing estimates and their uses. 53

x

LIST OF FIGURES - CONTINUED

Figure Page

16. Meta-model section describing release plans. ... 54

17. Model depiction of a system. .. 59

18. Simulation process. ... 63

19. Example depicting both coalition formation games. 64

20. Random system generation algorithm pseudocode. .. 66

21. Plots of mean values of each metric during the
experiments. ... 69

22. Conceptual model for a discrete-event simulation of the
Scrum agile process which includes both defect and
technical debt creation. .. 81

23. Diagram of the base model for the scrum software
development process including defect and technical debt
incorporation. ... 85

24. Change in work completed, technical debt remaining and
mean cost completed across simulations. .. 91

25. Comparison of metrics across simulations. ... 91

26. Conceptual model of the discrete-event simulation
component. ... 96

27. Work item generation process activity diagram. ... 99

28. Work item lifecycle activity diagram. ... 100

29. Task lifecycle activity diagram. .. 101

30. Defect generation activity diagram. .. 103

31. Defect creation and logging activity diagram. .. 104

32. Technical debt generation from tasks process activity
diagram ... 105

xi

LIST OF FIGURES - CONTINUED

Figure Page

33. Technical debt generation activity. ... 106

34. Software engineer generation activity diagram. .. 107

35. Engineer lifecycle activity diagram. .. 108

36. Project lifecycle activity diagram. ... 111

37. Major release process activity diagram. .. 110

38. Minor release process activity diagram. .. 112

39. Move items to next minor release process activity diagram. 113

40. Move items to next major release process activity diagram. 114

41. Development phase activity diagram. ... 115

42. Re-planning process activity diagram. .. 117

43. Normal Q-Q plots for experiment 1. ... 139

44. Normal Q-Q plots for experiment 2. ... 140

xii

NOMENCLATURE

Developer – Software Engineer
ETD – Effective Technical Debt
FCFS – First Come First Serve
ORP – Operational Release Planning
PTD – Potential Technical Debt
RP – Release Planning
RRP – Release Re-Planning
SEDS – Software Engineering Decision Support
SRP – Strategic Release Planning
TDM – Technical Debt Management
TDMF – Technical Debt Management Framework

xiii

ABSTRACT

Technical debt is a financial metaphor used to describe the tradeoff between the
short term benefit of taking a shortcut during the design or implementation phase of a
software product (e.g., in order to meet a deadline) and the long term consequences of
taking said shortcut, which may affect the quality of the software product. Recently,
academics and industry practitioners have offered several models and methods which
purport to explain or manage this phenomenon. Unfortunately, to date, there has yet to be
a framework which supports managers in making decisions regarding technical debt.
Although similar solutions exist to support the release planning phase of software
development, they focus on the management of new features and do not take into account
issues relating to technical debt and its effects on the development process.

This thesis describes a software engineering decision support system focusing on
three key components: analysis and decision, intelligence, and simulation. Supporting
each of these components is a meta-model which bridges the gap between technical debt
management and software release planning. To investigate the development of the
analysis and decision and intelligence components we used a reduced form of this meta-
model in conjunction with a coalition formation games approach. This approach served to
evaluate the technical debt management and release planning issues, and was found
superior, using simulation, in comparison to a first-come, first-served method
(representative of typical agile planning processes). To investigate the development of the
simulation component we conducted a simulation study to evaluate different strategies
for technical debt management as proposed in the literature. The results of this study
provide compelling evidence for current technical debt management strategies proposed
in the literature that can be immediately applied by practitioners. Finally, we describe the
initial work on an extended simulation framework which will form the basis of a
complete simulation component for a technical debt management and release planning
decision support framework.

1

INTRODUCTION

 Most software engineers understand the concept of technical debt intuitively, even

if they are unfamiliar with the formal definition and underlying metaphor. The notion of

technical debt can be summarized as the act of making compromises in one dimension

(e.g. maintainability) in order to receive a short-term benefit in another (e.g. delivering a

release on time). For example, a developer takes a short cut, introducing a code smell [1],

in order to meet a release deadline. However, this shortcut compromises the system by

incurring a debt that must be repaid to restore the health of the system and to avoid

interest in the form of decreasing maintainability.

Motivation

As debt accumulates, it becomes vital to find a way to manage the overall debt

such that the system remains both flexible and extensible. This leads to the following

questions [23]: When should a debt be refactored? Which debts are easy to fix and

promise high gain in software quality? Which debts are hard to fix and promise low gain

in software quality? [12]

These questions require a means of decision support and planning. A form of

planning, called release planning already exists in software engineering. Unfortunately,

release planning is currently limited to the consideration of new feature development or

maintenance tasks. This thesis discusses the need for release planning models to

incorporate the notion of technical debt as an objective measure to help guide decisions

faced by software engineers when prioritizing tasks for the next release. The proposed

2

approach is demonstrated as a framework that can model different types of changes (new

features and maintenance tasks) to understand the types of decisions that can lead to

better systems (i.e., with less technical debt).

Summary of the Approach

A multilevel solution to address these questions is proposed. It utilizes a hedonic

coalition formation game [7] to distribute work items (i.e., new features, maintenance, or

refactoring) to teams and a weighted voting game approach to assign associated tasks to

software engineers during the current development cycle. We also use discrete-event

simulation to evaluate team technical debt management strategies. This approach

comprises the simulation of several teams evolving a project in the presence of technical

debt. The results of the simulations corroborate current thought [12][21][24] in the

software engineering community with regards to techniques to manage technical debt.

Finally we use a combination of the simulation approach with the coalition formation

games in an extended simulation framework as the beginnings of a decision support

framework which combines the elements of release planning and technical debt

management through a common meta-model.

Summary of Contributions

 Unification and extension of existing release planning and technical debt management

models to support practical management of technical debt during the entire software

development lifecycle.

3

 A coalition formation algorithmic approach to simultaneously handle both release

planning and technical debt management during iterative development planning.

 Development of a Discrete-Event Simulation model used to evaluate and predict the

performance of technical debt management methods.

 Empirical results, based on simulation, which confirm current thought in the

management of technical debt.

Organization

The rest of this thesis is organized as follows: Chapter 2 provides background on

the current issues surrounding the notion of technical debt and its management. Chapter 3

defines the problems at hand for a unified approach to release planning and technical debt

management. Chapter 3 also describes a decision support framework which can employ

this combined approach. Chapter 4 formally defines the unified technical debt

management and release planning meta-model underlying this approach. Chapter 5

presents a multi-level solution to the problems proposed in Chapter 3 using coalition

formation games, and explores the effect of this approach empirically. Chapter 6 presents

a simulation study concerning practical approaches to technical debt management.

Chapter 7 presents current work which extends the simulation approach of Chapter 6 with

the conceptual model of Chapter 4. Finally, Chapter 8 summarizes the approach and the

experimental results, and provides guidelines for future directions.

4

RELATED WORK

Introduction

This chapter describes the underlying work that forms the foundation for this

thesis and the research gaps, which it addresses. Specifically, there are three main areas

of contribution: Technical Debt Management (Technical Debt), Strategic Release

Planning (Release Planning), and Software Process Simulation Modeling. The current

research in each of these areas will be discussed below in addition to any background

necessary to further understand this thesis. The contributions and differences between

current research and this thesis will also be highlighted.

Technical Debt

The term Technical Debt was originally coined by Cunningham [2] as a way of

explaining the need to refactor [1] software. The concept is based in a financial metaphor.

In essence, taking a short cut in design or implementation, at the expense of a long-term

goal such as quality, in order to satisfy a short-term goal like time-to-market is similar to

taking out a debt against your software. Interest is accrued (possibly) as long as this debt

stays in the code, and the method for repayment is through refactoring the software [1]

[3] [4].

Refactoring, according to Fowler et al. [1], is “the process of changing a software

system in such a way that it does not alter the external behavior of the code, yet improves

its internal structure.” They also indicate that there exists “certain structures in the code

that suggest (sometimes they scream for) the possibility of refactoring,” and that it is

5

these structures that they called code smells. It was these code smells (and other poor

design choices) that Fowler et al. [1], Kerievsky [3], and others [5] [6] [7] [8] identified,

that can be attributed as forming a seminal technical debt space.

Research in the technical debt landscape has been focused on the following key

areas: 1) definitions of technical debt, the metaphor, and its properties; 2) approaches and

techniques to manage technical debt; 3) impact and consequences of technical debt; and

4) methods of measurement. Each of these areas is explored below and its connection to

this thesis are explained.

Technical Debt – Metaphor,
Definition, and Properties

The notions surrounding technical debt until recently have been informal and

under-specified. Recently, Tom, Aurum and Vidgen [9] conducted a systematic literature

review in order to consolidate the concepts surrounding technical debt into a single

hierarchy. This hierarchy classifies technical debt from either of two perspectives: by the

underlying intention behind the decision (or lack thereof) to take on the debt, or by the

type of artifact in which the debt occurs.

The intentional perspective is divided into Strategic Debt, Tactical Debt,

Incremental Debt, and Inadvertent Debt. Strategic Debt is debt taken on intentionally as

part of a larger long-term strategy. Tactical Debt is debt taken on intentionally as a

reactionary response and serves to satisfy short term needs. Incremental Debt is debt

taken as several small steps but which accrues very easily and rapidly. Finally,

Inadvertent Debt is debt taken on unintentionally and possibly unknowingly by the

software development team. The location or artifact perspective is divided into Code

6

Debt, Design and Architectural Debt, Environmental Debt, Knowledge Distribution and

Documentation Debt, and Testing Debt.

Beyond classifying and understanding of how debt occurs, some researchers have

furthered the understanding of the metaphor itself. Nugroho, Visser, and Kuipers [10]

indicate that the technical debt metaphor has several contexts from which it can be

viewed, and they specifically look at it from the context of maintainability. Along similar

lines Klinger et. al. [11] look at technical debt from the perspective of enterprise

development and indicate that using financial tools, decision theory, stake-holder based

quantification, and developing an understanding of unintentional debt are potential

avenues of interest. Finally, Theodoropoulas, Hoffberg and Kern [12] view technical debt

from the stakeholder perspective and provide a new definition based on the gap between

technology infrastructure of an organization and its impact on quality.

More recent work has looked into the extent and practicality of the technical debt

metaphor itself. Specifically, Schmid [13] [14] notes that as we explore technical debt the

metaphor begins to breakdown. He notes, the intimate connection between future

development and technical debt leads to an inability to objectively measure technical debt

itself. This is due to the nature of the interest property associated with technical debt

items. Since technical debt interest has a probability which indicates whether it may

affect the system, we should instead focus not on measuring all technical debt (potential

technical debt) but rather we should concern ourselves with the debt items that will have

an impact (effective technical debt) on upcoming feature development or maintenance to

be completed.

7

Finally, current research has focused on how the software industry and

practitioners view technical debt. A recent study by Spinola et al. [15] did not find strong

agreement among practitioners regarding several notions of “technical debt folklore.”

Specifically they found that developers unanimously agree that “not all technical debt is

intentional.” A recent study of industrial practitioners conducted by Codabux and

Williams [16] found that there was a lack of consensus concerning technical debt

terminology. They also noted that in practice, technical debt decisions are rarely

quantified, and that an understanding of the risks concerning long and short term debt

requires further investigation.

Technical Debt Management

Technical Debt Management comprises the actions of identifying the debt and

making decisions about which debt should be repaid and when. The current industry

focus has been on identifying and tracking debt as part of the working project backlog

[17] [18] [5] or as part of a separate technical debt list [19] [8] [20]. Essentially, we can

think of the emergence of code smells within a code base akin to taking on debt, and the

longer they are allowed to remain (without refactoring) the more negative influence they

will have on the code base [21]. This influence resonates through the code and makes the

software harder to extend and maintain in the future, thus causing developers to pay

interest on the debt by increasing the amount of effort required to affect a change [7].

An approach towards developing a technical debt management framework

(TDMF), see Figure 1, was put forth by Guo and Seaman [19] [8] [20]. The central

concept to this framework is the Technical Debt List (TDL). The TDL stores pertaining

8

to known technical debt items in a software system. Three activities support the TDL.

The first is Technical Debt Identification. Here, several tools can be used to find technical

debt items which are then automatically placed in the TDL. Each of these items is

assigned an informal description stating what it is and where it can be found in the

system. The next activity, technical debt estimation, assigns to each item estimates for the

debt principal (cost to remove) and the interest (additional cost due to potential future

problems they may cause alongside a probability that this event may occur). Each

estimate is provided a Likert scale value of low, medium, or high. Other information such

as correlations to other debt, the interest standard deviation, and the date it was inserted

into the list can also be assigned. The final activity, decision making, is used to help

assess which debts should be addressed (via remediation) and when they should be

addressed.

Figure 1. The Technical Debt Management Framework as proposed by Seaman and Guo
[17].

9

The need to manage and understand the decision process concerned with technical

debt is currently at the forefront of research. This research is currently divided into two

sections: decisions concerning repayment of debt and decisions concerning when to take

on a debt. For the former, Zazworka, Seaman and Shull [22] have attempted to determine

the decision processes that indicate when different debt should be paid off according to a

prioritization based on cost of the debt and its impact on quality. Further, Codabux and

Williams [16] note that a practical and effective technical debt strategy is to have

dedicated teams with the purpose to reduce technical debt, while product development

teams devote 20% of their effort towards debt reduction.

Recent work by Schmid [14] [13] [23] has focused on a cost estimation based

approach towards selecting which debts should be removed. Schmid’s work is based on a

formalization of technical debt concepts to extend the TDMF. This framework utilizes a

2D matrix representation and approximation scheme to identify which technical debt

items to include in the next release. In a similar vein Stochel, Wawrowski and Rabiej

approach the problem using a subsumption model of technical debt [24]. This model

views technical debt from three perspectives Code/Design debt, Architectural Debt, and

Portfolio Debt wherein each of these levels aggregates those contained within. This

model utilizes a modified Value Based Software Engineering [25] cost and estimation

approach in order to estimate the ROI for each of the technical debt items. The goal is

then to utilize a technical debt versus portfolio assessment matrix, using ROI in a similar

approach to that of Seaman and Guo [8], to determine which technical debt items

provided the best savings per release (similar to that of Schmid [14] [13] [23]).

10

In a further enhancement to the TDMF, Holvitie and Leppänen have developed an

approach known as DebtFlag [26]. The purpose of the DebtFlag is to automate the

association of technical debt items in the TDL with their incarnations in the code. They

also utilize automated debt propagation to better enhance the estimation of debt impact,

interest, and interest probability.

The approaches to decision support for selecting when to take on additional debt

have been less forthcoming than those for repaying debt. Falessi et al. [27] are exploring

current open problems surrounding this topic as well as the required decision support

constructs needed to address the problem. Ramasabba and Kemerer [28] began work

towards an optimization approach utilizing multiple projections of a single codebase in

order to help software engineers make decisions regarding both acquiring and repaying

debt. Eisenberg [29] also argues the need to utilize thresholds as a means to warn

developers and managers that their technical debt may be getting out of hand. Thus, there

is a need to explore which thresholds are needed. Eisenberg’s approach can also be

utilized to help determine if the product can withstand taking on additional debt as well

as help determine when debt must be repaid.

Impact and Consequences of Technical Debt

The impact of technical debt on engineering effort, project cost, and project

quality is of utmost concern as well. Zazworka et. al. [7] conducted an initial empirical

study into the effects of technical debt on quality. They showed that the form of technical

debt they studied (God Classes) has a negative impact on software quality. Further,

Zazworka, Seaman, and Shull [22] attempted to extract the decision process that can be

11

used to prioritize which debts (based on cost/benefit analysis) should be paid off. This

study showed that technical debt negatively affects the correctness and maintainability of

a product (using defect likelihood for correctness and change likelihood for

maintainability).

A key to understanding technical debt and its effects is to be able to understand

the gaps and overlaps that may exist in the landscape [30] where various approaches are

exercised. Zazworka et al. [6] identify several types of design debt (e.g., code smells,

modularity violations, and design pattern grime) and tools which detect them. They

identified that all the tools indicate different problems with little to no overlap. Fontana,

Ferme, and Spinelli [21] state that although code smells are important components of the

technical debt landscape, certain identified debt items may not actually constitute debt.

Instead they indicate that domain knowledge must be used as a filter in order to identify

these misnomers and to ensure that an accurate indication of technical debt is provided.

Morgenthaler et al. [31] conducted a study at Google and identified a new form of

debt called Build Debt. Build Debt involves inefficiencies and impact on the quality of

the build process. This study evaluated not only the impact to the project, but also the

impact to the developers, while providing some insight into the management of such

debt.

Technical Debt Measurement

Lastly, there must be a means to measure technical debt and its associated

properties in a way that is both meaningful to developers and to stakeholders alike.

Seminal work by, Brown et. al. [18] identified the technical debt metrics of: principal,

12

interest probability, and interest amount. Subsequently, Nugroho, Visser, and Kuipers

[10] contributed a formal model to calculate measurements for both interest and

principal. Additional measures, closely related to the technical debt landscape [5] [6]

have been proposed to index the effect that design flaws (e.g., code smells and

modularity violations) have on technical debt. For example, Marinescu [32] proposes a

method to index the effect on quality produced by different code smells and anti-patterns

based on the type, influence and severity of the design flaw instance, thus creating a score

which can be aggregated over the size of the system. In another approach Nord et al. [33]

develop a strong foundation for measuring the architectural technical debt based on the

notion of prudent, deliberate, and intentional debt.

Letouzey [34] developed the SQALE quality and technical debt analysis model

which not only provides the ability to estimate technical debt principal but also provides

several visualizations to help developers and management understand and analyze the

impact of technical debt in their projects. Recently, Curtis, Sappidi and Szynkarski

proposed methods to estimate the principal and interest [35] as well as the size, cost, and

type [36] of technical debt. Given these various approaches for the quantification of

technical debt and the wide range of differences in values, Izurieta et al. [37] proposed a

means to measure the error associated with the calculation of technical debt for these

methods. They argue that a means to measure the systematic error introduced by these

tools should be included with their values, similar to other scientific tools, and that a

means to compare these tools and their error be developed.

13

Release Planning

 Release planning is divided into two problems, which correspond to the two

levels of release planning. The first is the strategic release planning problem, which deals

with the partitioning of a set of work items (e.g., new features or user stories) into a set of

releases such that a set of constraints are satisfied [38]. The second is the operational

release planning problem, which deals with the allocation of tasks to software engineers

under a set of time and capacity constraints. Several works by Ahmed Al-Emran et al.

[39] [40] [41] [42] [43] [44], Saliu and Ruhe [45], Huang and Chiang [46], and others

have looked into approaches to addressing the problems surrounding this area. Typically

these approaches involve the computational intelligence approaches such as genetic

algorithms [47] [48] [49] [50] [45] and ant colony optimization [46] [51]. Al-Emran et.

al. [40] [44] [40] [43] have combined their approach with a discrete-event simulation

model, called DynaRep, in order to combine computer intelligence with human

intelligence to aid in the decision making process. This field has developed in several

areas [52] including: feature elicitation, problem specification, resource estimation,

stakeholder voting, release plan generation, and evaluation of plan alternatives. The

research described in this thesis is concerned with release plan generation in conjunction

with technical debt management.

Strategic Release Planning

 Strategic release planning encompasses the “optimum” selection of feature or

requirements under a set of constraints to be delivered during a given release [40] [53]. In

essence, strategic release planning can be seen as the partitioning of a product backlog

14

into several sprint backlogs in a Scrum [54] setting. This problem stems from the work of

Bagnall [55] in optimizing for the selection of requirements to be completed in the next

release. Additional work has concentrated on two approaches: planning for the next

immediate release, or planning for the next n releases.

 This problem, which has been shown to be NP-Complete by reduction from the

Knapsack Problem [56], has been approached in two distinct ways. The first approach is

through Integer Linear Programming (ILP) [56] [57] [55] [58]. It has been shown that the

ILP based approaches have an issue with scaling when the number of requirements

becomes large [59]. Due to the lack of scalability inherent in ILP approaches, alternative

approaches using computational intelligence have become prominent [60] [49] [55] [61]

[62].

 Because of its computational difficulty, there is evidence to suggest that this

problem falls into the category of wicked problems [63]. Wicked problems are problems

where regardless of the ability to optimize a solution it may still not be a very good

solution when it comes to actual implementation of the solution. This has led to a trend of

hybrid systems combining both computational and human intelligence [50]. The goal of

this research is to present the user with a selection of “good” release plans and let them

decide which will be the best to implement.

It should be noted that with all of the approaches developed to date, relatively

little industry adoption has taken place [64]. This is further explored by Svahnberg et al.

[64]. They indicate that the issue is not the existing models/approaches, but rather the

limited amount of industry grade models/approaches.

15

Operational Release Planning

 Operation release planning is the problem of allocating resources to tasks such

that constraints on developer availability, task dependency, and budget constraints are

met such that the overall time to release is minimized. A special case of this problem

considers the software engineer resources. This problem is known as the project staffing

problem [59]. Ruhe [59] has identified three distinct sub-problems, in the project staffing

problem, each with different end goals:

 Planning to maximize the total release value. Here the goal is to maximize the

number of work items completed such that the value of the system (as evaluated

by external quality indicators (such as stakeholder satisfaction)) is within a fixed

time interval. It should be noted that this problem is a combination of both the

knapsack and job-shop scheduling problems [59], each of which is known to be

NP-Complete [59].

 Planning to minimize release make-span. Here the goal is to minimize the amount

of time required to complete a set of work items assigned to a given release.

 Planning for maximum competency match. Here the goal is to maximize the

matching between task and developer such that the developer’s ability (as

measure by their productivity or knowledge level) to the task, in order to ensure

that the overall release time is minimized. This problem has been shown to be a

special case of the resource-constraint project scheduling problem, which is

known to be NP-Complete [59].

16

In each of these problems the main components are the set of tasks (derived from the

work items assigned to a release) to be developed, the software engineers working as a

part of the team assigned to the release, and finally the set of productivities for each

individual developer for each type of task [59].

 Operational release planning falls into the area of project scheduling which is a

subfield of project management. Each of these areas have been well studied, see

Blazewicz et al. [65] for an introduction to project scheduling and Wysochi [66] for an

introduction to project management. Early work in the area of optimal project scheduling

and operational release planning was conducted by Chang et al. [67]. Chang et al. studied

the problem of project scheduling using an approach based on genetic algorithms. This

approach focused on the problem of schedule minimization but did not take into account

developer productivity for given types of tasks.

 Another early approach was that of Abdel-Hamid [68]. Abdel-Hamid suggested

the use of a system-dynamics simulation model of the development process to produce

project schedules. Similarly an approach by Fenton et al. [69] proposed the use of

Bayesian belief networks as a means to manage the inherent uncertainty in effort

estimation techniques use during the decision making process.

 More recently, there has been a return to search-based techniques when dealing

with the project scheduling problem. Specifically, Antoniol et al. [70] evaluated by

comparison a range of techniques including hill-climbing, genetic algorithms, and

simulated annealing. They found that of the techniques applied, simulated annealing was

the best and that this approach reduced the project make-span by 43% when compared to

17

a baseline of random search. Another approach, by Barreto et al. [71], modeled the

problem as a constraint satisfaction problem. Although they took into consideration

characteristics of the project, including developer competency, they failed to explore the

scalability of the approach, something that is noted by Ruhe [59] as an issue of several

approaches.

 Ruhe [59] suggests that the overall complexity of this problem requires a solution

which is more formal and scalable than what has been already put forth in the literature.

Given this, Ngo-the and Ruhe [57] have developed a two phase solution which can be

used to solve both the planning to maximize the total release value and planning to

minimize release make-span problems. In the first phase, they use an integer linear

programming approach to solve a reduced form of the problem. Using this solution, they

apply a genetic algorithm to find the best assignment of developers to tasks. This full

approach is necessary to solve the first problem, but in order to handle the second

problem only the second phase is required (which they suggest using the genetic

algorithm proposed by Hartmann [72]). As for dealing with the problem of planning for

maximum competency match, they note that a greedy approach, as proposed by Rahman

et al. [73], is the best approach.

 Recently, Przepiora, Karimpour, and Ruhe [74] connected earlier efforts based on

genetic algorithms with constraint programming in order to evaluate the effectiveness of

constraint programming on the release planning problem. This approach evaluated a pure

constraint programming approach against the combined approach. They found that in less

complex situations the use of constraint programming is not necessarily the best solution,

18

but in the situations where it is, the combined method was 87% more efficient than the

constraint programming approach alone. These comparisons were conducted on a data set

generated using industry data. Another approach by Nayebi and Ruhe [75] has connected

the release planning and prioritization methods of prior work to an open innovation

(crowd-source) approach and provide a proof-of-concept evaluation.

 Along with these approaches to solving the operational release planning

problems, there has been research into the effects of uncertainty in estimation on the

operational release planning process. Specifically, Al-Emran et al. have studied the effect

of changes in the number of features, the number of developers, effort estimations, and

productivity estimations on operational release plans [39] [42] [43]. Initial work was

conducted across simulated data and showed that a 20% variability in effort estimation

can have a profound effect on the execution times of tasks and can require more than

50% developer reassignment [39]. Later studies showed that in the worst case (50% effort

over-estimation and 30% developer dropout) increased the release make-span by a

maximum of 50% [42]. Using data from industry they showed that the effect of a

combination of factors was always greater than the summation of the individual effects.

Release Re-Planning

 In 2000, van Lamsweerde [76] completed a survey of over 8000 software

development projects from 350 US software development firms. The results of this study

showed that of the projects studied one-third were never completed and only one-half

partially succeeded. Van Lamsweerde also showed that a major source of failure (11%)

was changing requirements. Kotanya and Sommerville [77] found that for market-driven

19

software the following are the major causes of frequent changes in features and

requirements: errors, conflicts and inconsistency in requirements; changes in customer or

end-user knowledge about the system; technical, schedule, or cost issues; changes in

customer priorities; environmental changes; and organizational changes.

 These issues have given rise to the need for release re-planning. Release re-

planning can be defined as the process of modifying an existing release plan in order to

accommodate unforeseen changes [59]. Initially Albourae, Ruhe and Moussani [78]

introduced the concept of release re-planning using a greedy approach. They also

identified the release re-planning problem as a form of knapsack problem [79]. Their

greedy approach was focused on the use of the analytical hierarchy process [80] using

rough estimates of effort and stakeholder voting.

 Further work by Al-Emran, Pfahl and Ruhe [44] combined operational release

planning with release re-planning through discrete-event simulation and called this

approach DynaReP. Using this model they could evaluate the effects on changes in the

number of features, number of developers, effort estimates, productivity estimates, and

execution time estimates. Combining this method with risk analysis capabilities, Al-

Emran and Pfahl [40] where able to evaluate the effects of different worst case scenarios.

This later effort was limited to simple examples and did not compare itself to any other

approaches. Al-Emran, Pfahl, and Ruhe [81] combined DynaReP with another

operational release planning process to compare plans against an initial baseline. This

provided a form of sensitivity analysis for operational release plans in the face of the

types of change that would prompt for re-planning.

20

 Jadallah et al. [82] developed an underlying process to release re-planning which

focuses on answering How? What? and When to re-plan? (H2W). Using these questions

as a basis they devised, and showed proof-of-concept of, a greedy approach for release

re-planning. Al-Emran et al. [41] extended the H2W method by combining re-estimation

and re-planning together, calling the revised approach H2W-Pred. This new approach

incorporated dynamic updates of defect and effort estimates during the re-planning

process. They showed that including re-estimation can yield a portfolio of solutions,

which can balance and compare trade-offs between functionality and quality for several

release plans. Ruhe [59] describes a refinement to H2W, called H2W*, which enhances

the underlying model, and provides empirical results validating the method.

 Finally, Golforelli, Rizzi and Turricchia [83] have looked at the combination of

operational release planning and release re-planning from the context of the agile

development process Scrum. Their approach uses a linear programming model for the

operational release planning problem and a minimum perturbation strategy for the release

re-planning problem. They evaluated their method across a set of 58 synthetic projects

evaluated using the model implemented using a commercial linear programming system.

Although motivated by the need for robust tools for agile development, their model is

lacking support for multiple teams, developer productivity, developer skill, and

evaluation of execution time. It should be noted that this approach considers soft-

constraints (e.g., ensuring that the tenants of Scrum are met), which Svahnberg et al. [64]

notes as missing in most release planning models evaluated. They also note that this

21

approach can handle only small to medium projects (those with approximately 100 user

stories).

Game Theory

Game theory can be seen as a dynamic form of decision theory. Here we have a

group of agents. The goal for each agent is to maximize their utility under the constraints

of the game at hand.

Game Theory and Software Engineering

Game theory has been used to model various aspects of software engineering. For

instance, Bacon et al. [84] used a non-cooperative game model between a worker and a

manager to explore the use of incentives in software development. Other approaches have

made use of mechanism design to improve the software engineering process through the

use of incentives [85] [86]. Another example can be found in the area of automated

refactoring, where Bavorta et al. [87] use a non-cooperative game to identify Extract

Class [1] refactoring opportunities.

Coalition Formation Games

This research focuses on coalition structure formation wherein coalitions are

formed based on maximizing a preference function defining the payoffs of each player

for the available coalitions [88]. A coalition formation game, ܩ, is defined as ܩ ൌ

ሺࣨ,≺ሻ. Where ࣨ is the set of players or agents and ≺ is the preference relations over the

coalitions for each player [88]. The types of coalition formation games we are

22

specifically concerned with are hedonic coalition structure formation games, or hedonic

games.

 Hedonic Games. In Hedonic Games the formation of coalitions is constrained to

attain Pareto Optimality [88]. The condition of Pareto Optimality states that no change

may be made to increase a player’s payoff without reducing another player’s payoff.

Bogomolnaia [89] simplified the concept of hedonic games such that a player’s payoff is

solely based upon the other players within the coalition. In this work we extend the

algorithm proposed by Saad et al. [90] [91] in order to produce a set of possible solutions

(rather than only one) and to be able to include constraints (which may violate the Pareto

Optimality condition) in order to allow forced positioning of players within coalitions.

 Weighted Voting Games. Weighted voting games form coalitions by allowing

each player to vote for a specific strategy, where each player’s vote has an associated

weight [19]. The players can then form coalitions using their votes. The coalition whose

number of votes exceeds a predefined threshold is selected as the winner [19].

Software Process Simulation Modeling

 Software process simulation modeling (SPSM) is a branch of empirical software

engineering, which focuses on simulating different aspects of the software development

life cycle. Simulation has been widely used as a means of prediction and analysis in the

software industry [92] [93]. Kellner, Madachy and Raffo [93] explored the area of SPSM

in order to understand the methods used and the problems to which simulation has been

applied and to connect the use of simulation to empirical study. They identified that

23

simulation can be used for, or help facilitate, the following processes: strategic

management, planning, control and operational management, process improvement and

technology adoption, understanding, and training and learning. In conducting a survey of

the literature, they found that most simulation studies conducted are centered on the

process or project level.

 A further study by Zhang, Kitchenham, and Pfahl [92] on the current trends in

SPSM and noted that of all the simulation paradigms used, both discrete-event and

continuous simulation formed the mainstream SPSM approaches (as opposed to agent-

based, mathematical, or monte-carlo simulation methods). They also note there is a need

to increase modeling and simulation at the process and entity level.

A specific instance of process level simulation is exemplified in the work of

Magennis [94], which uses Monte-Carlo simulation to evaluate the effects of changes on

agile development processes. Another example of agile process simulation is the work of

Glaiel, Moulton, and Madnick [95] which used a System Dynamics model (a form of

continuous SPSM) to describe and evaluate agile processes. An instance of entity level

simulation is exemplified in the work of Spasic and Onggo [96], which uses agent-based

simulation to evaluate the software development processes at AVL.

Ruhe [97] identifies SPSM as a fundamental component of any software

engineering decision support (SEDS) system. Because of this it has been widely used to

support operational release planning as well as release re-planning [39] [40] [41] [42]

[81] [43] [81] [44] [82] [59] [98]. It has been used as both an underlying approach to

operational release planning [40] [43] to evaluate how plans can change in response to

24

uncertainty in the planning process [39] [40] [41] [42] [43]. Specifically, Al-Emran et al.

[39] [40] [43] studied the effects of changes in the number of developers, number of

features, effort estimates, and productivity estimates on release make-span using monte-

carlo simulation. They confirmed that such changes can have profound impact on the

overall time required for a release.

Contributions

Given the body of work in technical debt management and the academic

community’s desire to provide solutions which can be put to practical use in the field,

there is still a significant lack of empirical work validating the proposed approaches. The

difficulty in validating these approaches in practice is due to the difficulties of mapping

experimental conditions to real world scenarios for each approach. Yet, as Falessi et al.

[27] indicate, the use of simulation and the ability to pose “what if” questions can shed

light on such issues as time-to-market or technical debt impact on a system, is a necessary

component of technical debt management.

The problem of validating approaches also seems to fall into the problem space

that Kellner, Madachy, and Raffo [93] indicate as an issue apt for SPSM. Given this we

have developed a simulation model for validating practical approaches for technical debt

management. The framework allows for parameterization of sub-components, such as the

incorporation of the TDMF as well as looking at whether it is better to use a dedicated

sprint for TD removal or a percentage per sprint. A customizable approach is critical in

order to gain insights about which strategies are better for a given software development

organization. The use of simulation for technical debt management has yet to be

25

explored, and the hope is that the seminal work described herein provides strong

motivation to continue using simulation.

Along with the problem of validating proposed techniques, advanced technical

debt management approaches (such as those presented by Schmid [14] [23] and Stochel,

Wawrowski, and Rabiej [24]) fail to take into account the surrounding development

process in which these practices are introduced. It should also be noted that despite

extensive literature reviews, there does not appear to be an approach which combines the

use of advanced release planning techniques with technical debt management. Given that

the ideas surrounding the need for tools supporting technical debt management are in line

with those used in release planning (such as what-if analysis and other decision support

concepts) [27], and the fact that TDMF has a decision support component, a combination

of release planning techniques and technical debt management is a natural progression of

the current work. Thus, this thesis puts forth a unified model which connects the concepts

of TDMF and release planning.

There exists little empirical work validating the practical methods of technical

debt management proposed by researchers and industry practitioners. Along with this is

the lack of empirical validation of the more advanced techniques meant to provide

efficient and accurate methods of technical debt management. The first problem is that

we assume that these more advanced methods are superior and efficient than those

methods found in industry today, yet there is no work currently validating this

assumption. To date, there is a dearth of research that evaluates these different methods

26

against one another. To compare and contrast advanced methods we provide a

framework, but leave the analysis to future work.

27

DECISION SUPPORT FRAMEWORK

Introduction

This chapter defines a number of problems which are important to both release

planning and technical debt management. Once identified we can see how the problems

in these two distinct areas are similar or even the same. Given these similarities we then

merge the problems into a set of combined problems, which can then be mapped onto the

meta-model defined in Chapter 4.

Problem Definitions

Technical Debt Management

 There are two main problems stemming from the study of technical debt

management. The first is determining at which point a project should repay a debt

through refactoring. The second problem is in determining at what point a project should

take on new debt. Both of the problems described in the following subsections apply only

to known and tracked technical debt items or the creation of intentional debt.

 Technical Debt Management – Remediation (TDM-R). The question at hand is:

When should a debt be repaid? The problem is that even though technical debt must be

dealt with, new feature development and maintenance of existing code must be conducted

as well. Thus, the selection of the highest value (those which affect the largest amount of

existing code and new feature items) technical debt items with the lowest cost (in effort)

should be selected [22]. This is essentially an optimization problem where we are

attempting to maximize the amount of technical debt removed (focusing on tactical,

28

incremental, and inadvertent debt), minimize the cost of this removal. This problem is

fairly straight-forward when considered alone, but unfortunately it must be considered

within the larger context of software development lifecycle.

 Technical Debt Management – Debt Acquisition (TDM-DA). This problem deals

with the acquisition of intentional debt. From the discussion in Chapter 2, there are three

forms of intentional debt: strategic, tactical, and incremental. The overarching question

here is: When should new debts be acquired? Strategic debt acquisition involves a

decision point during strategic release planning, which if accepted will allow the increase

in the number of new features to be developed during the next k releases but at the cost of

long-term software issues. In the case of tactical debt, this seems to be the problem of

identifying the point within a release that has the following two outcomes: i) allow the

release constraints (cost or make-span) to be violated, or ii) take on a new debt to ensure

that the constraints are not violated. Incremental debt acquisition involves the decision

during development to limit refactoring in order to continue new feature development.

Strategies for handling incremental debt, such as devoting a percentage of software

engineer time during a release or using thresholds to control the amount of debt accrued

[17], are explored in the simulation study found in Chapter 5.

Strategic Release Planning (SRP)

 Strategic release planning, as described in Chapter 2, is the “optimum” selection

of features or requirements under a set of constraints to be delivered during a given

release [40] [53]. The question underlying this problem is: Which partitioning of a set of

work items into k releases will satisfy a given set of constraints? Where the constraints

29

are dependencies between work items, minimum cost or minimum make-span for each

release, and maximum number of high priority work items completed.

Operational Release Planning (ORP)

 As discussed in Chapter 2, operation release planning is the problem of allocating

resources to tasks such that a set of constraints are satisfied. We are mainly concerned

with a special case of this problem: the project staffing problem. Further, we discussed a

set of three sub-problems of the project staffing problem: planning to maximize the total

release value (ORP1), planning to minimize release make-span (ORP2), and planning for

maximum competency match (ORP3).

Release Re-Planning (RRP)

As discussed in Chapter 2, release re-planning is the problem of determining the

when, the how, and the what of re-planning an existing release plan. These questions are

well developed by Jadallah et al. [82]. For this thesis we will consider these questions as

simply the release re-planning problem (RRP).

Combining Technical Debt
Management and Release Planning

 These problems are very similar at an abstract level. The differences between the

problems lie only in the constraints and the point in the development lifecycle at which

they become pertinent. Table 1 shows the mapping between problems and their

associated constraints and Figure 2 depicts the connection between software development

lifecycle timing and the different problems.

30

 We first begin with the SRP, the TDM-R and the TDM-DA problems, since each

of the problems (or a portion of each problem) look at the long term future of the

software product. In the case of SRP we are looking at the most desirable features to

implement before a series of releases are completed. In the case of TDM-R we are

Table 1. Mapping of constraints to the RP and TDM problems.

 Constraints

Problem

Max.
TD

Remove
d

Min.
Release

Cost

Max.
Release
Quality

Max.
Release
Value

Max.
Work

Satisfact
ion

Min.
Make-
span

Max.
Compet

ency

SRP X X X
ORP1 X X X X
ORP2 X X X X
ORP3 X X X X
TDM-R X
TDM-
SRP

X X X X

TDM-
ORP

X X X X X X X

Figure 2. Mapping of problems to phases of the generic iterative software development
life cycle.

31

considering which technical debt items to remove before a series of releases are

completed. Finally, in TDM-DA we are looking to determine if taking on strategic debt

will be beneficial during the next few releases.

 We can then reduce the TDM-R and SRP problems into a single problem:

Technical Debt Management in Strategic Release Planning (TDM-SRP). Here the

problem is to partition the set of technical debt items and new features into a set of k

releases. The constraints of this problem become: maximize technical debt remove,

minimize release cost or minimize release make-span, and maximize release quality.

 At this point we are still in release planning, but the software engineers and

management may be considering choices which will create strategic technical debt (such

as a choice in development technology or environment which will lead to a technological

gap). Though this is at seemingly at odds with the minimize technical debt constraint, but

this is not so. Intuitively, in the planning phase, we are looking to maximize the amount

of technical debt removed (with minimal cost) in the next k releases, but this does not

preclude the acquisition of new debts, if those debts can help satisfy other constraints

such as minimizing release make-span, minimizing release cost, or maximizing release

value, since each of these problems are by their very nature multi-objective.

 In the TDM-DA problem the entity of concern is a decision variable with

multiple outcomes (which theoretically we can measure the value of). If we include this

type of item we can then partially include the strategic TDM-DA problem within the

TDM-SRP problem, and this can be completed by changing the constraints. A solution to

the TDM-SRP problem will then solve the TDM-R, strategic TDM-DA and SRP

32

problems, but it leaves the open the ORP, the RRP, and the tactical and incremental

TDM-DA problems.

 At the operational level, release planning focuses on a single release and has the

goal of matching software engineers (or other resources) to a given set of tasks within a

set of constraints. In ORP, the main entities of concern are Tasks and Resources

(Software Engineers). The first step is to formalize the three ORP problems as a single

multi-objective problem: Find the optimal matching of software engineers to tasks of a

given release such that dependencies between tasks are satisfied, release cost is

minimized, release value is maximized, release make-span is minimized, software

engineer task preference matching is maximized, and software engineer satisfaction with

assignments is maximized. Given these constraints we include technical debt with the

following constraints: maximize the amount of technical debt removed, maximize system

quality at completion of the release, minimize release cost or maximize release value or

maximize engineer to task competency matching, maximize engineer work satisfaction,

and minimize release make-span. This problem becomes the TDM-ORP problem. At this

stage all that is left are the problems surrounding release re-planning and managing

decisions concerning tactical and incremental technical debt.

 Jadallah et al. [82] identified in their approach the three main questions of release

re-planning: How to re-plan? What to re-plan? and When to re-plan? The how refers to

the underlying method which can be one of many approaches. The interesting questions

for this research are in the “What” and “When” questions. Here we need to merge the

TDM-DA and RRP problems. In TDM-DA we are concerned with the decisions to be

33

made, and as identified previously we can encode the choices and their values as a type

of work item. Doing this will handle the decisions such as when to take on tactical or

incremental technical debt, since these are intentional. We can then map these into both

the “What” and “When” sections of release re-planning. Since release re-planning occurs

during the development phase (even if only simulated) it allows us to deal with decisions

regarding technical debt acquisition as well as dealing with changes in developers or

features. In the case of tactical technical debt we may take these debts as development

continues if the ability to satisfy the release constraints is placed in jeopardy.

Simultaneously, incremental debt will continue to build up and affect the overall

technical debt level of a system which could trigger a re-planning event (the “When”).

 Finally, as work items are completed there will be inadvertent debt created, which

will increase the overall technical debt level as well, possibly triggering a re-planning

event. Other issues such as engineer availability changes, stakeholder priority changes,

over/under estimation probability changes, engineer productivity changes, large changes

in technical debt levels, or large deviations between reality and the simulation can also

trigger re-planning. If a re-planning event is triggered those technical debt items marked

as effective and those features with high priority should be the first to be moved into the

current release, but without affecting the work already completed.

Decision Support Framework

 Given the problems described above, we have developed a software engineering

decision support (SEDS) framework based on the initial SEDS concepts from Ruhe [97]

relating to release planning. This framework is designed to solve each of the above

34

problems within the context of the software development process and to consolidate the

technical debt management needs with those of release planning. As technical debt builds

up in a project the need to make decisions which can affect release dates or push back

features come into play. Thus, we have developed an architecture that will serve

managers and researchers in helping make and understand these important decisions.

 Ruhe [97] demonstrated the need for decision support systems in software

engineering, while focusing mainly on the issues surrounding the area of release

planning. More recently, Falessi et al. [27] indicated that there is a need for similar

decision support in the area of technical debt management. In this thesis we show the

development of an underlying meta-model which combines both release planning and

technical debt management concepts together and how release planning at both the

strategic and operational level can be used to help make decisions regarding the

management of existing technical debt. Yet, the integration of both strategic and

operational release planning with technical debt does not allow for the necessary analysis

that will be required by project managers to evaluate scenarios related to events that

occur during the development phases beyond planning. In order to handle this, Ruhe [97]

indicates the need for a simulation model which can be used to perform these “what-if”

type analyses.

 In the following chapters we describe the development of a combined meta-model

which unites the fields of release planning and technical debt management. Using this

meta-model we propose algorithms which can provide a portion of the analysis and

decision component (in conjunction with human intelligence), as well as the intelligence

35

component. We also demonstrate the use of simulation in evaluating technical debt

management approaches and further extend this simulation as to the level necessary to be

used as the simulation component in a combined TDM and RP SEDS architecture.

 Figure 3 is a depiction of the architecture of such a decision support system. Here,

the rounded rectangles are components of the system, the rectangles are external inputs,

and the parallelograms are questions which can be answered using the system. The

rounded rectangles with dashed lines are considered outside the scope of this thesis but

will need to be considered to have a complete framework. As shown in the highlighted

sections of Figure 3, this thesis is co ncerned with the simulation, intelligence, and

Figure 3. Decision Support System architecture for software engineering decision support
in the areas of technical debt management and release planning.

Technical
Debt

Detection
Tools

Software
Repository

Stakeholders

Knowledge Management

System Experts

Negotiation

Intelligence
(Ch. 5)

Analysis and
Decision
(Ch. 5)

Which Debts
to Acquire
 (TDM-DA)

Simulation
(Ch. 6 and 7)

Presentation
and

Explanation
Communication

Which Debts
to Remediate

(TDM-R)

Project
Staffing

Requirments
(ORP)

Which work
items to
complete

(SRP)

36

analysis and decision components. We also show the connection between the questions

of concern and the SEDS components.

Finally, Figure 4 shows the extedned TDMF. In this extension the TDMF has

been modified to incorporate release planning. It is this extension which forms the basis

behind the combined meta-model described in the following chapter as well as the

simulation components described in Chapters 6 and 7. The main body of work this thesis

provides is the decision making component and the connection between release planning

and technical debt management.

Figure 4. The combination of release planning and the TDMF [17], (where the dashed
lines indicate information dependencies between processes).

37

UNIFIED META-MODEL

Introduction

This chapter describes a unified and extended conceptual model for the

combination of technical debt management and release planning. This unification is

based on existing models in release planning [44] [48] [55] [99] [100] [59] [47] [38] [50]

[98] [45] and the formalization of technical debt concepts by Schmid [14] [13] [23],

which is itself an extension of the TDMF [19] [8].

Unified Meta-Model

The unified model is a meta-model describing the concepts from both release

planning and technical debt. There is an underlying difficulty in merging the concepts

from these two research areas rooted in the level of information/knowledge required in

both areas and in the fact that release planning typically deals with work not yet

implemented while technical debt arises only in existing artifacts. Combining these two

levels such that both concepts can be characterized yielding a practical model upon which

a solution to both problems is possible. We have created such a model, for which the

highest level concept is the System.

The System

The System (see Figure 5) represents all the components that make up the

software. This includes the design, code, software engineers and the stakeholders. In this

model, the system is composed of a repository containing the design documents and

38

code, an evolution sequence (i.e., the backlog), a technical debt list, a set of teams, a

manager (i.e., product owner), and a set of stakeholders.

Teams

Each team (see Figure 7) is a set of software engineers assigned to work on a

software system. Teams are described by a set of properties including the type of team, a

team productivity value, a set of preferences over work item/task types, a total potential

effort available, and a total effort remaining value.

The team productivity and effort values are derived from the software engineers

composing the team. In the case of team productivity, this is the weighted (depending on

software engineer type, i.e., Entry-Level, Mid-Level, Senior, etc.) average productivity

across all team members. The effort values, on the other hand, are weighted summations

across the members of the team. The team type is one of implementation, testing,

Figure 5. Meta-model section describing the components of a system.

System

teams :Team[1..*]

repository:Repository[1]

stakeholders:Stakeholder[1..*]

tdlist:TechnicalDebtList[1]

sequence:EvolutionSequence[1]

ow ner:ProductOw ner[1]

EvolutionSequenceTechnicalDebtList

ProductOwner

Stakeholder Repository Team

-stakeholders1..*

1

-repository1

1

-ow ner

1

1

-teams1..*

1

-tdlist1

1

-sequence1

1

39

technical debt remediation, or maintenance. The different team types indicate the

preference profile for work item types. Finally, one member of the team is selected to be

the team lead who serves as the formal point of communication between the team, the

manager and other stakeholders.

Evolution Sequence and Technical Debt List

The evolution sequence represents the changes to be applied to the software

system. It is essentially a set of work items, specifically evolution items. The technical

debt list is composed of technical debt items. It is maintained as a means to estimate the

Figure 7 Meta-model section representing the components of a team.

WorkItem

identif ier:String

description:String

effort:Estimate

tasks :Task[1..*]

taskDeps :TaskDependency[*]

/assigned:Engineer[*]

decision:TDDecisionVariable[1..*]

Team

type:TeamType[1]

/productivity:Estimate

preferences:Preference

/potentialEffort:Estimate

/expendedEffort:Estimate

lead:Engineer[1]

members:Engineer[1..*]

Task

type:TaskType

effort:Estimate

/executionTime:Estimate

assigned:Engineer[1]

decisions:TDDecisionVariable[1..*]

«enumeration»

EngineerType

Intern

Junior

MidLevel

Senior

Lead

Architect

«enumeration»

TeamType

Implementation

TTesting

TTDRemediation

Maintenance

Engineer

type:EngineerType[1]

System

1..*

1

1

-type

1
1

-type

1 -teams

1..*

1

-lead 1

1#tasks

1..*

1

*

#/assigned

*

-members

*

-assigned

1

Figure 6. Meta-model section representing the components of the evolution sequence and
technical debt list.

WorkItem

identif ier:String

description:String

effort:Estimate

tasks :Task[1..*]

taskDeps :TaskDependency[*]

/assigned:Engineer[*]

TDItem

debtType:DebtType[1]

itemType:DebtItemType[1]

principal:Estimate

interest:Estimate

interestProb:Estimate

/totalSavings :Estimate

Task

type:TaskType

effort:Estimate

/executionTime:Estimate

assigned:Engineer[1]

EvolutionItem

risk:Estimate

priority:Estimate

type:EvolutionItemType[1]

EvolutionSequence

items:EvolutionItem[1..*]

TechnicalDebtList

items:TDItem[1..*]

TaskList

tasks :Task[1..*]

System

-tdlist

11

-items1..*

1

1

-items1..* 1

#tasks1..*

-sequence

1

0..1

-tasks1..*

1

40

amount of technical debt currently in the system. Figure 6 describes the components and

connections of the evolution sequence and technical debt list within the meta-model.

Work Items

Work items (see Figure 8) are the basic unit of concern in release planning. Each

item has a common set of properties: a unique identifier, a description, an estimate of the

effort required either to implement the evolution item or refactoring to remove the

technical debt item, and a set of tasks which compose the required work. In this model

there are two specific types of work items: evolution items and technical debt items.

Figure 8. Meta-model section representing the work item, its subtypes and their
components.

WorkItem

identif ier:String

description:String

effort:Estimate

tasks :Task[1..*]

taskDeps :TaskDependency[*]

/assigned:Engineer[*]

decision:TDDecisionVariable[1..*]

Task

type:TaskType

effort:Estimate

/executionTime:Estimate

assigned:Engineer[1]

decisions:TDDecisionVariable[1..*]

TDItem

debtType:DebtType[1]

itemType:DebtItemType[1]

principal:Estimate

interest:Estimate

interestProb:Estimate

/totalSavings :Estimate

«enumeration»

WorkItemDepType

Coupling

EitherOr

AtLeastOne

AtMostOne

WeakPrecedence

StrongPrecedence

Value

Effort

«enumeration»

EvolutionItemType

BugFix

FunctionalFeature

NonFunctionalFeature

ArchitecturalFeature

Maintenance

EvolutionItem

risk:Estimate

priority:Estimate

type:EvolutionItemType[1]

«enumeration»

DebtForm

CodeDebt

DesignDebt

DocumentDebt

TTestingDebt

EnvironmentalDebt

«enumeration»

TaskDepType

StartStart

StartEnd

EndEnd

EndStart

PercentComplete

WorkItemDependency

dependants:WorkItem[*]

type:WorkItemDepType[1]

DebtType

debt:DebtForm[1]

decision:DecisionType[1]

TDDecisionVariable

type:DebtType

outcomes:outcome[1..*]

«enumeration»

DecisionType

StrategicDebt

TTacticalDebt

IncrementalDebt

InadvertentDebt

TaskDependency

dependants:Task[*]

type:TaskDepType[1]

outcome

1

-dependants

*

1

1

#tasks1..*

1

-type

#taskDeps*

1

1

1

1

-decision1

1

1

1

-type1

1

-type

-debtType

-type

1

1

#decision

1..*

* -dependants

-debt

1

#outcomes1..*

1

1

-decisions

1..*

41

Work items also have a set of dependencies to other work items. This form of

dependency was initially identified by Carlshamre et al. [101], when looking at

interdependencies between requirements, and further expanded upon by Ruhe [59].

Carlshamre et al. found that typically only about 20% of requirements are independent

and that these dependencies must be taken into consideration. Each dependency exists

between a set of work items and has a specific type which indicates the semantics of the

dependency. Currently, the available types of dependencies are as follows:

 Coupling(A, B) – both work items, A and B, must be present in the same release due

to a bidirectional dependency between them [59].

 Either Or(A, B) – a dependency relationship in which only one of the work items, A

or B, can be included in the release under consideration [59].

 At Least One(A, B, …, n) – a dependency relationship between several work items in

which at least one of the items, A..n, must be included in the release under

consideration [59].

 At Most One(A, B, …, n) – a dependency relationship between several work items,

A..n, in which at most one of the work items can be included in the release under

consideration [59].

 Weak Precedence(A, B) – a dependency relationship indicating that work item A can

either be included in the same release as B or in an earlier release, but work item A

cannot be included in a release later than the release in which B is included [59]. This

also indicates that work item B cannot be included without work item A having been

42

included in the same or and earlier release, but work item A can be included without

work item B being included in any release.

 Strong Precedence(A, B) – a dependency relationship indicating that if work items A

and B are to be included in the release under consideration, then work item A must be

in an earlier release than work item B, and that both work items A and B cannot be

included in the same release [59]. This also indicates that work item B cannot be

included without work item A having been included in an earlier release, but work

item A can be included without work item B being included in any release.

 Value(A, B, …, n) – a dependency relationship indicating that when all work items,

A..n, that forming the dependency are included in the same release the total value of

the set exceeds the sum of the values of the individual work items [59]. That is, there

is a bonus increase in apparent value due to the inclusion of all the work items.

Figure 9. Depiction of architectural dependencies.

WorkItem 1 WorkItem n

Repository

Class 1 Class 2 Class k

43

 Effort(A, B, …, n) – a dependency relationship which indicates that when all work

items forming the dependency are included in the same release the total effort of the

set is less than the sum of the efforts of the individual work items [59]. That is, there

is a bonus apparent reduction in the required effort to implement all items. This could

be due, for example, to a refactoring that changes the underlying structure which the

remaining work items are extending and reduces the effort to implement these work

items.

A second type of dependency contained within work items is the architectural

dependency, which are depicted in Figure 9. Architectural dependencies represent the

connection between work items and a set of program entities on which the work item is

dependent or will affect upon implementation. In the context of technical debt items these

architectural dependencies are similar to the concept of the debt flag extension to the

TDMF [26].

Evolution Items. Evolution items represent changes to the System which manifest

as observable changes in the behavior, structure, or design of the system. Evolution items

have the following specific properties: an evolution type which is one of: bug fix,

functional feature, non-functional feature, architectural feature, and maintenance; a risk

which is the probability that the item will not be completed during its assigned release;

and a priority which is the weighted average of the priorities assigned by the system

stakeholders for this evolution item.

Technical Debt Items. Technical debt items represent identified technical debt

within a system and the cost of remediation of these debts. Technical debt items have the

44

following specific properties: item type, debt type, principal, interest, and total savings.

Item type is one of: potential technical debt (sections of the system which have a

negative impact on system quality) or effective technical debt (potential technical debt

that can affect sections of the system which are impacted by current or future evolution

items). Debt type is a pair which combines the decision type (strategic, tactical,

incremental, or inadvertent) with the artifact type (code, architecture/design,

documentation, testing, or environmental). The total savings property is an estimate

derived from the technical debt matrix for the system [14]. Finally, the principal and

interest are estimates used to describe the effort to refactor the impacted areas initially

(principal) and growth of this cost over time (interest with associated probability).

 Technical Debt Decision Variables. Technical debt decision variables are a type

of work item which represent decisions to be made during the software development

process in respect to technical debt. The outcomes of these decisions can be to aquire or

not acquire different types of technical debt. Thus, each decision variable has the

following properties: type of technical debt, a set of outcomes, and a set of affected

entities. Decision variables are associated with work items and their tasks, as well as,

releases. In the latter case they are used to represent the choices to be made in order to

prevent constraints of a release from being violated.

Tasks

 Tasks represent the work to be completed during the implementation of its parent

work item. Tasks and their components within the meta-model are shown in Figure 8. For

example an evolution item representing a new feature would need to be designed,

45

implemented, and tested. On the other hand a technical debt item would need only be

refactored and tested. Each task associated with a work item has a set of dependencies to

other tasks within that work item. We consider the following types of dependencies

between tasks of a work item [40]:

 Start-Start: given two tasks, ݐଵ and ݐଶ, if ݐଶ has a start-start dependency, ߚ, with

 ,ଵ. That isߙ ,ଵݐ ଶ, must be later than the start time ofߙ ,ଶݐ ଵ, then the start time ofݐ

if ߚ ൌ ଶߙ െ ߚ ଵ, thenߙ ൒ 0. This dependency is depicted in the upper left corner

of Figure 10.

 Start-End: given two tasks, ݐଵ and ݐଶ, if ݐଶ has an start-end dependency, ߚ, with

 .ଵߙ ,ଵݐ ଶ, ߱ଶ, must be later than the start time of taskݐ ଵ, then the end time of taskݐ

That is, if ߚ ൌ ߱ଶ െ ߚ ଵ, thenߙ ൒ 0. This is depicted in the upper right corner of

Figure 10.

 End-End: given two tasks, ݐଵ and ݐଶ, if ݐଶ has an end-end dependency, ߚ, with ݐଵ,

then the end time of task ݐଶ, ߱ଶ, must be later than the end time of task ݐଵ, ߱ଵ.

That is, if ߚ ൌ ߱ଶ െ ߱ଵ, then ߚ ൒ 0. This is depicted in the middle right of Figure

10.

 End-Start: given two tasks, ݐଵ and ݐଶ, if ݐଶ has an end-start dependency, ߚ, with

 .ଵ, ߱ଵݐ ଶ, must be later than the end time of taskߙ ,ଶݐ ଵ, then the start time of taskݐ

46

That is, if ߚ ൌ ଶߙ െ ߱ଵ, then ߚ ൒ 0. This is depicted in the middle left of Figure

10.

 PercentComplete: given two tasks, ݐଵ and ݐଶ, ݐଶ has a ݔ percent complete

dependency, ߚ, with ݐଵ, if ݐଵ must be ݔ% complete, ߩଵ, before task ݐଶ can be

started. That is, if ߚ ൌ ଶߙ െ ߚ ଵ, thenߩ ൒ 0. This is depicted in the bottom center

of Figure 10.

Figure 10. Depiction of the types of dependency constraints between tasks

Task t1

Task t2

Time

Task t1

Task t2

Time

End-End

Start-Start

Task t1

Task t2

Time

Task t1

Task t2

Time

End-Start

Start-End

Task t1

Task t2

Time

PercentComplete

α1

α2
β

α1

ω2
β

ω2 ω1 β

ω1
α2

β

α2

ρ1

β

47

Tasks also have an associated estimated effort value. This estimated effort value plays a

role in determining the execution time of the task, along with the developer productivity

for the task type (for the developer assigned to this task). Task execution time can be

found by dividing the estimated effort required for a task by the assigned developer’s

productivity for the task type.

Repository

The repository represents the collection of artifacts that define the current state of

the system. In the model these are broken down into the following items: Modules,

Namespaces, and Program Entities. Each of these items and their properties are defined

in the following subsections. The repository and its components within the context of the

meta-model are shown in Figure 11.

 Modules. Modules (see Figure 11) are the largest unit of a system and represent a

single major architectural section of the system. Modules are composed of a set of

namespaces, and have a unique identifier and a description identifying its purpose within

the system.

 Namespaces. Namespaces (see Figure 11) provide a logical division of modules

into sections of functionality. Each namespace has an identifier which is unique to the

module in which it is contained. Namespaces also provide containment for other

namespaces and program entities.

Program Entities. Program entities (see Figure 11) represent the underlying

artifacts that implement the system. That is, they represent the classes, methods, and

48

statements in code, as well as, other artifacts such as unit tests, documentation, and build

scripts. Program entities are contained in namespaces and act as containment for other

program entities as well. Each program entity has a unique identifier (within the scope of

its container) as well as a specific type: Class, Method¸ Attribute, Statement, Unit Test,

Documentation, Design, Build Script, or Supporting Artifact.

Product Owners, Stakeholders, and Priorities

Along with the set of stakeholders, the system has a product owner (or manager),

which is used to represent the interests of each stakeholder when dealing with software

engineers. The manager also acts as the deciding agent (in conjunction with a team lead,

if one exists) when dealing with problems such as team configuration or selection of new

team members [59]. A depiction of this section of the meta-model is shown in Figure 12.

Figure 11. Meta-model section describing the repository and its components.

«enumeration»

EntityTypes

Class

Method

Attribute

Statement

UnitTest

Documentation

Design

BuildScript

SupportingArtifact

RepositoryItem

parent:RepositoryItem[0..1]

identif ier:String

description:String

entities:RepositoryItem[*]

Repository

modules:RepositoryItem[1..*]

ProgramEntity

type:EntityTypes[1]

NamespaceModule

System

-repository

1

1

-modules1..*

1

1

-parent

0..1

1

-entities

*

#type1

1

49

Stakeholders (including engineers and the product owner) are used to prioritize

the items in the evolution sequence and the technical debt list. Although outside the scope

of the work in this thesis they still form an integral part of release planning, known as

Prioritization. Typical issues involved with prioritization involve key stakeholder

identification and priority assignment to requirements or work items. In agile software

development processes, such as Scrum, stakeholders and their feedback is necessary for

the development process [54]. Each stakeholder has a unique identifier (i.e., their name or

company id) and a weight (representing their relative importance).

Prioritization of work items itself has been the subject of recent research. The

body of work has surrounded the use of the Analytical Hierarchy Process [80] [102]

[103] to perform pairwise comparisons between requirements or features in order to

select those which will be a part of the next release [78] [59] [104]. Priority can be one of

the following [105] [103] [106] [59] [107]: Urgency, Penalty (stakeholder

dissatisfaction), Cost, Time, Risk, and Business Value. Both urgency and penalty are

assigned to each work item by stakeholders and is multiplied by the stakeholder weight.

Work item priority is the weighted aggregation of stakeholder values which have been

normalized to a scale between 0 and 1.

Software Engineers

Software engineers are the agents of change in the system and are depicted in

Figure 12. They comprise a team and communicate with each other. Each software

engineer utilizes their skills to implement the tasks associated with work items in order to

evolve the system. Each software engineer has the following set of properties: A unique

50

identifier (the person’s name), a type (which is one of: intern, junior, midlevel, senior,

architect, and team leader), a salary, a total amount of effort (effort available per base

unit, i.e., in man-hours), remaining effort (for the current iteration of development), a set

of preferences over type of work items, and a set of productivities across the types of

tasks. The set of productivities are used to represent an engineer’s skill level when

completing these tasks. Productivities are normalized such that the average engineer on a

team has 1.0 for a task type. The set of preferences is used to describe the motivation of

an engineer to complete the type of task specified and is on a scale between 0 and 1.

Figure 12. Meta-model section describing stakeholders, product owners, software
engineers and priorities.

System

teams :Team[1..*]

repository:Repository[1]

stakeholders:Stakeholder[1..*]

tdlist:TechnicalDebtList[1]

sequence:EvolutionSequence[1]

ow ner:ProductOw ner[1]

Team

type:TeamType[1]

/productivity:Estimate

preferences:Preference

/potentialEffort:Estimate

/expendedEffort:Estimate

lead:Engineer[1]

members:Engineer[1..*]

«enumeration»

EngineerType

Intern

Junior

MidLevel

Senior

Lead

Architect

Stakeholder

identif ier:String

w eight:double

Engineer

type:EngineerType[1]

ProductOwner

1

-lead1

1

-members 1..*

1

#teams

1..*

1 #stakeholders

1..*

1

#ow ner

1

-type

1

1

51

Releases, Sprints, and Iterations

As a part of iterative (and specifically agile) development processes, the release

represents a major development goal. It marks the culmination of development effort

which indicates a significant change in a product, such as new features or bug fixes which

add value over the last release of a product. The section of the meta-model describing

release and iterations is shown in Figure 13. A release is composed of a set of evolution

items which are to be brought to the user. The release itself is broken down into one or

more iterations which mark the progress of development. Thus each iteration is a

partitioning of the evolution items of a release. Within the framework of the Scrum

development process we can insert a further portioning mechanism, the sprint. A sprint is

a development period of 45 days of development, working from a sprint backlog

(partitioned from the product backlog) [54]. Thus, within this framework a release is

composed of one or more sprints which is then composed of one or more iterations.

Figure 13. Meta-model section describing releases and iterations and their
components.

Release

type:ReleaseType[1]

iterations:Iteration[1..*]

/assigned:Team[1..*]

sequence:EvolutionSequence[1]

Iteration

assigned:Team[1..*]

list:TaskList[1]

«enumeration»

ReleaseType

Major

Minor

Continous

EvolutionSequence

TaskList

SystemTeam

1

-sequence

1

1

-iterations1..*

1

-teams

1..*

-/assigned
1..*

1..*

1..*

-assigned

1..* 1

1 -sequence

1

1

-type

1

-list

1

52

Constraints

Release plans are subject to a set of constraints as seen in both Figure 14 and

Figure 16. Each constraint has an type, operator, and may have an associated value. The

type of constraint determines the items on which the constraint is applied and can be one

of the following values: productivity, cost, effort, availability, priority, value, work

completed, dependency, preference, task type, technical debt, or time. The operator is

used to define how the constraint is evaluated, we consider the following operators: max,

min, greater than, less than, greater than or equal, and less than or equal. The latter four

operators are for threshold constraints.

Estimates, Values, and Probabilities

In this model there are several issues concerning estimation, valuation and

uncertainty (see Figure 15). These issues surround the numerical values associated with

Figure 14. Meta-model section describing constraints.

«enumeration»

ConstraintType

Productivity

Cost

Effort

Availability

Value

Priority

WorkCompleted

Dependency

Preference

TTaskType

TTechnicalDebt

TTime

«enumeration»

ConstraintOperator

Max

Min

GreaterThan

LessThan

GreaterThanEqual

LessThanEqual

Constraint

operator:ConstraintOperator

type:ConstraintType

value:Value

ReleasePlan

Value

#operator
#type

#value

1

#constraints

*

53

effort estimates for evolution items, technical debt items, and the effort values associated

with software engineers. These values are only estimates and thus are prone to

uncertainty [108]. The value of technical debt as well and its effect on future work along

with evolution item value (such as the monetary valuation of these items used in such

calculations as net present value (NPV) or return on investment (ROI) [109]) are also

estimates and prone to uncertainty. The techniques for the estimation of these values

[110] [111] [108] [112] [113] [114] and the assessment of the uncertainty related to these

Figure 15. Meta-model section describing estimates and their uses.

«enumeration»

Units

convert(in value:double, in prev:Units)

ManHour

ManDay

ManYear

Currency

Hours

Days

Weeks

Months

Years

WorkItem

identif ier:String

description:String

effort:Estimate

tasks :Task[1..*]

taskDeps :TaskDependency[*]

/assigned:Engineer[*]

Team

type:TeamType[1]

/productivity:Estimate

preferences:Preference

/potentialEffort:Estimate

/expendedEffort:Estimate

lead:Engineer[1]

members:Engineer[1..*]

TDItem

debtType:DebtType[1]

itemType:DebtItemType[1]

principal:Estimate

interest:Estimate

interestProb:Estimate

/totalSavings :Estimate

Estimate

units:Units

value:double

Task

type:TaskType

effort:Estimate

/executionTime:Estimate

assigned:Engineer[1]

EvolutionItem

risk:Estimate

priority:Estimate

type:EvolutionItemType[1]

«enumeration»

PriorityType

Urgency

Penalty

Cost

TTime

Risk

BusinessValue

Priority

Property1:PriorityType

EffortRisk

#Property1

#units

#effort

1

-principal

#tasks

-interest

-effort

-interestProb

-/productivity

-/totalSavings

-/potentialEffort

-/executionTime

-/expendedEffort

-risk

1..*

-priority

54

quantities are important to release planning and technical debt management, but are

assumed to be utilized for the purposes of this work.

Release Plans

Release plans are the artifacts generated by release planning methods and

algorithms. In this section of the meta-model, depicted in Figure 16, there are two

specific release plant types: strategic release plans and operational release plans. Each

release plan is associated with a system, a set of teams, and a set of constraints which the

release plan must satisfy. Strategic release plans are composed of release assignments,

which are a release paired with a set of work items assigned to the release. Operational

release plans are composed of a set of availability constraints for engineers and a set of

Figure 16. Meta-model section describing release plans.

WorkItem

identif ier:String

description:String

effort:Estimate

tasks :Task[1..*]

taskDeps :TaskDependency[*]

/assigned:Engineer[*]

Team

type:TeamType[1]

/productivity:Estimate

preferences:Preference

/potentialEffort:Estimate

/expendedEffort:Estimate

lead:Engineer[1]

members:Engineer[1..*]

Release

type:ReleaseType[1]

iterations:Iteration[1..*]

/assigned:Team[1..*]

sequence:EvolutionSequence[1]

Task

type:TaskType

effort:Estimate

/executionTime:Estimate

assigned:Engineer[1]

Assignment

startTime:double

endTime:double

task:Task[1]

engineer:Engineer[1]

ReleasePlan

teams :Team[1..*]

constraints:Constraint[*]

system:System[1..*]

OperationalReleasePlan

assignments:Assignment[1..*]

availabilities:Availability[*]

StrategicReleasePlan

assignments:ReleaseAssignment[1..*]

Availability

start

end

engineer:Engineer[1]

ReleaseAssignment

items:WorkItem[1..*]

release:Release[1]
Engineer

type:EngineerType[1]

Constraint

System

1

1

-members

1..*

1 #teams

1..*

1#constraints

*

1

1..*

#engineer

1

1

1

#availabilities

*

#task

1

1 -teams1..*

#assignments

1 #system

1..*

1..*

-assigned

1

1..*

-/assigned

1..*

*

1

#assignments

1..*

1

#engineer

1

#tasks

1..*

1

*

#/assigned

*

1

1

#items

1..*

-lead

1

#release

1

55

task assignments for those engineers. Each task assignment is further defined by a start

time, an end time, a task and a software engineer.

Conclusion

 In summary, this chapter combines concepts of release planning and technical

debt management into a single coherent meta-model. An implementation of this meta-

model provides a means to integrate the concepts of technical debt management into

release planning at both the strategic and operational levels, thus allowing for the

development of a seamless decision support framework encompassing both areas. This

framework then can help managers with decision analysis in order to cope with changes

during the development process. In the following chapters we describe initial experiments

using reduced forms of this model to explore the effects of technical debt management

combined with release planning as well as simulation experiments involving the

exploration of technical debt management strategies currently employed by organizations

in industry.

56

COALITION FORMATION GAMES APPROACH

Introduction

This chapter introduces a multilevel solution to address the TDM-SRP and TDM-

ORP problems. We consider the problem of the next release and present a solution

utilizing a hedonic coalition formation game [88] to distribute work items to teams, and a

weighted voting game [115] (one game per team) to assign tasks during the current

development cycle. This approach is a promising method to manage known technical

debt while still allowing new features to be added to the project backlog.

We use simulation of several teams evolving a project in the presence of technical

debt in order to evaluate the effects of this method. The results of these simulations

corroborate current thought [5] [116] [7] in the software engineering community with

regards to techniques to manage technical debt.

In order to evaluate the approach we compared the hedonic game against a first-

come, first-served (FCFS) approach and the weighted voting game against a random

assignment approach. We selected FCFS as it is representative of the backlog of agile

processes such as Scrum [54]. These comparisons were derived from the following

research questions and associated hypotheses:

 RQ1.1: Is the distribution of work item effort between teams more similarly

distributed (according to cost in units of effort) using Hedonic games than using a

FCFS approach?

o ܪ଴:	
ఙ೑೎೑ೞ

ఙ೓೐೏೚೙೔೎
ൌ 1. The ratio of the hedonic and FCFS variances is equal to 1.

57

o ܪ஺ :	
ఙ೑೎೑ೞ

ఙ೓೐೏೚೙೔೎
൐ 1. The ratio of the hedonic and FCFS variances is greater than

1.

 RQ2.1: Does the Voting Game select lower cost items as compared to the FCFS

approach?

o ܪ଴: ௩௢௧௜௡௚ܥ െ ௙௖௙௦ܥ ൌ 0. The difference between the mean cost per selected

work item of the voting game and the mean cost per selected work item when

using the random game is equal to 0.

o ܪ஺: ௩௢௧௜௡௚ܥ െ ௙௖௙௦ܥ ൏ 0. The difference between the mean cost per selected

work item of the voting game and the mean cost per selected work item when

using the random game is less than 0.

 RQ2.2: Does the Voting Game select items with a greater gain in benefit (increase in

quality or decrease in technical debt) as compared to the FCFS Game?

o ܪ଴: ௩௢௧௜௡௚ܤ െ ௙௖௙௦ܤ ൌ 0. The difference between the mean benefit (per

selected work item) of the voting game and the mean benefit (per selected

work item) of the FCFS game is equal to 0.

o ܪ஺: ௩௢௧௜௡௚ܤ െ ௙௖௙௦ܤ ൐ 0. The difference between the mean benefit (per

selected work item) of the voting game and the mean benefit (per selected

work item) of the FCFS game is greater than 0.

 RQ2.3: Does the Voting Game select items with a higher benefit to cost ratio as

compared to the FCFS Game?

o ܪ଴: ௩௢௧௜௡௚ݎ ൌ ௙௖௙௦. The mean benefit to cost ratio for the voting game is equalݎ

to that of the FCFS game.

58

o ܪ஺: ௩௢௧௜௡௚ݎ ൐ ௙௖௙௦. The mean benefit to cost ratio for the voting game isݎ

greater than that of the FCFS game.

Approach

This approach utilizes cooperative game theory and simulation in order to select

which work items and their associated tasks should be completed during each release.

Initially, information is gathered to create the project, teams, developers and the

associated preferences and properties of each. Once this information is gathered the

simulation process begins.

Model

 This approach utilizes cooperative game theory [117] to make decisions

concerning which work items should completed. Initially, information is gathered to

create the project, teams, developers and the associated preferences and properties of

each. This information is captured using the following reduced form of the meta-model

developed in Chapter 4 and depicted in Figure 17.

 Work Items. A work item represents some unit of work that must be done to

either build or maintain a software system. For instance it can include the development of

a new feature or part of a feature, or it can be the required maintenance of a class or set of

classes in the software system’s code base. For generality we consider only three types of

work items: new features, refactorings, and design defects (technical debt [23]). Each

work item ݓ, is formally defined as the following tuple:

ݓ ൌ ,௪ܧ〉 ܵ௪, Δܳ, Δܶܦ, ,ாܣ 〈ோܣ

59

Where ܧ௪ is the effort estimation for this work item, ܵ௪ is the size estimation of this

work item, Δܳ and Δܶܦ are the change in quality and technical debt respectively,

associated with ݓ, and where ܣா and ܣோ are the set of affected program entities (classes,

methods, etc.) and the set of affected regions (packages, modules, etc.), respectively.

Effort estimation, ܧ௪ is calculated based on relative methods such as using fibonacci

numbers, powers of 2, etc. [15] and should be consistent across all work items. The size

estimate should be based on some size estimate such as lines of code, number of

methods, etc. [15]. Both estimates are parameterizable by the user. Each work item has

Figure 17. Model depiction of a system.

60

two additional derived properties associated with it. The first is the cost of the work item,

 ௪, is theܤ ,௪, derived from the estimates of effort and size of the work item. The secondܥ

benefit (increase in quality or reduction in technical debt) realized after completing the

work item.

 Developers. Teams are comprised of developers; developers complete work items

to which they are assigned, and they each are assigned an amount of initial effort per

iteration which can be used for the development of new features (including the addition

of design debt) or for the maintenance (refactoring) of the current system. The amount of

effort is divided according to the developer’s preference for these two types of work

(where work item type preference is a percentage of the effort they wish to devote

towards that type of work). It should be noted that we assume the competent programmer

hypothesis, which asserts that programmers are competent and tend to develop programs

close to the correct version [118]. The skill of developers is embedded in the model

through effort estimations and for each developer an associated probability that a work

item will require refactoring. Formally each developer, ݀, is defined by the following

tuple:

d ൌ ,ݐ〉 IE, ϕ, tୢ, p୰, ,ݒ 〈W୅,ݓ

Where ݐ is the team to which this developer is assigned, ܧܫ is the effort available at the

beginning of each iteration, ߶ is the effort preference set for this developer, ݐௗ is the type

of this developer (i.e., Junior, Senior, etc), ݌௥ is the probability that a work item

completed by this developer will need to be refactored (this is based on the developer

type), ݒ is the number of votes the developer has per work item (during the voting game),

61

 is the weight associated with the developers selection of a work item (during the voting ݓ

game), and ஺ܹ is the set of work items assigned to the developer during an iteration.

 Teams. A team is responsible for some portion of the code base. Each team is

comprised of a set of developers and historical record representing the team’s experience

associated with each module of the code base. The team also has a derived property

which is the preferences (maintenance vs. features) used to identify what types of work it

will complete (this value is simply an aggregate over the preferences of the developers in

D, defined below).

 Formally each team, ݐ, is defined by the following tuple:

t ൌ 	 〈ࣞ, ݄, ρ, ,ܧܫ ஺ܹ, ௌܹ〉

Where ࣞ is the set of developers associated with this team, ݄ is the historical record for

this team (based on commits to the repository), ߩ is the combined preferences of the

developers for work item types, ܧܫ is the combined sum of the efforts of all developers

݀ ∈ 	ࣞ per iteration, ஺ܹ is the set of work items assigned to this team and ஺ܹ ⊂ ௜ andܤ	

ݐ ⊂ 	 ௜࣮ where ௜࣮ , ௜ܤ ∈ 	 ௜ܵ (the ݅th system), and ௌܹ is the set of work items the team

selects such that ௌܹ ⊂ 	 ஺ܹ. Initially both ஺ܹ and ௌܹ ൌ ∅. Each team also has a defined

organizational hierarchy which influences the formal communications between team

members and their associated efficiency. This efficiency will affect their initial effort

estimations and accounts for errors in estimation. Effort estimation and efficiency

penalties are defined by Izurieta et al. [119] and represent the total efficiency penalty for

a developer ݀, ்ܧ೏.

62

 Systems. Finally, the model contains the notion of a software system. In the

model there is a collection of systems, ࣭. Where the ith member of ࣭, ௜ܵ, can be formally

defined as the tuple:

௜ܵ ൌ 〈 ௜࣮, ,௜ܤ ܴ௜〉	

Where ௜࣮ is the collection of teams which are assigned system ௜ܵ, ܤ௜ is the backlog of

work items attached to the system representing undone work such as implementation of

new features or required maintenance, and finally ܴ௜ is the repository where the system is

stored. The backlog ܤ௜ is comprised of ݊	work items, ݓଵ,ݓଶ, … , ௡. The repository for aݓ

system contains ܲ the set of known program entities which are contained in the source

code, ܯ is the relationships between entities in ܲ (where entities in the domain are

modules, packages, namespaces, or in general, code structures such as classes, methods,

fields, etc.), and ܪ, which represents the history of the repository, and is the mapping of

developers to committed code over time. A depiction of a system can be seen in Figure

17.

Simulation Process

The simulation process combines the meta-model with coalition formation games

in a simulation of the software development process. This simulation process is depicted

in Figure 18. Initially we are given a backlog with some number ݊ items corresponding to

the total features and maintenance items which need to be completed. During each

iteration (1,… ,݉, where ݉ is provided as a parameter) of the algorithm, we take the

current back log and distribute the items between the teams (using the hedonic game).

Each team then performs a weighted voting game to select work items to be completed.

63

From this set of selected work items (from all teams), items where Δܳ ≪ 0 are

considered to be incoming debt items and are converted to refactorings (in a real system

these would be detected using design defect detection rules) while features have a slight

probability, based on the skill level of the developer charged with implementing it, to be

converted to refactorings. The converted refactorings and unselected work items then

become the next cycle’s backlog and the process repeats until we reach ݉ iterations. The

following describes the hedonic and weighted voting games in more detail.

Hedonic Game. The hedonic game is a coalition formation game, ܩு ൌ ሺܰ,߶ሻ,

constructed such that ܰ is the set of all the work items in the backlog ܤ௜ and ߶ is set of

sets of preferences for each work item for all available team work logs. The team work

logs represent the coalitions which work items can join.

Figure 18. Simulation process.

Features

Technical
Debt

Maintenance

Backlog

Completed
Items

New Technical Debt
and Maintenance

Items

Distribute to
Teams

Teams

Selected Work
Items

Select Work
Items

Select Work
Items

...

Work
Sequence

64

Initially the work items are distributed according to a function which minimizes

the standard deviation of the total cost of each coalition. Each player then calculates the

preference value of its current coalition and a preference value for all other possible

coalitions, thus forming a preference profile. Each player then checks their profile for a

higher preference coalition that it strictly prefers to their current coalition. If such a

Figure 19. Example depicting both coalition formation games.

65

coalition is found, the player will update its visitation record to reflect that it has already

visited its current coalition and then joins the new coalition. This, in turn, forces all other

players to update their preference profiles as well. Eventually all players will settle with a

(strictly) preferred coalition. Figure 19 depicts an example of this process.

 Weighted Voting Game. The weighted voting games in this approach are each a

game, ܩ௪ ൌ ሺܰ,߶ሻ, and are constructed such that the set ܰ is the set of developers in the

team and ߶ is the set of the set of preferences of each developer for each item in the

team’s work log. In the weighted voting game each developer n has the ability to join k

coalitions, where ݇ is the maximum number of votes for the developer and each coalition

represents a collection of developers voting for a work item (unlike in the previous

hedonic game where a coalition was represented by a collection of work items assigned

to a team work log). Each vote carries a weight specified by the experience of the

developer where more experienced developers have a higher weight. The coalition with a

total weighted vote above the threshold is considered the winner, and if several coalitions

meet this criterion, then the coalition with the largest number of weighted votes is

declared the winner. A random developer selected from the winning coalition is assigned

that work item. This item is then removed from the work log and is placed in the selected

items list. Figure 19 depicts an example of the weighted voting game.

66

Methods

This section describes the methodology behind the two experiments we

conducted, and it describes the process by which we randomly generate systems for use

in these experiments.

Random System Generation

The meta-model presented in Chapter 4 is used to represent the system and its

contents, as depicted in Figure 17. In order to evaluate the approaches described above

we instantiate several systems randomly. For each of the experiments a number of

Algorithm 1 Random System Generation

 (݁ݖ݅ܵݔܽ݉ ,ܿݏ݁ܦ݉ܽ݁ݐ ,ݏ݁݌ݕܶݒ݁݀ ,ݏ݊݋݅ݐܽݎ݁ݐܫ݉ݑ݊ ,ݏݕܵ݉ݑ݊)݊݁ܩݏݕܴܵ݀݊ܽ
Input: ݊ݏݕܵ݉ݑ: number of systems to generate,

 ,number of iterations per system :ݏ݊݋݅ݐܽݎ݁ݐܫ݉ݑ݊
 set of developer type descriptions (includes type :ݏ݁݌ݕܶݒ݁݀

name, max effort per iteration, number of votes, and voting weight),
 description of the number of different types and :ܿݏ݁ܦ݉ܽ݁ݐ

 their relationships (within a hierarchy).
Output: ࣭: set of systems.

1. for ݅ ← 1 to ݊ݏݕܵ݉ݑ do
࣮ܧܶ .2 ← 0
3. foreach ݁݌ݕݐ ∈ do ݏ݁݌ݕܶݒ݁݀
ݏݎܾ݁݉݁ܯ݉ݑ݊ .4 ← |ሼݔ ∈ .ݔ|ܿݏ݁ܦ݉ܽ݁ݐ ݁݌ݕݐ ൌ |ሽ݁݌ݕݐ
࣮ܧܶ .5 ← ࣮ܧܶ ൅ ሺ݊ݏݎܾ݁݉݁ܯ݉ݑ ⋅ .ݔ ሻܧܫ
6. end foreach
ݏ݉݁ݐܫ݇ݎ݋ܹ݉ݑ݊ .7 ← ሺ࣮ܶܧ ⋅ ݏ݊݋݅ݐܽݎ݁ݐܫ݉ݑ݊ ⋅ 1.5ሻ
ݏ݁݅ݐ݅ݐ݊݁ .8 ← ሻݏ݉݁ݐܫ݇ݎ݋ܹ݉ݑሺ݊ݏ݁݅ݐ݅ݐ݊ܧ݉ܽݎ݃݋ݎܲ݁ݐܽݎ݁݊݁݃
9. ࣜ ← ሻݏ݉݁ݐܫ݇ݎ݋ܹ݉ݑሺ݊݃݋݈݇ܿܽܤ݁ݐܽݎ݁݊݁݃

10. ࣮ ← ,ݏ݉ܽ݁ܶ݉ݑሺ݊ݏ݉ܽ݁ܶ݁ݐܽݎ݁݊݁݃ ,ݏ݁݌ݕܶݒ݁݀ ሻܿݏ݁ܦ݉ܽ݁ݐ
11. ࣭ሾ݅ሿ 	← ,ሺࣜ݉݁ݐݏݕܵݓ݁݊	 ࣮,࣬ሻ
12. end for
13. return ࣭

Figure 20. Random system generation algorithm pseudocode.

67

random systems are generated to which teams are assigned (as defined in Algorithm 1

depicted in Figure 20).

Experiment 1

The purpose of this experiment was to empirically validate that the hedonic game

distributes the work items to the team best suited for the task commensurate with the

team’s preference profile. This is based on the criteria that the distribution of work items

should occur to teams with a history of working in the regions of code associated with the

item, and such that no single team is overloaded, by keeping the work similarly

distributed between participating teams and within the team’s effort level. First, we

evaluate whether the game theory approach of distributing work items yields better

results than a FCFS assignment mechanism. Furthermore, we evaluate the actual

distribution of work items between the teams. A summary of the experimental conditions

can be found in Table 2. In this experiment we are concerned with research question

RQ1.1 as described in the chapter introduction.

Experiment 2

The second experiment is used to evaluate the voting game approach of

distributing work items between developers of a specific team. First, we wish to

Table 2. Experimental conditions for experiment 1.

Group Number of Teams per System
1 10
2 25
3 50
4 100

68

determine the usefulness of such an approach versus a random assignment of work items.

In order to do this, we divide the system into two sets of experiments. Second, we

compare the following two types of models Hedonic-Voting and Hedonic-Random. The

first name represents the type of distribution mechanism that assigns work items to teams

in a system and the second name represents the method used to select work items for

individual developers in a team. The characteristics of the systems for experiment 2 can

be found in Table 4.

 The experiment was set up using 100 randomly generated systems (generated

according to Algorithm 1 in Figure 20). Each system was setup to have 5 teams of 7

developers consisting of the following structure: One senior level lead developer in

charge of the team with two mid-level developers each in charge of two junior level

developers. The characteristics for each developer are summarized in Table 3. In this

Table 3. Developer characteristics for experiment 2.

Type Votes Weight Iteration Effort Maint./Feat. Ratio
Senior 3 2.0 125

25/75 Mid-level 2 1.5 100
Junior 1 1.0 75

Table 4. System characteristics for experiment 2.

Parameter Value
Number of Systems 100
Number of Teams/System 5
Number of Developers/Team 7
Number of Code Regions/System 15
Number of Iterations 12

69

experiment we are concerned with research questions RQ2.1, RQ2.2, and RQ2.3 as

defined in the chapter introduction.

Results and Analysis

This section describes the results of the experiments as well as the analysis

conducted. Figure 21 shows two plots of mean values recorded during the experiments.

The first plot (“Hedonic-Voting vs. Hedonic-FCFS Cost and Benefit”) shows the mean

values for cost (-C) and benefit (-B) for the Hedonic-FCFS (HF) and Hedonic-Voting

(HV) combinations. The second plot (“Hedonic Voting vs. Hedonic-FCFS”) shows the

mean effort values for maintenance (-M), features (-F), and technical debt remediation (-

T) associated with the Hedonic-Voting (HV) and Hedonic-FCFS (HF) combinations.

Figure 21. Plots of mean values of each metric during the experiments.

0

10

20

30

40

50

60

70

80

90

HV‐C HR‐C HV‐B HR‐B

M
ea
n
 V
al
u
e

Hedonic‐Voting vs.
Hedonic‐FCFS Cost and

Benefit

HV‐C HF‐C HV‐B HF‐B
0

1000

2000

3000

4000

5000

6000

HV‐M HF‐M HV‐F HF‐F HV‐T HF‐T

M
ea
n
 E
ff
o
rt

Hedonic‐Voting vs.
Hedonic‐FCFS

70

Experiment 1

In order to evaluate the evenness of the distribution of work items among teams in

a system ‒hedonic vs. random; we utilized an F-test on the ratio of the variances of the

two approaches. This test assumes that the distribution of the sample is normal. In order

to assess the normality we utilized Q-Q plots of the data (see Figure 43 of Appendix A).

Although there is a slight deviation from normality evident in the plots, the data appears

to meet the nearly normal assumption.

Research question RQ1.1 attempts to determine whether the Hedonic Game

distributes the work items similarly (according to cost) better than the FCFS Approach.

The assessment looked at a ratio of the variance, since if the items are similarly spread

between the teams then the variance should be close to zero. Assuming that the Hedonic

Game will have the smaller standard deviation the ratio is defined as the standard

deviation of the distribution for the FCFS Game divided by the Hedonic Game. We

conducted four experiments with 10, 25, 50, and 100 teams to which work items from a

backlog would be assigned. The results of the F-tests for each group were all less than 0.1

and thus significant.

Each group in this experiment had similar results leading to the rejection of the

null hypothesis in each case. Thus, we can say that there is sufficient evidence to suggest

that the true ratio of FCFS to Hedonic variances is greater than 1.

Experiment 2

This experiment was conducted in order to answer three research questions, where

each analysis utilized a paired t-test (assumptions verified as follows: the nearly normal

71

assumption is verified using the Q-Q plots in Figure 44, and the paired data and non-

independence assumptions are verified due to the fact that the same systems are evaluated

using two separate methods) the findings were as follows:

 Research Question 2.1 (RQ2.1). In order to determine whether the Voting Game

selects lower cost items as compared to the FCFS Game, we conducted a paired t-test of

the difference between mean costs when using the Voting Game versus the FCFS Game.

The paired t-test assumes that the data comes from a normal distribution, that the data is

paired, and that the data is not independent.

The t-test yielded a p-value < 2.2e-16 which is below the ߙ ൌ 0.05 threshold

value we have set. Given this result, we have strong evidence to conclude that the mean

difference between the mean cost of items the Voting Game selects versus the items that

FCFS Game selects is > 0.

 Research Question 2.2 (RQ2.2). In order to determine whether the Voting Game

selects higher benefit items as compared to the FCFS Game, we conducted a paired t-test

of the difference between mean benefit gained. The t-test yielded a p-value < 2.2e-16

which again is below the ߙ ൌ 0.05 threshold we have set. Given this we have strong

evidence to conclude that the mean difference in benefit between the Voting Game and

FCFS Game is significantly greater than 0.

 Research Question 2.3 (RQ2.3). Finally, we needed to determine whether the

Voting Game selects items with a better benefit-cost ratio than the FCFS approach. In

order to determine this we conducted a paired t-test of the mean benefit to cost ratios per

72

item. The t-test yielded a p-value < 2.2e-16 which again is well below the ߙ ൌ 0.05

threshold we have set. This indicates that we have strong evidence to suggest that the

voting game is better able to select items with a higher benefit to cost ratio than that of

the FCFS game.

All three results show that the Voting Game will select on average lower cost

items, yielding a higher overall benefit, and it selects items with an overall larger benefit

to cost ratio for the number of items selected. Thus, not surprisingly coalition formation

games provide better results than FCFS based assignments.

Analytical Summary

The combined results of the above two experiments not only show that the

approach provides a solution to the two problems (TDM-SRP and TDM-ORP1) posed in

Chapter 3, but these results also indicate that technical debt can be effectively managed in

a project when the following conditions are met:

i. Technical debt items must be included in the release planning stage. As indicated by

the model and verified in experiment 1.

ii. Technical debt items must be identified, added to, and tracked in the backlog [5], as

indicated by the model and results of experiment 2.

iii. The measures of technical debt must be incorporated as part of the information

tracked in the backlog [5] [22] to inform decisions made during operational release

planning.

73

iv. Finally, developers must be willing to actively choose to work on reducing the debt

as a part of the maintenance process as well as during the development of features

[116].

Finally, although these results corroborate current though in technical debt management,

further study and empirical validation is still required.

Threats to Validity

We examine the threats to validity using the Cook and Campbell [120] [121]

approach since they are easily mapped to the different steps performed in

experimentation.

Construct Validity

Construct validity refers to the meaningfulness of measurements and the quality

choices made about independent and dependent variables such that these variables are

representative of the theory. If the relationship between the cause and the effect

constructs is causal, then the independent variables chosen for the treatment (cause) and

the dependent variables representing the output (effect) must be representative of their

respective constructs.

In the first experiment we are concerned with how well the variance of total

coalition cost accurately measures the evenness of the distribution of the work items

between team work logs. Since, the variance measures the deviation from the mean we

can conclude that it is a good representation of the effect and that there is little threat to

validity. In the second experiment we are concerned with the mean cost, mean benefit,

74

and the benefit/cost ratio of using coalition formation games over random approaches.

These dependent variables are valid, and represent the desired effect construct

appropriately.

Several potential threats to construct validity do exist however, and are related to

the selection of independent variables for the treatments that represent the cause

constructs. The cost associated with each work item is based on relative estimates of size

and effort. We can substitute more accurate measures of size such as lines of code and

more accurate measures for effort. Further, since this is a simulated environment, many

variables are randomly generated. For example, a team’s preference, and individual

developer’s profile, and a system’s profile do pose a construct validity threat.

Content Validity

Content validity refers to how complete the measures cover the content domain.

The models defining a system and hence the approaches evaluated herein, do not use all

known properties of design defects that have been identified by researchers. For example,

it is well known that there are dependencies between different defects, which can be used

to identify their existence [1] [122] [123] [116], yet these measures are not modeled. We

have assumed that a method will be used a-priori to identify design defects in a system;

hence these relationships are deliberately discounted.

There is also a potential for refactorings to become conflicted, and for

refactorings to be dependent upon each other [124] [7]. The model presented here

considers a refactoring entity to be composed of all of its dependent refactorings. We do

not take into account the conflicting nature of refactorings.

75

In order to strengthen the content validity, the models will need to take this into

account and the weighted voting game should attempt to utilize conflict information by

attempting to select refactorings which reduce the number of conflicts.

External Validity

External Validity refers to the ability to generalize results. Clearly, since this

study was conducted on purely synthetic systems (providing face validity [93]) we cannot

generalize this approach to real systems. In order to strengthen the external validity of

this approach, case studies on a variety of actual software systems is needed. However,

the flexibility of the simulations allow for many parameterizations found on already

existing parsimonious models or real environments. The ability to vary simulation

parameters allows us to describe existing system, team and developer preferences.

Internal Validity

This threat refers to the possibility of having unwanted or unanticipated causal

relationships. Since this experiment is fully controlled, this threat does not exist.

Conclusion Validity

This validity check is concerned with establishing statistical significance between

the independent variables of the treatments and the dependent variable outputs. Both

experiments showed statistical significance in the results obtained. The choice of

statistical tests is in-line with the desired hypotheses tests.

76

Conclusions and Future Work

We have approached the problem of identifying opportunities to remove technical

debt such that the selected debt items reflect low cost with potential high benefits. This

approach utilizes both a hedonic coalition formation game to divide a backlog of work

items between teams and then utilizes a weighted voting game to select the best items

from each team such that it meets the team member’s preferences. In order to investigate

this approach we conducted several simulations using randomly generated software

systems. The results of these simulations are encouraging and suggest that further

investigation into cooperative game theory as an approach to technical debt management

is warranted.

In order to help answer Kruchten et al.’s question [5] of “how to decide about

future changes: What evolution should the software system undergo, and in which

sequence?,” the cooperative game approach presented here moves this line of research in

the right direction and provides us with an alternative to improving one of the main issues

facing software development organizations today.

Furthermore, the approach shown in this chapter can be further adapted to handle

k releases and to more formally generate release plans. Currently, we are developing an

extension to the base algorithm used in the hedonic game for just these purposes. We are

also extending the algorithm to produce multiple Pareto optimal solutions, rather than just

one. This work coincides with a combination of the algorithm with the complete meta-

model described in Chapter 4. Finally, in the experiments conducted here we explore

only the use of a cost-benefit model in order to make technical debt decisions. Since, this

77

was a part of the foundation to the utility functions, we can easily extend this to be able

use Net-Present Value (NPV), Real Options Analysis (ROA), or Total Cost of Ownership

(TCO) as suggested by Krutchen, Nord, and Ozkaya [5].

In the future we would like to explore the application of the methods discussed

here as a method to explore the connection between technical debt and software

evolution. Finally, we are looking into the use of this simulation technique as the basis of

a tool to aid in the decision process surrounding system evolution in the face of the

technical debt challenge.

78

INITIAL SIMULATION STUDY

Contribution of Authors and Co-Authors

Manuscript in Chapter 4

Author: Isaac D. Griffith

Contributions: Conceived and implemented the underlying conceptual model.
Implemented the simulation models and collected and analyzed the data. Wrote first and
final drafts of the manuscript.

Co-Author: Hanane Taffahi

Contributions: Helped validate the implementations of the simulation models. Helped in
the analysis of the data. Provided feedback on early drafts of the manuscript and
reviewed the final manuscript.

Co-Author: Dr. David Claudio

Contributions: Provided feedback on early drafts of the manuscript and provided review
of the final manuscript.

Co-Author: Dr. Clemente Izurieta

Contributions: Helped conceive the study design. Provided feedback and review for the
statistical analyses and early drafts of the manuscript. Provided editorial feedback and
review of the final manuscript.

79

Manuscript Information Page

Isaac Griffith, Hanane Taffahi, David Claudio, and Clemente Izurieta
Proceedings of the 2014 Winter Simulation Conference
Status of Manuscript:
____ Prepared for submission to a peer-reviewed journal
____ Officially submitted to a peer-review journal
_x__ Accepted by a peer-reviewed journal
____ Published in a peer-reviewed journal

Will Appear December 7, 2014

80

Introduction

 Technical debt embodies the dichotomy between decisions focusing on the long-

term effects to the quality of the software versus focusing on the short term effects on the

time-to-market and business value of the software. That is, while software should be

delivered on time, any debt (sacrifice in quality) against the quality of the software used

to make that possible must eventually be repaid in order to ensure the overall health of

the product. This has become a growing concern since as early as 1992 [2], and it was not

until recently that industry and researchers worked to provide strategies for incorporating

technical debt management into the software development life cycle.

 Currently, several basic methods for managing technical debt in practice have

been proposed, yet there is little empirical work supporting these claims [28], due to the

nature of the problem making empirical studies prohibitive. Thus, simulation provides an

excellent alternative to evaluate proposed technical debt management methods, within the

context of agile development processes, in a cost and time sensitive way. The problem at

hand is to determine, which technical debt management strategy is superior and the most

feasible to implement within an existing agile development process model. To investigate

the introduction of technical debt management strategies, we have selected the Scrum

agile development process [54].

81

Conceptual Model

 The model we have developed is designed to simulate the Scrum development

process [54], as depicted in Figure 22, from the perspective of the Product Owner (or

manager in charge of a product). In general, the development of the product is done in an

iterative fashion, each iteration is called a sprint within which development commences.

A sprint typically has a duration of 30 or 45 days, and for this study we selected a sprint

duration of 45 days. A release of the software can be composed of several sprints, we

selected 3 sprints per release for this study. A group of releases then composes a project

or milestone for the system. For this study we have selected 3 releases per project. The

overall evolution of a system can be decomposed into several projects, but in this study

we have limited the number of projects to 1.

 The conceptual model consists of three types of objects: Work Items, Software

Engineers, and Backlogs. Each work item has the attributes described in Table 5. Each

Figure 22. Conceptual model for a discrete-event simulation of the Scrum agile process
which includes both defect and technical debt creation.

82

software engineer has the attributes defined in Table 6. Each of the backlogs consists of

the properties defined in Table 7.

 Each project begins at the project or release planning stage. This is where the

items to be worked on are prioritized and cost and size estimates are provided. Once the

estimates are provided the work items move into the project backlog (an ordered list of

work to be completed over the duration of the project). This backlog is further subdivided

into release backlogs which are further divided into the sprint backlogs. Once a sprint

begins the sprint backlog is locked from adding new items until the sprint is complete.

Table 5. Attributes associated with work items in the model.

Attribute Description

Identifier A unique identifier to track this work item.

Type
Represents the type of work to be completed and is one from the set
{New Feature, Bug/Defect, or Technical Debt (Major Refactoring)}

Priority

A number between 1 and 5 (highest has most priority) and which
indicates the desire of stakeholders for the work to be completed.
Where a stakeholder is anyone who has a vested interest in the
software [136]. Represented as a discrete distribution such that 25%
are Priority 1 or Priority 2, 35% are Priority 3, and 10% are Priority 4
or Priority 5. In the case of defects the priority was adjusted such that
50% are Priority 3(1), 35% are Priority 4(2), and 15% are Priority 5(3)
for major (minor) defects.

Effort
(man-hours)

An estimate of the time it will take for an average software engineer to
affect the change to the system. This estimate can be derived from one
of many methods (e.g. Planning Poker [108] [112], the Delphi
Approach [110]. The effort is set using a triangular distribution
TRIANG(0.5, 1, 10), for New Features and Technical Debt, while
Defects are set using TRIANG(3,8,24) or TRIANG(1,2,3) for major
and minor defects, respectively.

Size
(SLOC)

An estimate of the change to the size of the system. The size is
represented by a triangular distribution of TRIANG(250,1000,2500).

Engineer The software engineer assigned to this work item.

1. TRIANG(x,y,z) is the triangular probability distribution, where x is the minimum, y is the mode, and z is the maximum.

83

Once complete the sprint velocity is calculated to determine where the process can be

improved. Sprint velocity is a means to determine if the development team was on track

when completing the work assigned and provides managers the ability to predict the

amount of work a team is capable of handling. Sprint velocity is calculated as the ratio in

Table 7. Description of the backlogs used in the model.

Backlog Description

Project Backlog

The master list of all work to be completed on the project, and
which is ordered using a priority queue. We assume here that the
priority also reflects those dependencies between items (or
dependencies on artifacts created by the construction of the work
items). The product backlog is decomposed into a set of one or
more release backlogs as a part of release planning.

Release Backlog
The master list of all work to be completed during a given release
period, and it is ordered similar to the project backlog. The release
backlog is further decomposed into one or more sprint backlogs.

Sprint Backlog
The master list of all work to be completed during a given sprint,
and is ordered similar to the project and release backlogs.

Table 6. Attributes associated with software engineers in the model.

Attribute Description

Type
A representation of the type of software engineer and is one of the
following values {Junior, Mid-Level, Senior}. The engineer's type
determines their available daily effort and their productivity.

Estimated
Daily Effort

An estimate of how much time (in hours) the software engineer has
available to put towards working on work items.

Productivity

A factor representing the normalized capability of a software engineer
to complete a work item according to that item's estimated effort. The
values for the types of software engineers in this model are:

 Junior: 2.0 - a junior software engineer takes twice as long as a
mid-level software engineer to complete a given task.

 Mid-Level: 1.0
 Senior: 0.5 - a senior software engineer takes half as long as a

mid-level software engineer to complete a given task.

84

work completed over work assigned between two consecutive sprints. The same metric

can be calculated for releases as well as for projects.

 At the end of a sprint any incomplete work items are moved from the sprint

backlog back into the release backlog. The release backlog is re-evaluated and the next

sprint is planned. At the end of each release, the product is delivered to the users. Any

remaining work, at the end of a release, is returned to the project backlog. The project

backlog is then re-evaluated in order to plan for the next release. The development

process continues in this fashion while new work is continually added and evaluated in

release planning.

 Finally, each newly completed work item can potentially generate new defects

(bugs) and/or technical debt. In the case of defects, several processes are typically in

place to identify, track, and remediate these issues, yet for technical debt there are

typically no such processes in place for technical debt.

The Simulation Process

The general simulation process can be seen in Figure 23 while the input

parameters used for each of the models can be found in

Table 8. The following narrative describes this process, utilizing the above

defined work items, software engineers, and backlogs.

 A release begins by first incrementing the CurrentRelease variable. If

CurrentRelease < MaxReleases, then we move items from the project backlog into the

current release backlog. Once the release backlog has enough items for MaxSprint sprints

(at least MaxSprintEffort amount of work), then the sprint cycle is started. Within the

85

sprint cycle the following occurs: First, the CurrentSprint variable is incremented and

then the sprint backlog is filled to capacity (determined by the available effort of the

current set of software engineers (MaxSprintEffort)). Once the sprint backlog is filled,

work items are then processed by the software engineers. After all items in the sprint

have been completed, or the sprint duration has been exceeded, the sprint cycle ends and

the next begins. If we have reached the MaxSprints condition, then we start the next

Figure 23. Diagram of the base model for the scrum software development process
including defect and technical debt incorporation.

86

release. If we have reached the MaxReleases condition, then we begin the next project.

Finally, if we have reached the MaxProjects condition, then we end the simulation.

 During each sprint, as the software engineers are completing the work items, it is

possible that each completed work item will generate potential technical debt. The work

items are still considered complete but at the same time the model generates new

technical debt items for processing. The simulation generates TRIANG(0, 2, 5) number

of new technical debt items per 1000 SLOC. In the base model, the technical debt items

are not tracked or actively identified and thus leave the system as a part of the production

Table 8. Input parameters, their descriptions and default values used during simulation.

Input Description Value
-Maximum effort assignable to a sprint. 1800 man ݐݎ݋݂݂ܧݐ݊݅ݎ݌ܵݔܽܯ

hours

-Maximum effort assignable to a release. 5200 man ݐݎ݋݂݂ܧ݁ݏ݈ܴܽ݁݁ݔܽܯ
hours

-Maximum effort assignable to a project. 16200 man ݐݎ݋݂݂ܧݐ݆ܿ݁݋ݎܲݔܽܯ
hours

 Maximum number of sprints per release. 3 sprints ݏݐ݊݅ݎ݌ܵݔܽܯ

 Maximum number of releases per project. 3 releases ݏ݁ݏ݈ܴܽ݁݁ݔܽܯ

 Maximum projects per simulation. 1 projects ݏݐ݆ܿ݁݋ݎܲݔܽܯ

 Initial amount of TD in the system. 1000 SLOC ܦ݈ܶܽ݅ݐ݅݊ܫ

 Maximum sprint length in days. 45 days ݊݋݅ݐܽݎݑܦݐ݊݅ݎ݌ܵ

 Number of sprints between TD-only sprint ݊݋݅ݐܽݎ݁ݐܫܦܶݐ݊݅ݎ݌ܵ
occurrences.

2 sprints

 Percentage of sprint effort dedicated to ݐ݊݁ܿݎ݁ܲܦܶݐ݊݅ݎ݌ܵ
TD.

15%

 Initial size of the current system. 8500 SLOC ݁ݖ݅ܵ݉݁ݐݏݕܵ

-Minimum threshold for TD. 1000 man ݈݀݋݄ݏ݁ݎ݄ܶݎ݁ݓ݋ܮܦܶ
hours

-Maximum threshold for TD. 5000 man ݈݀݋݄ݏ݁ݎ݄ܶݎ݁݌݌ܷܦܶ
hours

87

product. It should be noted that for the technical debt generated we are counting the

identified (for models where active tracking is used) and unidentified (for all models)

instances as variables of the system. We specifically track technical debt, as a part of the

simulation (not to be confused with the technical debt list), to impose a penalty on

software engineer productivity as shown in (1). The argument for this reduction in

productivity is based on the notion that technical debt embodies the impact of poor

quality on the cost of change to a system. Thus, if the cost of change increases while the

number of software engineers stays constant, the impact is that their productivity (ability

to affect the change on the system) must be decreasing, as defined by the following

formula:

ݕݐ݅ݒ݅ݐܿݑ݀݋ݎܲݎ݁݌݋݈݁ݒ݁ܦ ൌ
1

1 െ ቀ݄ܶ݁ܿ݁ݖ݅ܵ݉݁ݐݏݕܵ݁ݖ݅ܵݐܾ݁ܦ ቁ
 (1)

 This conceptual model assumes the following is true: The stakeholders and

product owner have assigned priorities to each of the work items with a value between 1

and 5. The new features to be developed have been decomposed into the smallest

workable units. In the base model, we assume that technical debt is not a concern and that

any refactoring is not intended to remove technical debt. We assume that release re-

planning occurs but is outside the scope of these models. We assume that the estimates

for cost and size are correct. Finally, we assume that the priority of the work items and

their order in the list also reflects the dependencies between them. That is, if a work item

is dependent upon other work items, then those it depends upon are listed before it in the

backlog.

88

Experimental Design

This section outlines the experiments and data generation methods used in

conducting this simulation study. We first describe the experiments conducted and then

describe the data generation procedure.

Experiments

 The experiments are designed to explore different methods of technical debt

management which have been proposed in the literature. Specifically we have identified

four models which are used for comparative analysis. The models have been developed in

a hierarchical fashion, with each adding new features on top of the previous model. The

base model (Base) is an implementation of the conceptual model, does not consider

technical debt management, and is used to verify that the process is correct prior to

evaluating the other approaches. The second model (TD List) maintains a separate list of

technical debt items which allows for deliberate tracking of the technical debt items. The

remaining two models use this list and continuously monitor development of new

instances of technical debt.

 These two models, TD List and TD List with Active TDM, can use either a

percentage based or sprint based strategy to remove technical debt. In the percentage

based method, a certain percent of sprint effort is directed toward the removal of

technical debt while the rest is directed toward defect or new feature work. In the sprint-

based method, every nth sprint’s entire effort is directed toward the removal of technical

debt. The final model is based on the concept of a technical debt threshold [17], which is

built upon the active monitoring model and utilizes a threshold to identify when technical

89

debt should be removed. This model has two possible threshold approaches: the first

begins technical debt removal once the current level has reached an upper threshold, and

the other utilizes both an upper threshold a lower threshold to stop the technical debt

removal phase.

 Using these models we construct and compare the results of each simulation and

the various strategies employed in order to determine which technical debt management

strategy is superior. First, we compare between strategies of each model, then we

compare between model types using the best alternative at each level for the between-

level comparisons. In each of these comparisons we look at the following five metrics:

cost of completed items (CC), count of work items completed (WC), cost of effective

technical debt (ETD), cost of potential technical debt (PTD), and cost of total technical

debt (TD). For CC, ETD, PTD, and TD each is measured in source lines of code (SLOC).

Each of these values are mean value for a single simulation run averaged across all of the

repetitions of the simulation. A summary of these models can be found in Table 9.

Table 9. Summary of the models and strategies developed for comparative analysis.

Model TD Remediation Strategy Simulation
1. Base - Base

2. TD List
Percent TDL-P
Sprint TDL-S

3. TD List with Active TDM
Percent ATDM-P
Sprint ATDM-S

4. TD Thresholding
Upper Threshold Only TDT-U
Upper and Lower Threshold TDT-UL

90

Data Generation

 Utilizing existing theoretical concepts and models we randomly generate new

features, technical debt items, and defect items, using the distributions previously noted.

The generated features will have sizes and effort estimates corresponding to values that

would be achieved using the methods identified in [111] and [108]. The size and

cost/effort estimates for technical debt items are based on the models identified in [125],

[36], and [10]. The defects generated during the process follow the empirical models

described in [126] which identifies the size and estimated effort required to remove these

defects.

Results and Analysis

 We conducted several simulations of the models described in the previous section.

For each simulation we conducted a total of 8125 replications. The number of

replications was selected in order to reduce the percent-error of the metrics of concern

(most notably ܶܦ) to within a half-width of 1.5%. The resulting average of the mean

Table 10. Average differences for each metric from each comparative analysis.

Comparison
CC

(SLOC)
WC

(Count)
ETD

(SLOC)
PTD

(SLOC) TD (SLOC)

TDL-S vs TDL-P 117.956 -9.544 14.164 -13.552 65.518

TDL-P vs Base -2536.8 1393.292 -528.332 -2310.236 -1921.887

ATDM-S vs ATDM-P -645.264 350.604 -137.416 -617.648 -556.348

ATDM-S vs TDL-P -548.724 420.008 -105.564 -506.408 -462.038

TDT-U vs TDT-UL 2662.508 -1369.668 548.176 2325.976 1959.104

ATDM-S vs TDT-U -2565.968 1439.072 -518.784 -2220.152 -1869.517

TDL-P vs ATDM-P 125.708 23.624 19.844 15.74 37.217

91

metrics values for each metric of concern over the developed models can be found in

Table 6. Figure 24 depicts the mean metric values (excluding WC) between simulations,

while Figure 25 depicts the change in CC, WC, and TD across simulations. Each

comparison, whose values are shown in

Table 10, was conducted using a two-tail t-test (ߙ ൌ 0.05). In the comparison between

the sprint-only and percentage based TDM strategies on the TD-List method, we found

Figure 25. Change in work completed, technical debt remaining and mean cost

completed across simulations.

0

5000

10000

15000

Base TDL-S TDL-P ATDM-S ATDM-P TDT-U TDT-UL

M
an

-H
ou

rs
 a

nd
 C

ou
nt

 (
W

or
k

C
om

pl
et

ed
)

Simulation

Mean Cost Completed Mean Count of Work Completed Mean TD Remaining

Figure 24. Comparison of metrics across simulations.

0
2000
4000
6000
8000

10000
12000
14000
16000

Mean Cost
Completed

Mean Effective TD
Remaining

Mean Potential TD
Remaining

Mean TD
Remaining

M
an

-H
ou

rs

Base TDL-S TDL-P ATDM-S ATDM-P TDT-U TDT-UL

92

that the percentage based approach was superior. The reasoning behind this is that the

percentage based results showed that more work items where completed at a reduced

cost, while more technical debt (specifically effective technical debt) was removed.

Using these results we then conducted a comparison between the percentage based

technical debt list combination and the base model (no TDM). Here, not surprisingly, we

see similar results, in that the percentage based technical debt list combination removes

more technical debt and completes more work items at a reduced cost.

 In the second set of comparisons we began by looking within the technical debt

list with the automated TD monitoring method. Here, we compared the sprint-only and

percentage based approaches. To our surprise, and contrary to the literature, the sprint-

only method was found to be superior. This indicates that the sprint-only approach

completes more work for less cost but also reduces technical debt (both potential and

effective technical debt) better than the percentage-based approach. We note that while

the sprint-based automated TD monitoring approach is superior to its percentage-based

competitor, in practice this is not necessarily feasible due to such concerns as time-to-

market or developer morale (which are not considered in these simulations). We then

compared both approaches to the percentage based technical debt list combination. The

results indicate clearly that the sprint-only automated TD monitoring combination was

superior. As for the percentage based automated TD monitoring the results showed that

although this approach does remove more technical debt than the technical debt list only

combination, it completes less work.

93

 The final set of comparisons began by comparing the automated technical debt

monitoring approach with two thresholding strategies. In these comparisons we found

that the use of an upper limit threshold is superior to a ranged threshold and reduces the

technical debt and effectively completes more work in a more cost effective manner than

a combined upper and lower threshold scheme. When comparing the upper threshold

strategy to the sprint-only strategy from the previous set of comparisons, we found that

the sprint-only strategy was superior. This result comes with a caveat, in that, in order to

further validate this result, sensitivity analysis needs to be conducted in order to both

identify the best thresholds and to identify how the thresholds actually affect the

simulation. A similar sensitivity analysis needs to be applied to both the percentage based

approaches and to the sprint-only based approaches.

Conclusion

 We described a set of models representing several different technical debt

management methods and their combinations. The context of this study was set in a

model of the agile development process known as Scrum. Our study shows that

combining a prioritized list of technical debt items in parallel to the development

backlog, while continuously monitoring for both known and unknown technical debt

items and focusing either a percent of sprint effort or all of every nth sprints effort on

technical debt remediation sprints is the superior combination of practical technical debt

management technique. This result provides empirical support for several of the basic

strategies for managing technical debt that have been recently put forth in the literature.

Yet, it brings into question earlier notions that development teams cannot stop new

94

feature work to only focus on technical debt. As noted earlier, this surprising result may

be attributed to the fact that we did not take into consideration such things as developer

morale and time-to-market concerns.

 It should also be noted that we did not try all combinations due to time constraints

and that using thresholds may still prove a viable technique. In future work we intend to

continue to explore various combinations as well as conduct sensitivity analysis on the

various parameters associated with the simulation (see Table 1). We are also looking to

combine these models with more advanced approaches to technical debt management as a

means to evaluate how the addition of decision support can help effect more efficient

technical debt reduction while ensuring continual feature development. A final note on

future work is that once the sensitivity analysis is complete we will begin validation of

the model using data from several open-source and potentially industry projects.

95

AN EXTENDED SIMULATION FRAMEWORK

Introduction

The simulation model presented in Chapter 6 provided a means to evaluate

technical debt management techniques currently in use in industry. It also provided an

initial model upon which a simulation framework for decision support can be developed.

In this chaper we present current work towards such a simulation, which utilizes the

conceptual model developed in Chapter 4. This simulation framework has been designed

to connect the meta-model with the algorithms developed and demonstrated in Chapter 5

(along with other well known approaches from the literature) in order to solve the

problems identified in Chapter 3. Along with a simulation framework this chapter

identifies the types of questions which can be addressed and methods for sensitivity

analysis. For the latter we provide example experiments which we leave to future work.

Simulation Model

 In order to provide decision support for release planning and technical debt

management we have extended the simulation model defined in chapter 4. This section

describes the conceptual model of the enhanced simulation model, the detailed processes

underlying the simulation, and the parameters controlling the simulation. The following

section describes the conceptual model underlying the simulation framework.

Conceptual Model

The conceptual model is updated to consider both software engineers and work

items as entities. We have also incorporated tasks associated with work items as part of

96

the simulation. Finally, we have abstracted the simulation process to be able to handle

generic iterative software development processes beyond Scrum.

The model begins with the creation of software engineers and the creation of

work items and tasks. Once created the software engineers are placed in the engineer pool

to await the start of the development phase process. Similarly when work items and tasks

are created they either enter the project backlog (evolution items) or enter the technical

debt list (technical debt items). The tasks that are created are kept with the work items

until the Minor Release Planning process. Along with the creation of these entities, the

model is initialized with its parameters.

Figure 26. Conceptual model of the discrete-event simulation component.

Create Software
Engineers

Create Work
Items and Tasks

Project Major
Release Planning

(Strategic)

Major Release
Minor Release

Planning
(Strategic)

Major Release
Backlogs

Project Backlog

Technical Debt
List

Create Technical
Debt Create Defects

Development
Phase

Minor Release
Backlogs

Minor Release
Planning

(Operational)

Release Re-Planning

Tasks not
completed in
Development

Tasks not
completed in
Development Engineer Pool

Exit Simulation

Project
Major Release

Minor Release

97

Once model initialization is complete, Project Release Planning occurs. In the

Project Release Planning process work items are distributed to the major release

backlogs. Once the initial distribution occurs, each major release begins. After each

major release, any tasks (and their associated work items) are moved into the next Major

Release Backlog (evolution sequence). Within each major release the next process is the

distribution of items between minor releases.

The Minor Release Planning process uses a strategic release planning process to

schedule which work items (both evolution and technical debt items) will be completed

during the minor releases of the current major release. This process creates a portioning

of the current major release’s backlog into minor releases. This then transitions the

simulation into the minor release section.

The minor release phase of the simulation is where all of the work is performed. It

begins by portioning the minor release backlog into an operational release plan. This is

performed using an operational release planning method to generate a release plan which

includes assignment of tasks to engineers such that all the applicable constraints are met.

At this point, the development phase begins.

The Development Phase process follows the schedule set out by the operational

release plan. As time progresses the phase selects the next task and engineer pair and

places them into a current development queue to wait until the item is completed.

Depending on whether the goal is to minimize cost over a fixed time or to minimize time

with fixed resources the process will continue. In the former case, the simulation will halt

the development phase when the minor release date is reached. In either case any tasks

98

not completed during the development phases will be moved to the next minor release.

Once a work item/task is completed it moves through the defect generation and technical

debt generation processes. The technical debt generation process will potentially move

new technical debt items into the technical debt list, but the defect generation process

only records information. In both cases, the completed work item/task exits the

simulation after final processing.

The remaining process, Release Re-Planning, involves the modification of the

simulation in order to evaluate the effect of changing circumstances. This process allows

the manager to use the simulation to adjust variables such as developer productivities,

effort estimations, technical debt thresholds, etc. The re-planning process allows users of

the simulation to evaluate how the changes will affect the plan.

Simulation Process

The following subsections describe in detail the extended simulation model’s

processes as defined in the conceptual model. Each of the processes have been defined

using UML1 activity diagrams.

 Work Item Generation and Lifecycle. Each work item has two main processes

associated with it. The first is the work item generation process (as depicted in the

1 http://www.uml.org

99

activity diagram in Figure 27). The process starts by creating a new work item (using

information gathered from external sources). Once the work item is created the process

calculates the time of the next work item arrival (creation event), which is a small

constant value. If the newly created work item is a technical debt item, the value of

known technical debt is increased. The total project effort is then updated using the

Figure 27. Work item generation process activity diagram.

Determine time
until next workitem
arrival (constant)

Record Known TD

Create new
WorkItem

Wait until next workitem arrival

Update Total Effort

Activate Work Item

totalEffort < MaxEffort

Is Know n TD

[true]

[else]

[true]

[else]

100

estimated effort to complete the work item. After the total effort is updated, the work

item is then sent to the project backlog to await project planning. At this point the newly

created work item is activated and the work item lifecycle process begins. Finally, if the

total effort for the project is less than the maximum effort available (if using specific

release dates) or there are still work items remaining (no specific release dates), then the

process waits until the next work item arrival event occurs and continues the process.

 The second process associated with a work item is its actual lifecylce (depicted in

the activity diagram of Figure 28). Initially, the work item generates the tasks associated

with it. Once the tasks have been generated it begins waiting for the next set of events.

There is a possibility of one of five events to occur for any given work item: a change in

Figure 28. Work item lifecycle activity diagram.

Generate Tasks

Update Completion Status Update effort Update RiskUpdate Priority

Task Complete CompleteEffort Required Change

continue simulation

Risk ChangePriority Change

Wait for next event

Call Replanning

Replanning enabled?

[else][true]

101

priority, an associated task is completed, a change in reequired effort estimate, a change

in the risk estimate, or the work item has been completed. The first four of these events

cause the work item to update its internal state (priority, completion status, effort

required, or risk). Once any of these events has been processed replanning or

continuation of the simulation occurs. If replanning is enable and enough of a change in

the project has occurred to trigger replanning, then replanning will occur, otherwise the

simulation is continued. The work item lifecycle continues until a complete event occurs

which indicates the end of life for this work item.

 Task Generation and Lifecycle. Each task is generated as part of the work item

activation (see Figure 29). The generation reads in the necessary state information from

Figure 29. Task lifecycle activity diagram.

Update Completion

Completion Status Changed

update times

Time Change

update effort update risk update priority

Effort Required Change

continue simulation

Priority ChangeRisk Change

Call Replanning

Update Work Item Update Work Item

Replanning enabled? Task 100% Complete

[true]

[false]
[else][true]

102

an external source such as a database or requirements management tool. Once the tasks

are created they are then activated. This activation signals the lifecycle of a task.

 The task lifelycle is depicted in diagram. The entire lifecycle is spent waiting for

one of the following events to occur: time change, effort required change, risk change,

priority change, completion status change. When any of these events occur the task

updates its internal state and then signals the associated work item to update its state.

Each of these events, excluding completion status change, can cause re-planning to occur,

if re-planning is enabled. If not enabled, the simulation just continues. If an completion

status update occurs, the lifecycle only continues if current percentage complete is less

than 100%, otherwise the task lifecyle is terminated.

 Defect Generation. For any task that has been completed in the development

phase process there is a chance that it will contain defects. Thus, the defect generation

process, as depicted in Figure 30, begins by a calculation of the time for next arrival of a

Task from the development phase. The process then waits until this occurs and uses the

task to generate the defects. Once the defect generation process has occurred two

simultaneous operations occur. One is the sending of newly created defects to the project

backlog, the other is the termination of the completed task.

 The actual generation of defects from a task is depicted in Figure 31. In this

process there is a 85% chance that a minor defect (takes between 1 and 3 man-days to

correct) is created and a 15% chance that a major defect (takes between 3 and 5 man-days

to correct) is created. At this point there is a 65% chace that the newly created defect will

be caught in the current minor release’s testing phase, which will then place the defect

103

into that release’s defect tracking system. Of the remaining 35% there is an 80% chance

that the current major release’s testing phase will catch the defect, in which case the

defect will be placed in the major release’s defect tracking system. In any case the

number of defects not found in any release will be logged accordingly, and those

remaining defects not tracked will exit the system.

 Technical Debt Generation. For any task that is completed there is the possiblity

of it causing an increase in technical debt. There are four types of technical debt a task

can become: Strategic, Tactical, Incremental, or Inadvertant. Initially the generation

process awaits the next task arrival (see Figure 32). Once a task arrives it is processed to

determine if technical debt will be generated (the generation is shown in Figure 33). In

Figure 30. Defect generation activity diagram.

Send Defects to
Project Backlog

Send Task to
User

Calculate time of next Task arrival

wait for next task arrival

Generate Defects

104

the case that the task is already a refactoring, no technical debt is generated. If the task

was required to be completed quicker than it should have, this will incur Tactical debt.

Otherwise, either Incremental or Inadvertant technical debt may be created. In all cases of

technical debt creation, potential technical debt (PTD) is generated. Potential technical

debt are debt items which are technical debt but which may not be considered important

Figure 31. Defect creation and logging activity diagram.

Record Defects
found in Minor
Release

result

Minor Release Backlog
Record Defects
not found in
Minor Release

Record Defects
found in Major
Release

result

Record Defects
not found in
Major Release

Major Release Backlog

Create Minor Defect Create Major Defect

Can detect defect

Can detect defect

Is Major Defect

[false=20%]

[false=85%] [true=15%]

[true=80%]

[true=65%]

[false=35%]

105

or necessary to be handled from the perspective of project planning. Once the PTD items

is generated, it is evaluated to determine if it is effective technical debt; which is debt that

should be repayed and which affects the current state of the system.

Once the status of potential vs effective technical debt has been established, the

developer productivity effects due to technical debt are updated. At this point we

determine if the technical debt can be detected. If the type of debt is strategic or tactical

then the development teams will be aware of it and it is immediately placed into the

technical debt list. On the other hand, if the debt is either incremental or inadvertent, it

will need to pass through detection techniques. Here, if autodetection (tools for detecting

Figure 32. Technical debt generation from tasks process activity diagram

Determine Time of next Task
Arrival

Generate TD Items

Wait until next task arrival

Send TD to TD List Send Task to User

106

technical debt items such as code smells or antipatterns that are connected to either a

continuous integration system, build scripts, or repository management systems) is

enabled then the likelihood that the technical debt will be detected is increased. On the

other hand, if manual checks (such as code reviews) are the only method in place then

Figure 33. Technical debt generation activity.

Update Dev Productivities

Move to TD List

result

Create PTD
Item

Send out of simulation

TD List

Change to ETD

Record PTD

Record ETD

AutoCheck detected?AutoCheck Enabled?

Is refactoring task?

Is team aw are?

Is ETD?

[else]

[else]

[true]

[false]

[false]

[true]

[true]

[true] [else]

[true]

107

detection will be greatly decreased. In either case, if items are detected they are placed

into the technical debt list immediately, otherwise they exit the simulation. Once the debt

items are generated and either have exited the system or entered the technical debt list,

the task updates its associated work item and exits the simulation.

 Software Engineer Generation and Lifecycle. In the simulation the resources of

concern are software engineers. Initially software engineers are generated based on data

which represents the teams associated with a given system. At model initialization each

Figure 34. Software engineer generation activity diagram.

Determine time
until next Engineer
arrival

totalEngineers += 1

Create new
Engineer

totalEngineers = 0

Wait until next
engineer arrival

totalEngineers < NumEngineers

[true]

[else]

108

software engineer is generated by reading this information from the database or meta-

information files at a constant rate, until the total number of engineers to be created is

complete. This process is depicted in Figure 34.

Once all of the software engineers have been created and the simulation is

properly initialized, the software engineers are activated and their lifecycle is activated.

The software engineer lifecycle is depicted in Figure 35. Once the lifecyle has been

activated, the engineer places itself into the Developer Pool to await assignment to a task.

At this point the engineer waits until one of the following events occurs: Made

Figure 35. Engineer lifecycle activity diagram.

Place into unavailable pool

result

Place into Developer Pool

result

Update Productivity

Place into Engineer Pool
result

Made Unavailable Productivity ChangedRejoin Termination

continue simulation

Wait for next event

Engineer Pool

Unavailable Pool Engineer Pool

Call Replanning

Replanning enabled?

[else][true]

109

Unavailable, the software engineer becomes unavailable and removes itself from the

Developer Pool; Rejoin, the engineer is made available again and rejoins the Developer

Pool to begin working on tasks again; Productivity Changed, the developer’s productivity

level for a task type changes (such as when the system technical debt greatly increases);

or Termination, which indicates that the simulation has ended.

 Release Planning Process. The release planning process is used to select work

items from the current major release evolution sequence and distribute it across the minor

releases associated with the major release. To perform this allocation the selected SRP

partitioning algorithm is used. While there are remaining minor releases to be completed,

the proceses continues. First the process calculates the time required for the next minor

release. Once the time is calculated the minor release is activated. The major release then

waits until the minor release completes, at which time it begins the transfer of incomplete

items to the next minor release. The process continues until all minor releases are

completed. Once all minor releases are complete, any incomplete work items are

transferred to the next major release evolution sequence. This process is described in

Figure 36.

 Project Process. The project process describes the lifecyle of a project within the

simulation and is depicted in Figure 37. The project process begins by generating work

items. Once all work items have been generated the intial SRP planning process begins

by using the selected SRP planning algorithm. This planning process distributes work

items across all major releases under consideration. While there are remaining major

releases the process continues as follows. For the next major release, the execution time

110

required is calculated. The next major release is activated and the project process awaits

until its execution is complete. Once the current major release is completed the major

release velocity is calculated and recorded. When all major releases are complete, the

project velocity is completed and the project is terminated.

Figure 36. Major release process activity diagram.

cacluate release
work time

record minor
release velocity

Move incomplete
items to next major
release

Call SRP Algorithm
argument

Activate minor release

Major Release Backlog

wait for minor
release to
complete

[true]

[else]

111

 Major Release Process. The major release process describes the lifecyle of each

major release in the project and is depicted in Figure 36. This process begins by selecting

work items from the current major release evolution sequence and distribute it across the

minor releases associated with the major release. To perform this allocation the selected

Figure 37. Project lifecycle activity diagram.

Activate workitem
generation

Call SRP planning
algorithm

Calculate major
release required
time

Activate major
release

Record major
release velocity

Record Project Velocity

Wait for major
release to
complete

[true]

[else]

112

SRP partitioning algorithm is used. While there are remaining minor releases to be

completed, the proceses continues. First the process calculates the time required for the

next minor release. Once the time is calculated the minor release is activated. The major

release then waits until the minor release completes, at which time it begins the transfer

of imcomplete items to the next minor release. The process continues until all minor

releases are completed. Once all minor releases are complete, any imcomplete work items

are transferred to the next major release evolution sequence.

Figure 38. Minor release process activity diagram.

calculate time
required for
development

Activate
Development
Phases

Move
uncompleted
tasks to next
minor release

Generate
Tasks

Call ORP
Algorithm

wait until
development
is finished

113

 Minor Release Process. The minor release process describes the lifecyle of each

minor release of a major release and is depicted in Figure 38. The minor release begins

by generating the tasks associated with the work items in its evolution sequence. Once

these tasks have been generated they are assigned to engineers from the engineer pool

using the selected ORP algorithm. Once the assignments have been completed the

execution time associated with the development phase is calculated. The development

phase is then activated and the minor release waits until it is completed. Once the

development phase is completed any incomplete items are moved to the next minor

release evolution sequence (see Figure 39). If this is the last minor release of the current

Figure 39. Move items to next minor release process activity diagram.

Get next task from
development
backlog

argument

Send task to minor
release backlog

result

Development Backlog

Minor Release Backlog

is Development Backlog Empty?

[false]

[else]

114

major release then the work items of incomplete tasks are moved to the next major

release’s evolution sequence (see Figure 40).

 Development Phases. The Development Phases is the simulation process which

represents development of tasks and work items, are depicted in Figure 41. This process

begins by selecting the first task/engineer pairs from the minor release plan. This

selection both removes the engineer from the engineer pool as well as removing the task

Figure 40. Move items to next major release process activity diagram.

Get next task from
minor release
backlog

argument

Repackage Task
into it's Work Item
and mark percent
complete

Update work item
complete status

Send task's work
item to major
release backlog

result

Minor Release Backlog

Major Release Backlog

is Minor Release Backlog Empty?

[false]

[else]

115

from the development queue. Each task has an estimated time to completion, but the

actual time to complete the task is caculated using the following formula:

Figure 41. Development phase activity diagram.

Insert Task into
development
Queue

result
Development Queue

Remove Engineer
from Engineer Pool

argument

Wait for next
available Engineer

Remove Task from
Development
Queue

argument

Determine
Development Time

Notify task and
engineer on end of
service

Update task w ork
item complete
percetage

Development Queue

Return
Developer to
Pool

result

Return Task to
Development
Queue

result

Engineer Pool

Send task to defect
generation

Send task to TD
Generation

Hold
Developer

develop task

Hold Task

no available engineer?

[else]

[true]

[true]

[else]

[true][else]

116

݁݉݅ܶܿ݁ݔܧ ൌ ௔ݐݎ݋݂݂ܧ ∗ ௧݀݋ݎܲ݃݊ܧ ∗ ݁ݎܲ݃݊ܧ ௪݂

௔ݐݎ݋݂݂ܧ ൌ ௘ݐݎ݋݂݂ܧ ൅ ൫ݐݎ݋݂݂ܧ௘ ∗ ܴܽ݊݀ሺ0.0, 0.6ሻ ∗ ,ሺ0.8ܦܰܫܤ 1.0ሻ൯

Where ݁݉݅ܶܿ݁ݔܧ is the actual execution time for the completion of the task by the

assigned software engineer, ݀݋ݎܲ݃݊ܧ௧ is the productivity of the assigned engineer for

the task type of the assigned task, ݐݎ݋݂݂ܧ௔ is the actual effort required for the task (for

an engineer with a productivity for that task type of 1.0), ݐݎ݋݂݂ܧ௘ is the estimated effort

for the task (for an engineer with a productivity for that task type of 1.0), ܷܰܫሺ1.0, 1.6ሻ is

a uniform random distribution between 0.0 and 0.6 to accommodate underestimation and

BIND(0.8,1.0) is a binary distribution with a chance of 80% chance of 1 and 20% chance

of 0 to indicate the probability of an underestimation. Once the execution time has been

calculated the development process causes the engineer/task pair to wait until that time is

complete. If either the development queue is empty or the release date is met, the

development phase is completed. When development phases are complete any remaing

work in the development queue is returned to the containing minor release evolution

sequence. The remaining items in a minor release evolution sequence will be transferred

to the next minor release or next major release if this was the last minor release for the

current major release.

 Re-Planning Process. The final process is the release re-planning process, which

is depicted in Figure 42. This process, once activated during simulation initialization,

begins waiting for the next event to occur. The events that this process listens for include:

changes in work item/task priorities, changes in the technical debt level, changes in effort

estimates, changes in engineer productivities, changes in engineer preferences, changes in

117

release dates, changes in engineer or team velocity, or changes in engineer availability.

Once an event has been received it is determined whether re-planning is required. If re-

planning is required the simulation is halted and current tasks in progress and completed

tasks/work items are held in their positions in both strategic and operational release plans.

At this point depending on the amount of change that has occurred either operational

Figure 42. Re-planning process activity diagram.

Freeze Work Items Already
Completed

Freeze Tasks Already
Completed/Inprogress

Halt Simulation

Re-plan

Continue Simulation

Wait For Next Event

Change in ProductivityChange in Preference

Change in Make-span

Change in Availability

Change in VelocityChange in Priority Change in Effort

Change in TD

Is re-planning required

[true]

[else]

118

release planning for the current minor release is conducted, strategic release planning

(and then further operational planning) at the major release level is conducted, or

strategic release planning is conducted at the project level, major release level, and

operational planning is conducted at the minor release level.

Table 11. Parameters for the extended simulation framework.

Parameter Description
NumTeams The number of teams assigned to the system.
Engineers Meta-data describing each engineer including: team, name,

and availability.
Productivities The productivities for each task type for each engineer.
Preferences The preferences for each work item type for each engineer.
Work Items Meta-data describing work items including: Name, effort

required, priority, type, etc.
Tasks Meta-data describing tasks including: Name, work item, effort

required, etc.
MajorReleaseDuration Major release duration (in man-days) per major release (if

using pre-defined release durations)
MinorReleaseDuration Minor release duration (in man-days) per minor release (if

using pre-defined release durations)
PredefinedDurations Boolean value specifying whether pre-defined release

durations are in use.
MaxMinorRelease Maximum number of minor releases per major release.
MaxMajorRelease Maximum number of major releases per project.
InitialTD The level of technical debt currently in the system (man-days)
SystemSize The current size of the system (in KLOC)
Repository Meta-data describing the contents of the repository (at

simulation initialization).
TDThreshold Maximum level of technical debt before action will be taken.
TDOnlyTeams Boolean value representing whether TD remediation teams

are in use.
TDPercent Maximum amount of effort to be devoted by development

teams towards TD removal during a development phase.
TDProbDist A probability distribution representing the occurrence of

technical debt per task completed.
DefectProbDist A probability distribution representing the occurrence of

defects per task completed.

119

Simulation Parameters

There are several parameters for the simulation framework. These allow the user

to select from different forms of questions or to conform to different software

engineering processes. Each of the parameters are identified and described in Table 11.

Experimental Design

The Baseline Release Plan

Each experiment is designed as a proof-of-concept experiment to evaluate the

effects of uncertainty or changes in external parameters on the generated release plans. In

order to evaluate th is, we need to generate a baseline release plan for comparison. The

experiments considered in this chapter are based on those conducted by Al-Emran et al.

[42] [41]. Each experiment considers a group of 15 developers, 35 work items to be

developed, and 3 tasks per work item. For the set of developers, the task productivities

can be found in Table 12. For each work item to be developed Table 13 displays a listing

of the baseline parameters for each work item and associated tasks.

Technical Debt Strategy Impact Analysis

In this experiment, we are looking at the impact of different strategies of technical

debt management on technical debt removal. We are assuming that the base approach is

based on automated detection of technical debt items, which are tracked using a technical

debt list. We are attempting to evaluate the validity of using a team of software engineers

dedicated to the removal of tech nical debt in conjunction with the main development

team diverting a percentage of their time towards technical debt removal. In this

120

experiment we are evaluating how changes in these values affect technical debt removed

and make-span of a release using stochastic analysis. The associated TRIANG

distributions of the simulation parameters are listed in Table 13.

 The parameters under consideration are TD-Percent, which is the percentage of

effort the main development team will dedicate to technical debt removal, and TD-Only

Table 13. Triangular distributions of parameters to be used for stochastic analysis of
technical debt remaining comparison to a given baseline plan.

Case Variable Min(%) Peak(%) Max(%)

Worst
TD-Percent 0 0 0
TD-Only Team Size (% of dev team) 0 0 0

Poor
TD-Percent 0 0 10
TD-Only Team Size (% of dev team) 50 60 70

Good
TD-Percent 0 5 15
TD-Only Team Size (% of dev team) 70 80 100

Best
TD-Percent 15 20 30
TD-Only Team 100 125 150

Table 12. Developer productivities for each task type.

Developer Prod(k,1) Prod(k,2) Prod(k,3)
1 1 1.25 1
2 0 1 1.25
3 0.75 1 1
4 0.75 1.25 1
5 0.75 1 1.25
6 1 1.25 1.25
7 1 0.75 1
8 0 1 1
9 1.25 0.75 1
10 0.75 1.25 1
11 0.75 1 1.25
12 1 1.25 1.25
13 1 1.25 0
14 0.75 1 1.25
15 0 1.25 1

121

Team Size, which is a percentage of the size of the main development team. We will use

multiple replications to evaluate the impact of these changes on the technical debt

removed and make-span via comparison to the baseline plan.

Uncertainty Impact Analysis

 In this experiment, we are looking to determine the effects of uncertainty on the

release make-span and technical debt removed, in comparison to the baseline release. The

method of evaluation is through stochastic analysis. The analysis is conducted using

triangular distributions at various pessimism levels (see Table 14) for effort estimate,

productivity estimates, feature percentage changes, and percent developer unavailability.

The goal is to evaluate each of these factors independently, as well as, in the following

combinations [42]:

 Δܹݏ݉݁ݐ݅݇ݎ݋, Δݐݎ݋݂݂ܧ

 Δܹݏ݉݁ݐ݅݇ݎ݋, Δݏݎ݁݁݊݅݃݊ܧ

Table 14. Distribution of values for uncertainty factors across pessimism level [42].

Pessimism Level Uncertainty Factor Min(%) Peak(%) Max(%)

Bad

Effort -20 0 30
Productivity -30 0 20
Feature 0 0 30
Developer 0 0 30

Worse

Effort -10 0 40
Productivity -40 0 10
Feature 0 15 30
Developer 0 15 30

Worst

Effort 0 50 50
Productivity -50 -50 0
Feature 0 30 30
Developer 0 30 30

122

 Δܹݏ݉݁ݐ݅݇ݎ݋, Δܲݏ݁݅ݐ݅ݒ݅ݐܿݑ݀݋ݎ

 Δݐݎ݋݂݂ܧ, Δݏݎ݁݁݊݅݃݊ܧ

 Δݐݎ݋݂݂ܧ, Δܲݏ݁݅ݐ݅ݒ݅ݐܿݑ݀݋ݎ

 Δݏݎ݁݁݊݅݃݊ܧ, Δܲݏ݁݅ݐ݅ݒ݅ݐܿݑ݀݋ݎ

 Δܹݏ݉݁ݐ݅݇ݎ݋, Δݏݐݎ݋݂݂ܧ, Δݏݎ݁݁݊݅݃݊ܧ

 Δܹݏ݉݁ݐ݅݇ݎ݋, Δݏݐݎ݋݂݂ܧ, Δܲݏ݁݅ݐ݅ݒ݅ݐܿݑ݀݋ݎ

 Δܹݏ݉݁ݐܫ݇ݎ݋, Δݏݎ݁݁݊݅݃݊ܧ, Δܲݏ݁݅ݐ݅ݒ݅ݐܿݑ݀݋ݎ

 Δݏݐݎ݋݂݂ܧ, Δݏݎ݁݁݊݅݃݊ܧ, Δܲݏ݁݅ݐ݅ݒ݅ݐܿݑ݀݋ݎ

 Δܹݏ݉݁ݐܫ݇ݎ݋, Δݏݐݎ݋݂݂ܧ, Δݏݎ݁݁݊݅݃݊ܧ, Δܲݏ݁݅ݐ݅ݒ݅ݐܿݑ݀݋ݎ

Conclusion

This chapter details current work on the development of an extended framework

for decision analysis in the areas of release planning and technical debt management. We

have provided a conceptual model which is based on an existing simulation (see Chapter

6) and an underlying meta-model (see Chapter 4). The simulation model can be combined

with existing approaches to strategic and operational release planning, release re-

planning, and can model existing strategies for technical debt management (see Chapter

6). We have also included experiments to evaluate the sensitivity of the simulation and

approaches underlying the simulation to various changes in the development process. The

method of sensitivity analysis is based on one used by Al-Emran et al. [39] [42] [43] [81].

Using this method managers could easily update the simulation as development

123

approaches and given information (such as engineer availability changes) can be used to

adjust the simulation to see the effects they will have on the current project.

124

CONCLUSIONS AND FUTURE WORK

 In this thesis we have focused on the use of simulation as the underlying method

used to provide decision support in the areas of release planning and technical debt

management. We have provided an initial framework for software engineering decision

support in the areas of technical debt management and release planning (see Chapter 3).

Working towards this framework we have developed a domain meta-model which

captures and unifies the important concepts from both release planning and technical debt

management (see Chapter 4). Using the meta-model we developed a simulation

framework to support the decision support framework (see Chapter 6 and 7). We intially

used the simulation model to evaluate current technical debt management strategies used

in industry. Finally, our recent work (as detailed in Chapter 7) has focused on extending

this simulation model with the unified domain model to incorporate release planning

methods, and we presented this as the foundation of a decision support system which can

be used for both release planning and technical debt management.

 In the future we plan to extend this work in the following ways. First, we would

like to validate this work on industry projects. In order to do this we need to

operationalize the framework and develop a tool which can acquire the necessary data.

This would include the ability to connect to existing development support tools such as

SonarQube (for technical debt evaluation), source code repositories (i.e., SVN, Git, and

Mercurial), defect tracking systems such as Jira or FogBugz. Thus, the SEDS framework

proposed herein moves out of the realm of simply planning releases and identifying when

replanning should occur, but can then enter the realm of real time tracking of progress.

125

This will allow for a new form of decision support, one that will allow replanning events

based on thresholds of deviation from the ideal plan. This type of information will be

necessary in order to ensure that decisions regarding technical debt acquition are as

accurate as possible.

126

REFERENCES CITED

[1] M. Fowler, K. Beck, J. Brant, W. Opdyke and D. Roberts, Refactoring: Improving
the Design of Existing Programs, Addison-Weseley, 1999.

[2] W. Cunningham, "The WyCash portfolio management system," SIGPLAN OOPS
Mess., vol. 4, no. 2, pp. 29-30, December 1992.

[3] J. Kerievsky, Refactoring to patterns, Pearson Deutschland GmbH, 2005.

[4] C. Neill and P. Laplante, "Paying down design debt with strategic refactoring,"
Computer, vol. 39, no. 12, pp. 131-134, 2006.

[5] P. Kruchten, R. L. Nord and I. Ozkaya, "Technical Debt: From Metaphor to
Theory and Practice," Software, IEEE, vol. 29, no. 6, pp. 18-21, December 2012.

[6] N. Zazworka, A. Vetro, C. Izurieta, S. Wong, Y. Cai, C. Seaman and F. Shull,
"Comparing Four Approaches for Technical Debt Identification," Software
Quality Journal, pp. 1-24, 2012.

[7] N. Zazworka, M. A. Shaw, F. Shull and C. Seaman, "Investigating the impact of
design debt on software quality," in Proceedings of the 2nd Workshop on
Managing Technical Debt, Waikiki, Honolulu, HI, USA, 2011.

[8] C. Seaman and Y. Guo, "Measuring and monitoring technical debt," Advances in
Computers, vol. 82, pp. 25-46, 2011.

[9] E. Tom, A. Aurum and R. Vidgen, "An exploration of technical debt," Journal of
Systems and Software, vol. 86, no. 6, pp. 1498-1516, 2013.

[10] A. Nugroho, J. Visser and T. Kuipers, "An empirical model of technical debt and
interest," in Proceedings of the 2nd Workshop on Managing Technical Debt,
Waikiki, Honolulu, HI, USA, 2011.

[11] T. Klinger, P. Tarr, P. Wagstrom and C. Williams, "An enterprise perspective on
technical debt," in Proceedings of the 2nd Workshop on Managing Technical
Debt, Waikiki, Honolulu, HI, USA, 2011.

[12] T. Theodoropoulos, M. Hofberg and D. Kern, "Technical debt from the
stakeholder perspective," in Proceedings of the 2nd Workshop on Managing
Technical Debt, Waikiki, Honolulu, HI, USA, 2011.

127

[13] K. Schmid, "On the limits of the technical debt metaphor some guidance on going

beyond," in Managing Technical Debt (MTD 2013), 2013 4th International
Workshop on, 2013.

[14] K. Schmid, "A formal approach to technical debt decision making," in
Proceedings of the 9th international ACM Sigsoft conference on Quality of
software architectures, New York, NY, USA, 2013.

[15] R. O. Spinola, A. Vetro, N. Zazworka, C. Seaman and F. Shull, "Investigating
technical debt folklore: Shedding some light on technical debt opinion," in
Managing Technical Debt (MTD 2013), 2013 4th International Workshop on,
2013.

[16] Z. Codabux and B. Williams, "Managing technical debt: An industrial case study,"
in Managing Technical Debt (MTD 2013), 2013 4th International Workshop on,
2013.

[17] S. McConnell, "Managing Technical Debt," 2008.

[18] N. Brown, Y. Cai, Y. Guo, R. Kazman, M. Kim, P. Kruchten, E. Lim, A.
MacCormack, R. Nord, I. Ozkaya, R. Sangwan, C. Seaman, K. Sullivan and N.
Zazworka, "Managing technical debt in software-reliant systems," in Proceedings
of the FSE/SDP workshop on Future of software engineering research, Santa Fe,
New Mexico, USA, 2010.

[19] Y. Guo, C. Seaman, R. Gomes, A. Cavalcanti, G. Tonin, F. da Silva, A. L. M.
Santos and C. Siebra, "Tracking technical debt -- An exploratory case study,"
Software Maintenance (ICSM 2011), 2011 27th IEEE International Conference
on, pp. 528-531, 2011.

[20] Y. Guo and C. Seaman, "A portfolio approach to technical debt management," in
Proceedings of the 2nd Workshop on Managing Technical Debt, Waikiki,
Honolulu, HI, USA, 2011.

[21] F. Fontana, V. Ferme and S. Spinelli, "Investigating the impact of code smells
debt on quality code evaluation," in Managing Technical Debt (MTD 2012), 2012
Third International Workshop on, 2012.

[22] N. Zazworka, C. Seaman and F. Shull, "Prioritizing design debt investment
opportunities," in Proceedings of the 2nd Workshop on Managing Technical Debt,
Waikiki, Honolulu, HI, USA, 2011.

128

[23] K. Schmid, "Technical Debt -- From Metaphor to Engineering Guidance: A Novel

Approach based on Cost Estimation," 2013.

[24] M. G. Stochel, M. R. Wawrowski and M. Rabiej, "Value-Based Technical Debt
Model and Its Application," in ICSEA 2012, The Seventh International Conference
on Software Engineering Advances, 2012.

[25] B. Boehm and L. G. Huang, "Value-based software engineering: A case study,"
Computer, vol. 36, no. 3, pp. 33-41, 2003.

[26] J. Holvitie and V. Leppanen, "DebtFlag: Technical debt management with a
development environment integrated tool," in Managing Technical Debt (MTD),
2013 4th International Workshop on, 2013.

[27] D. Falessi, M. A. Shaw, F. Shull, K. Mullen and M. S. Keymind, "Practical
considerations, challenges, and requirements of tool-support for managing
technical debt," in Managing Technical Debt (MTD), 2013 4th International
Workshop on, 2013.

[28] N. Ramasubbu and C. F. Kemerer, "Towards a model for optimizing technical
debt in software products," in Managing Technical Debt (MTD 2013), 2013 4th
International Workshop on, 2013.

[29] R. J. Eisenberg, "A threshold based approach to technical debt," SIGSOFT Softw.
Eng. Notes, vol. 37, no. 2, pp. 1-6, April 2012.

[30] C. Izurieta, A. Vetro, N. Zazworka, Y. Cai, C. Seaman and F. Shull, "Organizing
the technical debt landscape," in Managing Technical Debt ({MTD}), 2012 Third
International Workshop on, 2012.

[31] J. Morgenthaler, M. Gridnev, R. Sauciuc and S. Bhansali, "Searching for build
debt: Experiences managing technical debt at Google," in Managing Technical
Debt (MTD 2012), 2012 Third International Workshop on, 2012.

[32] R. Marinescu, "Assessing and Improving Object-Oriented Design," 2012.

[33] R. Nord, I. Ozkaya, P. Kruchten and M. Gonzalez-Rojas, "In Search of a Metric
for Managing Architectural Technical Debt," in Software Architecture (WICSA)
and European Conference on Software Architecture (ECSA), 2012 Joint Working
IEEE/IFIP Conference on, 2012.

129

[34] J. L. Letouzey, "The SQALE method for evaluating Technical Debt," in Managing

Technical Debt (MTD 2012), 2012 Third International Workshop on, 2012.

[35] B. Curtis, J. Sappidi and A. Szynkarski, "Estimating the Principal of an
Application's Technical Debt," Software, IEEE, vol. 29, no. 6, pp. 34-42,
December 2012.

[36] B. Curtis, J. Sappidi and A. Szynkarski, "Estimating the size, cost, and types of
Technical Debt," in Managing Technical Debt (MTD 2012), 2012 Third
International Workshop on, 2012.

[37] C. Izurieta, I. Griffith, D. Reimanis and R. Luhr, "On the Uncertainty of Technical
Debt Measurements," in Information Science and Applications (ICISA), 2013
International Conference on, 2013.

[38] G. Ruhe, "Software release planning," Handbook of software engineering and
knowledge engineering, vol. 3, pp. 365-394, 2005.

[39] A. Al-Emran, K. Khosrovian, D. Pfahl and G. Ruhe, "Simulation-based
uncertainty analysis for planning parameters in operational product management,"
in Proceedings of the 10th International Conference on Integrated Design and
Process Technology, Antalya, Turkey, 2007.

[40] A. Al-Emran and D. Pfahl, "Operational Planning, Re-planning and Risk Analysis
for Software Releases," in Product-Focused Software Process Improvement, vol.
4589, J. Münch and P. Abrahamsson, Eds., Springer Berlin Heidelberg, 2007, pp.
315-329.

[41] A. Al-Emran, A. Jadallah, E. Paikari, D. Pfahl and G. Ruhe, "Application of re-
estimation in re-planning of software product releases," in New Modeling
Concepts for Today's Software Processes, Springer, 2010, pp. 260-272.

[42] A. Al-Emran, P. Kapur, D. Pfahl and G. Ruhe, "Simulating worst case scenarios
and analyzing their combined effect in operational release planning," in Making
Globally Distributed Software Development a Success Story, Springer, 2008, pp.
269-281.

[43] A. Al-Emran, P. Kapur, D. Pfahl and G. Ruhe, "Studying the impact of uncertainty
in operational release planning -- An integrated method and its initial evaluation,"
Information and Software Technology, vol. 52, no. 4, pp. 446-461, 2010.

[44] A. Al-Emran, D. Pfahl and G. Ruhe, "DynaReP: A Discrete Event Simulation
Model for Re-planning of Software Releases," in Software Process Dynamics and

130

Agility, vol. 4470, Q. Wang, D. Pfahl and D. M. Raffo, Eds., Springer Berlin
Heidelberg, 2007, pp. 246-258.

[45] O. Saliu and G. Ruhe, "Software release planning for evolving systems,"
Innovations in Systems and Software Engineering, vol. 1, no. 2, pp. 189-204,
2005.

[46] C.-W. Chiang and Y.-Q. Huang, "Comparison of ant-inspired search techniques
for software release planning," in Fuzzy Theory and it's Applications (iFUZZY
2012), 2012 International Conference on, 2012.

[47] G. Ruhe, "Software engineering decision support: methodology and applications,"
Innovations in decision support systems, vol. 3, pp. 143-174, 2003.

[48] Amandeep, G. Ruhe and M. Stanford, "Intelligent Support for Software Release
Planning," in Product Focused Software Process Improvement, vol. 3009, F.
Bomarius and H. Iida, Eds., Springer Berlin Heidelberg, 2004, pp. 248-262.

[49] P. Husbands, "Genetic algorithms for scheduling," AISB Quarterly, vol. 89, pp.
38-45, 1994.

[50] G. Ruhe and A. N. The, "Hybrid intelligence in software release planning,"
International Journal of Hybrid Intelligent Systems, vol. 1, no. 1, pp. 99-110,
2004.

[51] J. T. Souza, C. L. B. Maia, T. N. Ferreira, R. A. F. Carmo and M. M. A. Brasil,
"An Ant Colony Optimization Approach to the Software Release Planning with
Dependent Requirements," in Search Based Software Engineering, vol. 6956, M.
B. Cohen and M. Ó Cinnéide, Eds., Springer Berlin Heidelberg, 2011, pp. 142-
157.

[52] G. Ruhe and M. O. Saliu, "The Science and Practice of Software Release
Planning," University of Calgary, 2005.

[53] G. Ruhe and J. Momoh, "Strategic Release Planning and Evaluation of
Operational Feasibility," in System Sciences, 2005. HICSS '05. Proceedings of the
38th Annual Hawaii International Conference on, 2005.

[54] K. Schwaber and M. Beedle, Agile Software Development with Scrum, 1 ed.,
Upper Saddle River, New Jersey: Prentice Hall, 2001.

131

[55] A. Bagnall, V. Rayward-Smith and I. Whittley, "The next release problem,"

Information and Software Technology, vol. 43, no. 14, pp. 883-890, 2001.

[56] H.-W. Jung, "Optimizing value and cost in requirements analysis," Software,
IEEE, vol. 15, no. 4, pp. 74-78, 1998.

[57] A. Ngo-The and G. Ruhe, "A systematic approach for solving the wicked problem
of software release planning," Soft Computing, vol. 12, no. 1, pp. 95-108, 2008.

[58] F. Colares, J. Souza, R. Carmo, C. Padua and G. Mateus, "A New Approach to the
Software Release Planning," in Software Engineering, 2009. SBES '09. XXIII
Brazilian Symposium on, 2009.

[59] G. Ruhe, Product Release Planning: Methods, Tools and Applications, Auerbach
Publications, 2011.

[60] J. Duggan, J. Byrne and G. Lyons, "A task allocation optimizer for software
construction," Software, IEEE, vol. 21, no. 3, pp. 76-82, June 2004.

[61] D. Greer and G. Ruhe, "Software release planning: an evolutionary and iterative
approach," Information and Software Technology, vol. 46, no. 4, pp. 243-253,
2004.

[62] M. Ramzan, M. Iqbal, M. Jaffar, A. Rauf, S. Anwar and A. Shahid, "Project
Scheduling Conflict Identification and Resolution Using Genetic Algorithms," in
Information Science and Applications (ICISA), 2010 International Conference on,
2010.

[63] H. W. J. Rittel and M. M. Webber, "Planning problems are wicked problems,"
Developments in design methodology, pp. 135-144, 1984.

[64] M. Svahnberg, T. Gorschek, R. Feldt, R. Torkar, S. B. Saleem and M. U.
Shafique, "A systematic review on strategic release planning models," Information
and software technology, vol. 52, no. 3, pp. 237-248, 2010.

[65] Handbook on Scheduling, Berlin, Heidelberg: Springer Berlin Heidelberg, 2007.

[66] R. K. Wysocki, Effective software project management, Indianapolis, IN: Wiley,
2006.

[67] C. K. Chang, M. J. Christensen and T. Zhang, "Genetic Algorithms for Project
Management," Annals of Software Engineering, vol. 11, no. 1, pp. 107-139, 2001.

132

[68] T. Abdel-Hamid, "The dynamics of software project staffing: a system dynamics

based simulation approach," IEEE Transactions on Software Engineering, vol. 15,
no. 2, pp. 109-119, Feb 1989.

[69] N. Fenton, W. Marsh, M. Neil, P. Cates, S. Forey and M. Tailor, "Making
resource decisions for software projects," 2004.

[70] G. Antoniol, M. Di Penta and M. Harman, "Search-based techniques applied to
optimization of project planning for a massive maintenance project," in Software
Maintenance, 2005. ICSM'05. Proceedings of the 21st IEEE International
Conference on, 2005.

[71] A. Barreto, M. d. O. Barros and C. M. Werner, "Staffing a software project: A
constraint satisfaction and optimization-based approach," Computers &
Operations Research, vol. 35, no. 10, pp. 3073-3089, Oct 2008.

[72] S. Hartmann, "A competitive genetic algorithm for resource-constrained project
scheduling," Naval Research Logistics, vol. 45, no. 7, pp. 733-750, Oct 1998.

[73] M. M. Rahman, G. Ruhe and T. Zimmermann, "Optimized assignment of
developers for fixing bugs an initial evaluation for eclipse projects," 2009.

[74] M. Przepiora, R. Karimpour and G. Ruhe, "A hybrid release planning method and
its empirical justification," 2012.

[75] M. Nayebi and G. Ruhe, "An open innovation approach in support of product
release decisions," 2014.

[76] A. van Lamsweerde, "Requirements engineering in the year 00: a research
perspective," 2000.

[77] G. Kotonya and M. Sommerville, Requirements engineering: processes and
techniques, Chichester ; New York: J. Wiley, 1998.

[78] T. Albourae, G. Ruhe and M. Moussavi, "Lightweight Replanning of Software
Product Releases," in Software Product Management, 2006. IWSPM '06.
International Workshop on, 2006.

[79] H. Kellerer, U. Pferschy and D. Pisinger, Knapsack Problems, Berlin, Heidelberg:
Springer Berlin Heidelberg, 2004.

133

[80] T. L. Saaty, "Analytic hierarchy process," in Encyclopedia of Operations Research

and Management Science, Dordrecht, Kluwer Academic Publishers, pp. 19-28.

[81] A. Al-Emran, D. Pfahl and G. Ruhe, "A method for re-planning of software
releases using discrete-event simulation," Software Process: Improvement and
Practice, vol. 13, no. 1, pp. 19-33, Jan 2008.

[82] A. Jadallah, A. Al-Emran, M. Moussavi and G. Ruhe, "The how? when? and
what? for the process of re-planning for product releases," in Trustworthy
Software Development Processes, vol. 5543, Q. Wang, V. Garousi, R. Madachy,
D. Pfahl, D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C.
Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan, D.
Terzopoulos, D. Tygar, M. Y. Vardi and G. Weikum, Eds., Berlin, Heidelberg,
Springer Berlin Heidelberg, 2009.

[83] M. Golfarelli, S. Rizzi and E. Turricchia, "Multi-sprint planning and smooth
replanning: An optimization model," Journal of Systems and Software, vol. 86, no.
9, pp. 2357-2370, Sep 2013.

[84] D. F. Bacon, D. C. Parkes, Y. Chen, M. Rao, I. Kash and M. Sridharan,
"Predicting your own effort," in Proceedings of the 11th International Conference
on Autonomous Agents and Multiagent Systems - Volume 2, Valencia, Spain,
2012.

[85] M. Klein, G. A. Moreno, D. C. Parkes and K. Wallnau, "Designing for incentives:
better information sharing for better software engineering," in Proceedings of the
FSE/SDP workshop on Future of software engineering research, Santa Fe, New
Mexico, USA, 2010.

[86] M. Yilmaz and R. V. O'Connor, "Maximizing the value of the software
development process by game theoretic analysis," in Proceedings of the 11th
International Conference on Product Focused Software, Limerick, Ireland, 2010.

[87] G. Bavota, R. Oliveto, A. De Lucia, G. Antoniol and Y. Gueheneuc, "Playing with
refactoring: Identifying extract class opportunities through game theory," in
Software Maintenance (ICSM 2010), 2010 IEEE International Conference on,
2010.

[88] J. H. Dréze and J. Greenberg, "Hedonic Coalitions: Optimality and Stability,"
Econometrica, vol. 48, no. 4, pp. 987-1003, 1980.

[89] A. Bogomolnaia and M. O. Jackson, "The Stability of Hedonic Coalition
Structures," Games and Economic Behavior, vol. 38, no. 2, pp. 201-230, 2002.

134

[90] W. Saad, Z. Han, T. Basar, M. Debbah and A. Hjorungnes, "A selfish approach to

coalition formation among unmanned air vehicles in wireless networks," 2009.

[91] W. Saad, Z. Han, M. Debbah, A. Hjorungnes and T. Basar, "Coalitional game
theory for communication networks," IEEE Signal Processing Magazine, vol. 26,
no. 5, pp. 77-97, September 2009.

[92] H. Zhang, B. Kitchenham and D. Pfahl, "Software Process Simulation Modeling:
Facts, Trends and Directions," in Software Engineering Conference, 2008. APSEC
'08. 15th Asia-Pacific, 2008.

[93] M. I. Kellner, R. J. Madachy and D. M. Raffo, "Software process simulation
modeling: why? what? how?," Journal of Systems and Software, vol. 46, no. 2, pp.
91-105, 1999.

[94] T. Magennis, Forecasting and Simulating Software Development Projects:
Effective Modeling of Kanban & Scrum Projects using Monte-carlo simulation,
CreateSpace Independent Publishing Platform, 2011.

[95] F. Glaiel, A. Moulton and S. Madnick, "Agile Project Dynamics: A System
Dynamics Investigation of Agile Software Development Methods," 2013.

[96] B. Spasic and B. S. S. Onggo, "Agent-based simulation of the software
development process: A case study at AVL," 2012.

[97] G. Ruhe, "Software Engineering Decision Support - A New Paradigm for
Learning Software Organizations," in Advances in Learning Software
Organizations, vol. 2640, S. Henninger, F. Maurer, G. Goos, J. Hartmanis and J.
Leeuwen, Eds., Berlin, Heidelberg, Springer Berlin Heidelberg, 2003, pp. 104-
113.

[98] O. Saliu and G. Ruhe, "Supporting Software Release Planning Decisions for
Evolving Systems," in Software Engineering Workshop, 2005. 29th Annual
IEEE/NASA, 2005.

[99] G. Ruhe and D. Greer, "Quantitative studies in software release planning under
risk and resource constraints," in Empirical Software Engineering, 2003. ISESE
2003. Proceedings. 2003 International Symposium on, 2003.

[100] G. Ruhe and M. Saliu, "The art and science of software release planning,"
Software, IEEE, vol. 22, no. 6, pp. 47-53, December 2005.

135

[101] P. Carlshamre, K. Sandahl, M. Lindvall, B. Regnell and J. Natt och Dag, "An

industrial survey of requirements interdependencies in software product release
planning," in Requirements Engineering, 2001. Proceedings. Fifth IEEE
International Symposium on, 2001.

[102] T. L. Saaty, "How to make a decision: The analytic hierarchy process," European
Journal of Operational Research, vol. 48, no. 1, pp. 9-26, September 1990.

[103] L. Lehtola and M. Kauppinen, "Suitability of requirements prioritization methods
for market-driven software product development," Software Process:
Improvement and Practice, vol. 11, no. 1, pp. 7-19, 2006.

[104] L. Rajbhandari and E. Snekkenes, "An approach to measure effectiveness of
control for risk analysis with game theory," in Socio-Technical Aspects in Security
and Trust (STAST), 2011 1st Workshop on, 2011.

[105] L. Lehtola, M. Kauppinen and S. Kujala, "Requirements Prioritization Challenges
in Practice," in Product Focused Software Process Improvement, vol. 3009, F.
Bomarius and H. Iida, Eds., Springer Berlin Heidelberg, 2004, pp. 497-508.

[106] V. Heikkila, A. Jadallah, K. Rautiainen and G. Ruhe, "Rigorous Support for
Flexible Planning of Product Releases - A Stakeholder-Centric Approach and Its
Initial Evaluation," in System Sciences (HICSS), 2010 43rd Hawaii International
Conference on, 2010.

[107] P. Carlshamre, "Release Planning in Market-Driven Software Product
Development: Provoking an Understanding," Requirements Engineering, vol. 7,
no. 3, pp. 139-151, 2002.

[108] S. McConnell, Software Estimation: Demystifying the Black Art, Microsoft Press,
2006.

[109] M. Denne and J. Cleland-Huang, "The incremental funding method: data-driven
software development," IEEE Software, vol. 21, no. 3, pp. 39-47, May 2004.

[110] K. Moløkken-Østvold, N. C. Haugen and H. C. Benestad, "Using planning poker
for combining expert estimates in software projects," Journal of Systems and
Software, vol. 81, no. 12, pp. 2106-2117, 2008.

[111] M. Cohn, Agile estimating and planning, Prentice Hall, 2006.

136

[112] G. Rowe and G. Wright, "The Delphi technique as a forecasting tool: issues and

analysis," International Journal of Forecasting, vol. 15, no. 4, pp. 353-375, 1999.

[113] T. Menzies, Z. Chen, J. Hihn and K. Lum, "Selecting Best Practices for Effort
Estimation," Software Engineering, IEEE Transactions on, vol. 32, no. 11, pp.
883-895, 2006.

[114] R. Tamrakar and M. Jørgensen, "Does the use of Fibonacci numbers in Planning
Poker affect effort estimates?," in Evaluation & Assessment in Software
Engineering, 16th International Conference on, Cludad Real, Spain, 2012.

[115] M. Woodridge, An Introduction to MultiAgent Systems, John Wiley & Sons, Ltd.,
2009.

[116] C. Sterling, Managing Software Debt: Building for Inevitable Change, Addison-
Wesley Professional, 2010.

[117] R. B. Myerson, Game theory: analysis of conflict, Harvard university press, 2013.

[118] R. DeMillo, R. Lipton and F. Sayward, "Hints on Test Data Selection: Help for the
Practicing Programmer," Computer, vol. 11, no. 4, pp. 34-41, Apr 1978.

[119] C. Izurieta, G. Poole, R. Payn, I. Griffith, R. Nix, A. Helton, E. Bernhardt and A.
Burgin, "Development and Application of a Simulation Environment (NEO) for
Integrating Empirical and Computational Investigations of System-Level
Complexity," in Information Science and Applications (ICISA), 2012 International
Conference on, 2012.

[120] T. D. Cook and D. T. Campbell, Quasi-experimentation: design & analysis issues
for field settings, Boston: Houghton Mifflin, 1979.

[121] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell and A. Wesslén,
Experimentation in Software Engineering, Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012.

[122] H. Liu, Z. Ma, W. Shao and Z. Niu, "Schedule of Bad Smell Detection and
Resolution: A New Way to Save Effort," Software Engineering, IEEE
Transactions on, vol. 38, no. 1, pp. 220-235, Feb 2012.

[123] Y. Luo, A. Hoss and D. Carver, "An ontological identification of relationships
between anti-patterns and code smells," in Aerospace Conference, 2010 IEEE,
2010.

137

[124] W. Opdyke, "Refactoring object-oriented frameworks," 1992.

[125] R. Marinescu, "Assessing technical debt by identifying design flaws in software
systems," IBM Journal of Research and Development, vol. 56, no. 5, pp. 9:1-9:13,
October 2012.

[126] S. McConnell, Code Complete: A Practical Handbook of Software Construction, 2
ed., Redmond, Washington: Microsoft Press, 2004.

[127] H. Sharp, A. Finkelstein and G. Galal, "Stakeholder identification in the
requirements engineering process," in Database and Expert Systems Applications,
1999. Proceedings. Tenth International Workshop on, 1999.

[128] T. Ritchey, Wicked Problems--Social Messes, Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011.

138

APPENDIX A

NORMAL Q-Q PLOTS FOR COALTION FORMATION GAME EXPERIMENTS

139

Figure 43. Normal Q-Q plots for experiment 1.

140

Figure 44. Normal Q-Q plots for experiment 2.

