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ABSTRACT 
 
 

Software quality assurance (QA) techniques seek to provide software developers 
and managers with the methods and tools necessary to monitor their software product to 
encourage fast, on-time, and bug-free releases for their clients. Ideally, QA methods and 
tools provide significant value and highly-specialized results to product stakeholders, 
while being fully incorporated into an organization’s process and with actionable and 
easy-to-interpret outcomes. However, modern QA techniques fall short on these goals 
because they only feature structural analysis techniques, which do not fully illuminate all 
intricacies of a software product. Additionally, many modern QA methods are not 
capable of capturing domain-specific concerns, which suggests their results are not 
fulfilling their potential. 

To assist in the remediation of these issues, we have performed a comprehensive 
study to explore an unexplored phenomenon in the field of QA, namely model-based 
behavioral analysis. In this sense, behavioral analysis refers to the mechanisms that occur 
in a software product as the product is executing its code, at system run-time. We 
approach this problem from a model-based perspective because models are not tied to 
program-specific behaviors, so findings are more generalizable. Our procedure follows an 
intuitive process, involving first the identification of model-based behavioral issues, then 
the classification and categorization of these behavioral issues into a taxonomy, and 
finally the evaluation of them in terms of their effect on software quality.  

Our results include a taxonomy that captures and provides classifications for 
known model-based behavioral issues. We identified relationships between behavioral 
issues and existing structural issues to illustrate that the inclusion of behavioral analysis 
provides a new perspective into the inner mechanisms of software systems. We extended 
an existing state-of-the-art operational software quality measurement technique to 
incorporate these newfound behavioral issues. Finally, we used this quality extension to 
evaluate the effects of behavioral issues on system quality, and found that software 
quality has a strong inverse relationship with behavioral issues. 
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CHAPTER ONE 

 
INTRODUCTION 

 
 

1.0 Foreword 
 

 
This chapter introduces several foundational concepts and provides motivation for 

the greater work in this dissertation. In section 1.1 we state the problem statement, 

followed by the general process employed to complete the body of work in section 1.2. 

We conclude Chapter 1 with an overview of each following chapter in section 1.3. 

 
1.1 Problem Statement 

 
 
 Software quality assurance techniques provide software developers and managers 

with the methods and tools necessary to monitor their software product(s) to encourage 

fast, on-time, and bug-free releases for their clients. Ideal circumstances hold that the 

methods and tools of software quality assurance provide significant value and highly-

specialized results to product stakeholders. Additionally, and with recent pushes towards 

process automation, ideally these methods and tools would be fully incorporated into an 

organization’s continuous integration and continuous delivery process and with 

actionable and easy-to-interpret results. However, modern approaches fall short on these 

goals, and while many QA techniques exist that provide results to stakeholders, many 

times these results do not provide their stated value or are simply ignored. We claim this 

is due to two primary influences. First, current software QA approaches do not fully 

reveal all aspects of a software product in part because of their focus on static, or 
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structural analysis. By itself, static analysis is not an impairment, yet it fails to provide 

sufficient insight into a product’s inner-workings to allow for a thorough analysis. 

Second, many QA techniques provide general packaged solutions, which fail to capture 

domain-specific concerns. Different software stakeholders have different expectations of 

quality, both from an end-user perspective and from an internal code quality perspective. 

Modern packaged solutions do not provide maximum value because they either do not 

allow for the ability to configure the solution to cater to specific needs, or the 

customizations they provide are difficult to implement because of the arbitrary process in 

which such a solution is calibrated. This logic forms the basis for our research, and a 

formal problem statement is presented: 

Under ideal circumstances, software quality assurance efforts 

provide significant, highly-specialized, and immediate value to 

software product stakeholders. However, many modern 

approaches fall short of their goals, due to lack of models that fully 

capture the entities of a system, as well as models that fail to 

capture domain specific concerns.  

To assist in the remediation of these issues, we have committed to the exploration 

of model-based behavioral analysis techniques, which consider the mechanisms that 

occur as a product is executing its code at runtime from a modeling perspective. 

Specifically, we focus on design pattern evolution because of the known quality 

properties of design patterns, yet our methods are generalizable in context where product 

behavior from a modeling perspective is explicitly defined. The exploration of behavioral 
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analysis techniques complements existing structural analysis techniques, expanding upon 

the capabilities of state-of-the-art QA techniques. Furthermore, the manner in which we 

developed and evaluated these newfound capabilities, via extending an existing quality 

model that is highly-customizable yet easy-to-use and interpret, encourages a 

straightforward and non-arbitrary customization that fits all domains.  

 
1.2 Solution Design 

 
 

‘Design Science’ is a term that refers to the design and investigation of artifacts in 

a context to solve a problem [84]. Specifically, design science is concerned with solving 

problems by understanding the interactions between artifacts and contexts; artifacts and 

contexts exist as such, but to understand them fully researchers must understand the 

nature of the relationship between them, such as how the design of an artifact improves a 

context or how the context instigates the development of new artifacts. To this end, 

design science contains two kinds of research problems, design problems and knowledge 

questions [84]. Design problems are concerned with the design of a change in the real 

world, many times via an artifact, to solve a problem. Alternatively, knowledge questions 

are concerned with questioning the world as it is, many times via a propositional 

statement, such as ‘Is x good enough?’. The interactions between design problems and 

knowledge questions forms a cycle; new design problems are created to solve knowledge 

questions, and knowledge questions provide inspiration for new design problems. 

Depending on the direction of the interaction, the cycle of knowledge acquisition is 

referred to as a design cycle or an empirical cycle. A design cycle captures the design 
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problem to knowledge question direction, and an empirical cycle captures to knowledge 

question to design problem direction. This greater process is generalized into a 

framework, which is presented in figure 1.1 [84]. 

 

Figure 1.1 incorporates contexts into the interactions of design problems and 

knowledge questions [84]. The social context element at the top of figure 1.1 refers to the 

stakeholders of a particular project, many times being the fiscal beneficiaries of the 

development of a project. The knowledge context element at the bottom of figure 1.1. 

refers to the existing theories and what many times is considered the academic 

perspective of knowledge acquisition. We use this design science framework to help 

shape and direct the research presented herein.  

 
Figure 1.1: Framework for design science, image from Wieringa [84]. 
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Figure 1.2, inspired by [85], shows the problem decomposition overview of this 

research project, to address our problem statement. The orange box near the top of the 

figure presents the problem statement. The blue boxes on the left-hand side of the figure 

showcase the knowledge questions that we encountered, following the format of the 

design science framework [84]. The green boxes on the right-hand side of the figure are 

the empirical studies that were carried out to complete the empirical cycle, from a 

particular knowledge question. The chapter references for each empirical cycle are 

presented next to the green boxes. The figure is divided horizontally into three separate 

stages of research, part 1 pertaining to problem space identification, part 2 corresponding 

to a proposal of a solution that satisfies the problem, and part 3 corresponding to the 

studies that fulfilled the proposal. The remainder of this document follows the flow 

presented in this figure. 
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1.3 Chapter Overviews 

 
 

Chapter 2 presents a replication case study performed in a commercial 

environment wherein a structural analysis technique, namely modularity violation 

detection, was applied to several versions of the software product. Modularity violations 

represent relationships between two or more files or classes in different modules that 

should not share a relationship. By themselves, relationships across modules are 

expected; such provide functionality to a project. However, when the relationship is not 

 
Figure 1.2: Problem decomposition overview, inspired by [85]. 
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expected, (i.e. a forgotten dependency), quality is sacrificed. In this study, we found that 

a select-few files contributed to the majority of modularity violations in the project. 

These files were also strongly correlated with modifications linked to bug-related fixes in 

future releases of the product. This suggests such files should be refactored to encourage 

less defects, good quality, subsequent quick releases of the product. However, the 

developers working on this product already knew about these files from their experience 

of the product, and had already begun efforts to improve the select few-files via 

refactorings. The research complemented developer intuition, suggesting that QA 

methods are capable of identifying issues that developers notice as well. Additionally, 

these results provided validity for developers, re-enforcing that their decision to refactor 

was a good decision. 

Chapter 3 presents a case study that investigates the commonalities between five 

methods of estimating technical debt principal, compared to an external quality model. 

Both a correlation analysis and a regression analysis were performed to evaluate whether 

the technical debt estimation approaches can be related to the attributes of the QMOOD 

[7] quality model. Initially, the correlation analysis identified strong correlations between 

three of the estimate methods and system reusability and understandability. Though the 

further regression analysis yielded that with the exception of one technical debt 

estimation method (for flexibility and effectiveness) there was no observable relationship 

between the quality attributes and the technical debt estimates. This result suggests that 

state-of-the-art methods and tools for measuring software quality disagree on what they 
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consider to be quality factors, indicating that out-of-the-box implementations of quality 

models do not provide accurate estimates of quality. 

Chapter 4 provides a brief interlude that synthesizes the results from Chapters 2 

and 3 to identify a research gap. Chapter 2 illustrates the value that structural QA 

techniques provide to software stakeholders, and Chapter 3 suggests that out-of-the-box 

implementations of quality and TD analysis tools did not produce results that aligned 

with one another. This reveals a gap pertaining to behavioral analysis capabilities, which 

can complement existing structural approaches. Additionally, the introduction of domain-

specific parameters into behavioral techniques will provide configurable tools that better 

estimate quality and TD. 

Chapter 5 illustrates the results from a presentation [63] to the greater empirical 

software engineering community at the International Doctoral Symposium on Empirical 

Software Engineering (IDoESE’15), of a proposed plan of action to address this clear gap 

in the research. The paper describes a plan that explores behavioral deviations in the 

context of design pattern evolution, to ultimately supply practitioners and managers with 

more advanced and useful techniques to monitor and act on software QA. The feedback 

we received indicated that our four goals were ambitious, and it was suggested we reduce 

the scope of our work. We elected to remove requirements to predict behavioral 

deviations. 

Chapter 6 describes a publication from the International Conference on Software 

Reuse (ICSR’19) conference [83], and a work-in-progress submission to the IEEE 

Transactions on Software Engineering. The paper presents the results from the remaining 
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two research goals. These goals are paraphrased as: (1) “investigation of design pattern 

instances for the purpose of identifying and characterizing behavioral grime,” and (2) 

“quantify the impact of behavioral grime on quality and TD.” To address the first goal, 

we constructed a taxonomy of design pattern behavioral grime that includes all known 

forms of behavioral grime, and is used as a complementary device to existing structural 

taxonomies. The taxonomy is published as part of a greater body of work [86]. We then 

evaluated the relationship between behavioral grime and structural grime, to illustrate 

how the two forms of analysis can complement one another. We found that strong 

relationships exists between five pairs of structural and behavioral grime, specifically 

TEER/PEE, PEER/TEE, PEAO/PI, PEAO/TEA, and PEAO/TI. To address the second 

goal, we extended an existing state-of-the-art operational quality model, QATCH [70], to 

incorporate model-based behavioral issues, and we used the extended model to evaluate 

the relationship between behavioral grime, quality and TD. We found that the presence of 

behavioral grime has a strong negative correlation with system quality, and a strong 

negative correlation with Maintainability, which serves as a surrogate measurement to 

TD.  
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CHAPTER TWO 
 

A REPLICATION CASE STUDY TO MEASURE THE ARCHITECTURAL QUALITY 

OF A COMMERCIAL SYSTEM1 

 
2.0 Abstract 

 
 
 Context: Long-term software management decisions are directly impacted 

by the quality of the software’s architecture. Goal: Herein, we present a 

replication case study where structural information about a commercial software 

system is used in conjunction with bug-related change frequencies to measure and 

predict architecture quality. Method: Metrics describing history and structure 

were gathered and then correlated with future bug- related issues; the worst of 

which were visualized and presented to developers. Results: We identified 

dependencies between components that change together even though they belong 

to different architectural modules, and as a consequence are more prone to bugs. 

We validated these dependencies by presenting our results back to the developers. 

The developers did not identify any of these dependencies as unexpected, but 

rather architectural necessities. Conclusions: This replication study adds to the 

knowledge base of CLIO (a tool that detects architectural degradations) by 

incorporating a new programming language (C++) and by externally replicating a 

                                                 
1 Based on: 
Reimanis D., Izurieta C., Luhr R., Xiao L., Cai Y., Rudy G., "A Replication Case Study to 
Measure the Architectural Quality of a Commercial System," 8th ACM-IEEE International 
Symposium on Empirical Software Engineering and Measurement, ESEM 2014, Torino, Italy, 
September 2014. 

http://www.cs.montana.edu/izurieta/pubs/reimanis_esem_2014.pdf
http://www.cs.montana.edu/izurieta/pubs/reimanis_esem_2014.pdf
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previous case study on a separate commercial code base. Additionally, we provide 

lessons learned and suggestions for future applications of CLIO. 

 
2.1 Introduction 

 
 
 Building confidence in previous results helps to increase the strength and the 

importance of findings. It is especially important to strive for external validation of 

results by independent researchers, as has been done by the replication study presented 

herein. To date, the field of Empirical Software Engineering lacks in the number of 

replication studies. Additionally, most of the existing guidelines found in the literature 

focus on formal experiments [8] [12] [40] [69]. In this paper, we present the findings of 

an external replication case-study. We present our results by borrowing from the existing 

experimentation terminology and we have structured our findings consistent with 

expected sections as delineated by Wohlin et al. [78]. 

The motivation behind this study stems from a desire to see if the techniques used 

by Schwanke et al. [68] to uncover architecture- related risks in a Java agile development 

environment (using architecture and history measures) can also be applied to a 

commercial C++ development environment. This is important because we wanted to 

evaluate the deployment of this technology in an industrial setting of a successful 

company with strict quality controls. We were also interested to see if the observations 

we make can be used to build consensus in explaining a form of architectural decay, 

where decay is defined as the structural breakdown of agreed upon solutions [39]. 
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We applied CLIO [79], a tool designed to uncover modularity violations, to a commercial 

software system developed by a local bioinformatics company –Golden Helix2. The latter 

allowed us access to their software code base to investigate potential architectural 

disharmonies. 

This chapter is organized as follows: Section 2.2 discusses background and 

related work; Section 2.3 explains the importance of replication in empirical software 

engineering and our approach to classifying this study; Section 2.4 discusses the method 

followed by our replication; Section 2.5 explores how the method was carried out, 

including deviations and challenges encountered from the baseline method, results and 

developer feedback; Section 2.6 discusses the relation of our results to the baseline study. 

Section 2.7 discusses the threats to validity in our study; and Section 2.8 concludes this 

chapter with lessons learned from this study and suggestions of future work.  

 
2.2 Background and Related Work 

 
 
2.2.1 Modularity Violations 

 Baldwin and Clark [6] define a module as “a unit whose structural elements are 

powerfully connected among themselves and relatively weakly connected to elements in 

other units.” Identifying violations in modules (hereafter referred to as modularity 

violations) is important because it allows developers to find code that exhibits bad 

structural design. Identifying such violations early in the lifecycle leads to proactive 

module refactoring. However, early detection of modularity violations is difficult because 

                                                 
2 Golden Helix Inc.; http://www.goldenhelix.com 
 

http://www.goldenhelix.com/
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they do not always exhibit negative influences on the functionality of the software system. 

It is entirely possible for a system to function as intended, yet still contain modularity 

violations. If these violations are left uncorrected, they can lead to architectural decay, 

which would slowly cripple production. 

Zazworka et al. [82] used the modularity violations findings from a CLIO case 

study and compared them to three other technical debt identification approaches. They 

found that modularity violations contribute to technical debt in the Hadoop open source 

software system. Technical debt [19] is a well-known metaphor that describes the tradeoffs 

between making short term decisions (i.e., time to market) at the expense of long term but 

high software quality (i.e., low coupling). The debt incurred during the lifetime of a 

software system can be measured as a function of cost (monetary or effort) with added 

interest. Often, debt happens because of quick and dirty implementation decisions –usually 

occurring when a development team is trying to meet a deadline. Technical debt is 

dangerous if not managed because it can result in a costly refactoring process. Techniques 

to slow down the accumulation of technical debt can benefit from early detection of 

modularity violations. 

 
2.2.2 CLIO 

 CLIO was developed by Wong et al. [79] as a means to identify modularity 

violations in code. Wong et al. evaluated CLIO by running it on two different open source 

Java projects, Eclipse JDT3 and Hadoop Common4. The results showed that hundreds of 

                                                 
3 The Eclipse Project; http://www.eclipse.org 
4 Apache Hadoop Common; http://hadoop.apache.org 

http://www.eclipse.org/
http://hadoop.apache.org/
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violations identified by CLIO were fixed in later versions of the software. CLIO finds 

violations within modules by looking not only at the source code of a project, but also at 

its version history. It helps developers identify unknown modular level violations in 

software. Although developers will identify some violations, specifically if the violations 

prove to be bothersome, the difficulty of finding all modularity violations is quite great. 

CLIO validates that its reports are useful by confirming that previously detected violations 

are indeed fixed in later versions of the software. The results that Wong et al. [79] obtained 

showed that CLIO could detect these modularity violations much earlier than developers 

who were manually checking for them. This means that CLIO can be used in software 

systems to identify modularity violations early in the development process to save time and 

money by not having to check for them manually. 

Schwanke et al. [68] expanded upon this work by using CLIO on an agile industrial 

software development project. They looked specifically at the architectural quality of the 

software. They used a clustering algorithm to observe how files changed together without 

developer knowledge, and the impact that change had on the quality of the architecture, as 

measured by source code changes because of bugs. They reported several modularity 

violations to developers. The developers issued a refactoring because the modularity 

violations were (1) unexpected and (2) possibly harmful to their system. CLIO allowed 

them to see the exact number of files that were dependent on one another, and how those 

changes were affecting the structure of their project. 
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2.3 Replication in Software Engineering 
 
 
 Literature in the field concerning guidelines of replication studies only addresses 

experimental replication, not case study replication [12] [69]. Therefore, we have 

borrowed terminology from this literature to inform our work.  

 
2.3.1 Importance of Replicating Case Studies 
 

Experiment replication plays a key role in empirical software engineering [12] 

[69]. While many other domains construct hypotheses in vitro, software engineers are 

generally not granted that luxury. Empirical software engineering frequently involves 

humans, directly or indirectly, as experimental subjects, and human behavior is 

unpredictable and not repeatable in a laboratory setting. Coupled with the prohibitive 

costs of formal experimentation, software engineering empiricists must look for 

alternatives. Instead, we must rely on repeated case studies in various contexts to 

construct a knowledge base suitable for a scientific hypothesis. This process, while 

requiring exhaustive work, allows for consensus building that can provide the necessary 

support to generate scientific claims.  

 
2.3.2 Categories of Replication 
 

Shull et al. [69] discuss two primary types of replications; exact replications and 

conceptual replications. Exact replications are concerned with repeating the procedure of 

a baseline experiment as closely as possible. Conceptual replications, alternatively, 

attempt to use a different experimental procedure to answer the same questions as the 



16 
 

 

baseline experiment. The study presented in this paper utilizes an exact replication 

method. 

Shull et al. [69] divide exact replications into two categories: dependent 

replications and independent replications. In  dependent replications, researchers keep all 

elements of the baseline study the same. In independent replications, researchers may 

alter elements of the original study. An independent replication follows the same 

procedure as the original study, but tweaks experimental treatments to come to the same 

or a different result. If treatments are changed and the same result is found, researchers 

can conclude that the treatment in question probably has little or no effect on the 

outcome. However, if changing a treatment leads to different results, that treatment needs 

to be explored further. 

Using Shull’s terminology, we categorized this study as an independent 

replication, with five major treatment differences from what would be considered a 

dependent replication. These differences are illustrated in table 2.1. First, the baseline 

study used a software project written in Java as their only treatment to the programming 

language factor. In our case, the treatment is the C++ programming language. In other 

words, our study lies in the context of a C++ programming language, which may provide 

different results from the baseline. Second, the comparative sizes of the development 

groups differed. The baseline study featured a development group of up to 20 developers 

working on the project at any given point in time [68]. The C++ system analyzed in this 

paper has had a total of eleven contributing developers in its four year lifetime. Third, the 

software project in the baseline study had been in development for two years, while the 
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project covered in our study has been in development for four years. Finally, the project 

in the baseline study features 300 kilo-source lines of code (KSLOC) in 900 Java files. 

The project in our study has 1300 KSLOC across 3903 source files, of which 1836 have a 

.cpp/.c extension, and 2067 are header files. Surprisingly, both projects have a similar 

ratio of LOC per source file (333 LOC per source file).  

 

 
2.3.3 Replication Baseline 
 

In the selected baseline study, Schwanke et al. [68] reported on a case study that 

measured architecture quality and discovered architecture issues by combining the 

analysis of software structure and change history. They studied three structured measures 

(file size, fan-in, and fan-out) and four history measures (file change frequency, file ticket 

frequency, file bug frequency, and pair of file change frequency). Their study included 

two parts: 1) Exploring different software measures; and 2) Uncovering architecture 

issues using those measures. 

Table 2.1: Summary of different treatments between case studies 
Factor Baseline 

Project 
Our Project 

Programming 
Language 

Java C++ 

# of 
Developers 

Up to 20 Up to 11 

Project 
Lifetime 

2 years 4 years 

# Source 
Files 

900 3903 (1569 
C++, 267 C, 

2067 h) 
KSLOC 300 1300 
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1) Exploring different software measures: First, they explored the relationship between each 

pair of measures (structure and history) using Kendall’s tau-b rank correlation [41], which 

showed the extent to which any two measures rank the same data in the same order. This 

study provided an initial insight on whether those measures were indicative of software 

quality, which was approximated by the surrogate file bug frequency. Then they studied 

how predictive those measures were of software faults. The data they used spanned two 

development cycles of the subject system, release 1 (R1) and release 2 (R2). They 

illustrated how predictive the calculated measures from R1 were for faults that appeared 

in R2 using Alberg diagrams [56]. 

2) Uncovering architecture issues: After validating the measures, they were used to discover 

architecture issues using three separate approaches. First, Schwanke et al. [68] ranked all 

files by different measures –worst first. They found that the top ranked files (outliers) 

were quite consistent for different measures. They showed those outliers to the developers 

to obtain feedback about potential architecture issues; however, the developers gave little 

response because they could not visualize these issues. To generate responses from 

developers, they used a static analysis tool named Understand™5 to visualize the position 

of those outliers in the architecture. Using this method, they were able to discuss many of 

the outlier files with the developers. In some cases, the developers pointed out how severe 

the problems were. Finally, they used CLIO to investigate the structure and history of 

pairs of files and grouped structurally distant yet historical coupled files into clusters. For 

each cluster, its structure was visualized using Understand™ in a structure diagram, 

                                                 
5 Understand; http://www.scitools.com 

http://www.scitools.com/
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which illustrated how clusters which cross-cut different architecture layers could be 

severe, and gave hints about why they were coupled in history. 

 
2.3.4 Major Findings of the Baseline 
 

Schwanke et al. [68] found that by using CLIO they could identify, predict, and 

communicate certain architectural issues in the system. They found that a few key 

interface files contributed to the majority of faults in the software. Additionally, they 

discovered that the file size and fan-out metrics are good predictors of future fault-

proneness. In the absence of historical artifacts, files that contain high measures of these 

metrics typically have a higher number of architectural violations. Finally, unknown to 

the developers, some of these files violated modularity in the system by creating 

unwanted connections between layers. These violations were visualized and presented to 

the developers who issued a refactoring thereafter. 

 
2.4 Procedure 

 
 
 Following the procedure outlined in [68], our case study consisted of the 

following steps: 

1) Data collection: The source code, version control history, and ticket tracking history 

of the software system in question were gathered. 

2) Structure and history measurements: Measurements for common metrics were 

computed/collected across all versions of the software. 

3) Validation: Measurements from the second-most recent release are correlated with 

fault measurements from the most recent release. 
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4) Prediction: Measurements from the most recent release are used to predict faults in 

upcoming future releases of the project. 

5) Uncovering architecture problems: Measurements were sorted according to future 

fault impact and visualized.  Outlier measurements present the most concern to system 

architecture quality, and were selected for further exploration. 

6) Present findings to developers: Visualizations of the architecture of outlier modules 

were presented to developers with the intent of helping to realize the architectural 

quality of the system. 

 
2.5 Case Study 

 
2.5.1 Setting 
 

The project analyzed in this case study is named SNP & Variation Suite (SVS), and 

is the primary product of the bioinformatics company Golden Helix. We analyzed seven 

major releases of SVS. 

SVS features 1.3 million lines of C++ source code spread out across 3903 source 

files. The project’s structure is spread out across a total of 22 directories. In this study, we 

have chosen to define module as a directory, based on Parnas el al.’s definition [60]. We 

use the term directory and module interchangeably. 

Eleven developers have contributed to this project over its four- year lifetime. The 

organization of the development group has an interesting hierarchy. The lead developer is 

also the Vice President of Product Development at Golden Helix. He plays a major role in 

not only developing SVS, but also in managing product development from a financial 

perspective. This means he has comprehensive knowledge of the software system when he 



21 
 

 

makes management-related decisions, and therefore, is more aware of the technical debt 

present in the software than business- oriented managers. 

 
2.5.2 Motivation 
 

This project was chosen for three reasons. First, Golden Helix is a local software 

company with its developing team in close proximity to the authors, and is well known for 

their generous contributions to the community. The process presented in this study is a 

great opportunity to inform Golden Helix of the architectural quality of their flagship 

software. Second, applying the CLIO tool in different commercial settings will help future 

applications of CLIO. By clearly outlining the strengths, weaknesses, and lessons learned 

at the end of the study, we hope to improve future applications of CLIO. Finally, no 

previous study that follows this methodology to detect modularity violations has 

considered a C++ project. Previous studies such as [79] [82] only looked at non-

commercial Java projects. Using the C++ programming language as a treatment in this 

sense builds on the knowledge base of CLIO, extending what we know about this method. 

 
2.5.3 Data Collection 
 

Golden Helix strongly encourages developers to commit often, and keep commits 

localized to their section of change. These commits are stored in a Mercurial6 repository, 

and the FogBugz7 tool is used to track issues. Golden Helix switched repositories, from 

Apache Subversion (SVN)8 to Mercurial, and ticket tracking tools, from Trac9 to 

                                                 
6 Mercurial SCM; http://mercurial.selenic.com/ 
7 FogBugz Bug Tracking; https://www.fogcreek.com/fogbugz/ 
8 Apache Subversion; http://subversion.apache.org/ 
9 Trac; http://trac.edgewall.org/ 

http://mercurial.selenic.com/
https://www.fogcreek.com/fogbugz/
http://subversion.apache.org/
http://trac.edgewall.org/
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FogBugz, during the lifetime of SVS. Because this study focuses on the entirety of the 

project’s lifetime, both the SVN repository and Trac ticket logs have been recovered and 

treated in the same manner as the current system. Each developer is expected to include 

references to ticket cases in their commits. 

Similar to [68], the repository logs and issue tracking logs were extracted into a 

PostgreSQL10 database. This allowed us to search for historical data using simple SQL 

queries. We have grouped C/C++ source files and header source files together in this 

study. That is, for each C/C++ source file and its corresponding header file(s), the files 

are considered one and the same. For the remainder of this case study, we refer to the 

C/C++ source and corresponding header file pairs as a file pair. Measurements made in 

both files are aggregated together. There is a reason for doing this. Developers of SVS 

demand that source files and their corresponding header files be kept together in the same 

directory. When either a source file or a header file changes, the developers are expected 

to update the signatures in the corresponding file. This implies that any changes made to 

the latter are expected and hence do not constitute modularity violations. Our study is 

concerned with locating unexpected changes in modules of code. Therefore, including 

any information about header/source pairs changing together will lead to useless 

information. 

 
2.5.4 Structure and History Metrics 
 

Following the work of Schwanke et al. [68], the following metrics were gathered 

for all file pairs (u) across all seven versions of the software: 

                                                 
10 PostgreSQL; http://www.postgresql.org/ 

http://www.postgresql.org/
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1. File size: The aggregated file size on disk of both elements in u, measured in 

bytes. 

2. Fan-in: Within a project, fan-in of u is the sum of the number of references from 

any v (where v is defined identically similarly to u) pointing to u. 

3. Fan-out: Within a project, fan-out of u is the sum of the number of references 

from u that point to any v (where v is defined identically similarly to u). 

4. Change frequency: The number of times that any element in u is changed, 

according to the commit log. Commits where both elements of u are changed are 

only counted once. 

5. Ticket frequency: The number of different FogBugz or Trac issue tickets 

referenced for which either element in u is modified. If both elements in u are 

modified with a reference to the same issue ticket, it is only counted once. 

6. Bug change frequency: The number of different FogBugz or Trac bug issue 

tickets referenced for which either element in u is modified. If both elements in u 

are modified with a reference to the same bug issue ticket, it is only counted once. 

7. Pair change frequency: For each file pair, v, in the project, the number of times in 

which u and v are modified in the same commit. 

 
2.5.5 Validation 
 

In an effort to validate the significance of our metric choices, several exploratory 

data analysis techniques were utilized. These include histogram inspection, scatter plot 

analysis, and correlation analysis. Although the system in question has gone through 

seven releases, in this paper we only present the results from the most recent release 
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(release 7.5) and the release immediately preceding the most recent release (release 7). 

Hereafter, we refer to release 7.5 as the present state of the software, and release 7 as the 

past. 

Similar to the baseline study, we found that data analysis across all other releases 

showed very similar results. The baseline study chose to focus their work on the most 

recent releases, because it is more representative of the system in the present time, and 

may provide better predictive power. We have followed suit because of the same reasons. 

1) Histogram analysis 

Histograms were generated for each metric in question. We focused on 

identifying distributions of each metric across releases. From the distributions, we 

identified outlier file pairs which Schwanke et al. [68] states are more prone to 

unexpected changes. For example, figure 2.1 illustrates the change frequency metric 

across all releases of the software. The y-axis is shown as a logarithmic scale in base 4 to 

preserve column space. There is a typical exponential decay curve, suggesting that the 

majority of file pairs experienced few changes. However, there exist outliers with more 

than 180 changes per file (not shown, but aggregated to form the bin at x=180). This 

suggests that a surprising number of pairs (about 60) experience more than 180 changes. 

                        

http://mercurial.selenic.com/
http://mercurial.selenic.com/
http://mercurial.selenic.com/
http://trac.edgewall.org/
http://trac.edgewall.org/
http://trac.edgewall.org/
http://trac.edgewall.org/
http://trac.edgewall.org/
http://trac.edgewall.org/
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This is congruent with findings from [68] and their histogram analysis. 

 

2) Scatter Plot Analysis 

Scatter plots were constructed for each metric gathered. When constructing scatter 

plots, we plotted the measure in release 7.5 on the y-axis and the measure of other metrics 

from release 7 on the x-axis. This gave us the opportunity to identify a possible 

relationship between past and present measurements. Figure 2.2 shows a scatter plot of 

change frequency in release 7.5 versus fan-out in release 7. There appears to be a slight 

linear correlation between the two, suggesting that change frequency in future releases 

can be predicted from fan-out in current or past releases. 

This graph suggests that the fan-out of current or past file pairs may be used to 

predict the change frequency of the pair in the future. Our scatter plot analysis provided 

 
Figure 2.1: Histogram of change frequency across all releases. The x-axis shows 

change frequency. The y-axis shows a count of the number of pairs. Any pair with 180 
or more changes was considered to be an outlier, and likely to contribute to many 

unexpected dependencies 
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similar results as the baseline study by Schwanke et al [68].

 

3) Correlation Analysis 

Rank-based correlation analysis was performed on the data to identify possible 

relationships between measurements in one release and fault measurements in a future 

release. Per the baseline study, we used the Kendall’s tau-b rank correlation measure 

[41]. This non-parametric test was chosen instead of a Spearman or the parametric 

Pearson test because many of the values fall near zero. The Ordinary Least Squares 

(OLS) method of Spearman or Pearson performs poorly when many values fall near zero. 

 
Figure 2.2: Scatter plot of release 7.5 change frequency and release 7 fan-out. Each 

data points represents a C/C++ and header pair. The x-axis plots the fan-out of pairs in 
release 7. The y-axis plots the change frequency of each pair in release 7.5. There 

appears to be a linear correlation between the two, suggesting that change frequency in 
future releases can be predicted from fan-out in current or past releases. 
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Kendall’s tau-b value is found in a two-step process. First, the measurements 

taken from two metrics are ordered according to their values. Second, a calculation is 

performed which counts the number of values which appear in the same order. The 

calculation is shown below: 

𝜏𝐵(𝐹, 𝐺) =
𝑐𝑜𝑛𝑐𝑜𝑟𝑑(𝐹, 𝐺) − 𝑑𝑖𝑠𝑐𝑜𝑟𝑑(𝐹, 𝐺)

𝑐𝑜𝑛𝑐𝑜𝑟𝑑(𝐹, 𝐺) + 𝑑𝑖𝑠𝑐𝑜𝑟𝑑(𝐹, 𝐺)
 

 
Where F and G are two orderings of values taken from a file pair. concord(F,G) is 

a count of the number of times values appear in the same order. Alternatively, 

discord(F,G) is a count of the number of times values appear in different order. For this 

test, values of 0 in either F or G are ignored; that is, they are not counted by either 

concord or discord. The value produced falls in range [-1, 1], corresponding to the 

correlation between the orderings. A value of 1 indicates a perfect linear correlation. For 

the purpose of this study, and in agreement with [68], we consider values at 0.6 or greater 

to be strong. Because this is a non-parametric statistical test, we cannot assume a normal 

distribution fits the data. Therefore, we cannot find an associated p-value for each tau-b 

value. 

Table 2.2 shows the tau-b value calculated for each metric pair in release 7 and 

release 7.5. Each cell corresponds to the tau-b value as found by the previously described 

equation. The table is symmetric because the comparison of two ranked metric values is a 

symmetric property. Highlighted cells indicate a strong correlation.  
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The highlighted values in the bottom right quadrant of the table are expected 

correlations. The values report that, for example, as ticket frequency increases, bug 

change frequency increases as well. This is logically consistent because as developers 

add more tickets to their commits, more of these tickets will contain bug references. 

However, the correlation value for bugs vs. fan-out is an unexpected result. This number 

tells us that as the fan-out of a file pair increases, the number of bugs associated with that 

pair increases as well. Similar results were found by [68], adding more power to 

hypothesis that fan-out and number of bugs increase together. 

Using these three methods of exploratory data analysis, we identified likely 

correlations between metrics. In the validation step we analyze these correlations to see if 

they are indicative of bug-related changes in the future. 

 
2.5.6 Prediction 
 

Ostrand and Weyuker [58] introduced accuracy, precision, and recall measures 

from the information retrieval domain. We use various recall metrics to validate our 

prediction of future bugs. Recall is defined as the percentage of faulty files that are 

Table 2.2: Tau-b values for metric pairs 
Tau-b table of metrics for svs7 + svs7.5 

r7+r7.5 fan-in fan-out file size changes tickets bugs 
Fan-in 1 0.257 0.301 0.331 0.328 0.464 
Fan-out 0.257 1 0.441 0.417 0.416 0.637 
size 0.301 0.441 1 0.293 0.273 0.510 
changes 0.331 0.417 0.293 1 0.972 0.858 
tickets 0.328 0.416 0.273 0.972 1 0.857 
bugs 0.463 0.637 0.510 0.858 0.857 1 
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correctly identified as faulty files. As in the baseline case study, we calculate recall in 

three different ways. For every file pair u, 

Faulty file recall: An instance occurs when either element in u is changed at least 

once in the release representing the future due to any bug ticket. 

Fault recall: An instance is a tuple defined as <u, bug ticket reference>, where u 

is changed at least once due to the same bug ticket. 

Fault impact recall: An instance is a triple defined as <u, commit number in the 

source control logs where u is changed, bug ticket reference> where the bug ticket is 

referenced in the same commit where u is changed in. 

These three recall measures apply different emphasis to future fault prediction. 

Faulty file recall emphasizes future fault prediction least, because it treats all future bug-

related changes to u, regardless of the number of instances, as one. This fails to capture 

instances where u is associated with more than one bug ticket. However, Fault recall 

does take this into account, because it considers multiple bug ticket references in an 

instance. Furthermore, Fault impact recall provides the highest granularity to allow for 

future fault prediction because it takes into account all changes u goes through. All three 

recall measures form an implied subsumption hierarchy. 

Using these recall measures, we use Alberg diagrams [56] to plot release 7 

measurements vs. release 7.5 faults. Alberg diagrams are based on the pareto principle, 

that roughly 20% of the files in a system are responsible for 80% of the faults. In this 

context, we use this same principle to estimate the accuracy of prediction models [56]. 
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Figure 2.3 illustrates one Alberg diagram for this system. The x-axis shows 60 

C/C++ source and header pairs, u, ordered in descending order according to their metric 

values from release 7. These 60 file pairs are selected based on their contribution to bug- 

related changes in release 7.5. The bug change frequency for u in release 7.5 is plotted on 

the y-axis. Any given point on the curve represents a C/C++ source and header pair. The 

oracle curve is a perfect predictor of release 7.5 bug change frequency for all u. As other 

curves get nearer to the oracle curve, their accuracy for predicting release 7.5 bug change 

frequency increases. 

 

 
Figure 2.3: Alberg diagram of release 7.5 Fault Impact Recall. Each data point is a 

C/C++ source and header pair. The x-axis represents the rank of a data point in release 
7, sorted according to its type. The y-axis represents the percentage of bugs in release 

7.5. 
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The oracle curve from this Alberg diagram states that roughly 20% (actually 

23.3%) of C/C++ source and header pairs contribute to 80% of bug change frequency in 

release 7.5. The values of fan-out and change frequency in release 7 for these pairs 

contributed from 40% to 50% of bug changes in release 7.5. These findings are slightly 

less than Schwanke et al.’s findings [68], yet are still noteworthy. This validates that 

selected metrics from earlier releases can be used to predict bug change frequency in 

future releases. 

 
2.5.7 Uncovering and Visualizing Architecture Problems 
 

Once these measures have been validated as capable of predicting future faults, 

the problem of identifying file pairs which are more prone to unexpected changes arises. 

Next, we study the extent to which these pair affect other quality measures. 

We utilized the static code analysis tool Understand™ to visualize graphs of 

interdependent components. Understand™ is a commercial product developed by 

Scientific Tools, Inc.7 Understand™ can find many structural features of code, including 

dependency listings of how pairs of C++ files depend on one another. Through 

visualization, we can analyze the extent to which these dependencies affect other pairs in 

the software system. 

These graphs help differentiate expected and unexpected dependencies. If 

dependencies occur between two pairs that are in the same module, we treat them as 

expected dependencies, consistent with the baseline study. This is based on the 

assumption that developers group files or classes together based on similar functionality. 

Unexpected dependencies are treated as dependencies that occur across different 
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modules, also consistent with our baseline study. Our definitions of expected and 

unexpected dependencies were validated by the developers at Golden Helix. 

Because we are concerned with how these dependencies are changing together, 

we define a “distant” and “local” change pair. Using Schwanke et al.’s [68] definitions, a 

pair of file pairs that change together, change pair, <u,v> is local if (1) u directly depends 

on v, (2) v directly depends on u, or (3) u and v belong to the same module. Any change 

pair which does not fit under this definition is a distant change pair. 

Figure 2.4 illustrates a high level view of the dependencies between modules in 

SVS. Nodes in the graph represent modules, and edges represent dependencies between 

modules. The number on the edge refers to the exact number of dependencies. The 

modules shown contain the ten most frequent distant change pairs. This graph is nearly a 

complete graph, suggesting that modules have high coupling when distant change pair 

frequency is high. 

 Once change pairs have been classified as either local or distant, CLIO is used to 

 
Figure 2.4: High level view of the dependencies between modules containing the ten 
most frequent distant change pairs. The numbers on the edges represent the number 

of times all file pairs in a module depend on another module. 
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(1) identify change pairs which historically have changed together frequently, and (2) 

cluster these pairs according to the scope of their change pair (local or distant). To 

identify frequent historic change pairs, we mine the PostgreSQL database built in the 

procedure described by section 5.1. To cluster the pairs, a “single link” clustering 

algorithm is used [68]. 

The clustering algorithm groups distant change pairs as follows: For each 

frequent, distant change pair <u, v>, cluster u and v together. Then, add all the local 

dependencies which contain either u or v to the cluster. We generated visualizations of 

these clusters that illustrate the number of dependencies across distant change pairs and 

presented these visualizations to developers. 

 
2.5.8 Presenting Results to developers 
 

Visualizing architectural dependencies with graphs provided us with a convenient 

and intuitive medium that could be validated with developers. We presented all our data 

to the lead developer at Golden Helix. In summary, the lead developer at Golden Helix 

was not surprised by our findings. He indicated that several outlier file pairs were 

contributing to the majority of modularity violations in the code base. It was these pairs 

that also contributed to a large number of bugs in the most current releases. The lead 

developer was well aware of this, and more or less the extent to which this affected other 

files. 

The majority of modularity violations and bugs occurred in packages representing 

highly customizable components of the SVS executable. These packages include the UI 

component, the core component, and a component that is concerned with reading in a 
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large variety of complex file formats. We noticed that file pairs in these packages both 

heavily depend on and were depended upon by many others (i.e., they have high efferent 

and afferent coupling). However, the structure observed was the choice of the developers. 

The developers utilized these pairs as access points, or common files to reference when 

one component needed to be used. When these access point pairs were changed, they 

incurred a slew of changes in other modules in the system because of numerous, 

propagating dependencies. The developers saw this method as a necessary step in their 

development lifecycle. 

 
2.6 Discussion 

 
 

The process of using CLIO to detect and measure architectural quality of software 

needs to be matured further. Developers were not surprised by the findings of CLIO, 

primarily because the findings pointed out known problems. Many of these problems are 

due to the many connections that exist between modules. From an academic sense this is 

a problem, because it is preferable to have few connection points between modules 

(coupling). Lower coupling between modules is indicative of better design, and helps 

localize possible future changes as well as allows for increased quality attributes (such as 

understandability) [7]. However, from the developers’ perspective, familiarity with the 

code base was more important than traditional good design. The developers are content 

leaving the coupling between modules as is, because it makes the most sense for the SVS 

system. This finding is very interesting because it gives the impression that the results 

from tools such as CLIO should be system dependent. That is, although the results may 
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appear useful, nothing can be learned unless an in-depth assessment of the software 

system in question has been made. These conclusions cannot be reached without 

evaluating and deploying laboratory tools in commercial grade environments. 

We did find very similar results to the baseline, which is promising in helping 

extend power of the hypothesis that certain metrics can be used as better predictors of 

software quality. We found that a select few files contributed to many modularity 

violations, and greatly influenced the number of bugs. While in our case the developers 

were not surprised by the results, the results are promising in that they clearly identify 

problem files in code. The baseline found that developers were not always aware of these 

modularity violations. In cases where developers may not be fully familiar with the 

structural connections across modules in their code base, this procedure provided 

significant insights. 

We also identified and validated cases where structural metrics can be used as 

quality predictors for future releases. Both this study and Schwanke et al. [68] concur that 

the fan-out metric is a good predictor of future faults, as verified by correlation analysis 

and Alberg diagrams. 

 
2.7 Threats to Validity 

 
 

There are several threats that threaten the validity of this study. One developer 

brought up the argument that, “If a developer prefers to commit files more frequently 

than other developers, it would show up in the commit logs as having few change pairs. 

This would give misleading results because it would provide cases where too few files 
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are being committed to account for changes across modules, or too many files are being 

committed which would make it appear that more dependencies exist.” This is a direct 

threat to the construct validity of our study. Although the developer’s observation is 

correct, it did not have a large impact on our results. We identify files showing up in the 

commit logs together with a high frequency, and ignore cases where paired changes 

happen infrequently. This reinforces that such cases as described by the developer are 

unlikely to occur often.  Regardless, the observation does shed light into a situation that 

will be mitigated in future studies. 

A second threat to the construct validity is the fact that we grouped C/C++ source 

file and corresponding header files together. These file pairs consist of the aggregated 

information from their combined elements. Although a threat, it is mitigated by the 

following reason. The developers brought to our attention that both elements in the file 

pair are expected to belong to the same package, and are expected to change together. 

That is, if a C++ source file is updated, the developers expect to make changes to the 

signature of the header source file as well. Because both of these cases are expected 

changes, including both files separately in the study would be spurious information. 

Thus, we chose to group every C++ source and corresponding header file together. 

A third threat to the construct validity of this study is the assumption that 

developers tag bugs correctly in the commit messages. As an external observer, the only 

method we have of identifying past-bugs in the software project is through analyzing 

historical artifacts. Therefore, we need to rely on the discipline of developers to (1) tag 



37 
 

 

the bugs they focused on in a commit and (2) tag the bugs correctly. We have no way of 

knowing if either of these two conditions is not met. 

External validity represents the ability to generalize from the results of a study. In 

this instance, we cannot generalize the results we found to other contexts. In other words, 

the results found in this study and the baseline only hold true for our specific contexts, 

however they helped in building consensus around our findings across different 

programming languages in commercial agile development environments. More 

replication studies are necessary to increase the power of these results. 

 
2.8 Conclusion 

 
 

This replication case study was performed to help us analyze how structural file 

metrics could be correlated with system quality, and to help us comprehend if similar 

observations performed in a Java commercial product could also be observed in its C++ 

counterpart. We have gathered structural metrics and identified correlations between 

them and future bug problems. We identified a select few outlier files which contribute to 

the majority of future bug problems. From these, we collected dependencies and 

visualized how extensively problems may propagate. We showed this information to the 

developers of Golden Helix and they were not surprised by the results. Rather than 

attempt to entirely eliminate distant-modules with frequently-changing dependencies, the 

developers preferred to keep a select-few files as connection points. When asked why, the 

lead developer explained that these connection points offer a single point of entry into a 

module. Any changes between modules would be reflected in the connection points only. 
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The developers would rather be aware of a few files that are frequently problematic than 

issue a refactoring. 

 
2.9 Challenges 

 
 

Herein we describe some of the challenges we encountered while trying to 

perform this study. 

1) Specific Tools: The baseline study featured the use of the commercial tool Understand™ 

for static analysis of code to gather metrics as well as to visualize results. Although the 

static analysis and visualizations provided high quality analysis, it is nearly impossible to 

replicate this case study without the use of this specific tool. Alternatives were considered, 

but the mechanistic formula used for analyzing files needed to be used as is, as other 

approaches would have constituted (in the opinion of the authors) a significantly large 

deviation from the baseline method that we would not have been able to call this a 

replication study. 

2) Understanding the System: While we hope that manually performing the CLIO process 

eventually leads to an automated approach, this study suggests that such a hope may be 

far-fetched. Ultimately, a complete understanding of the system in question is necessary 

before any significant value can be taken from this tool. Our results mean very little unless 

the developers actually make use of them. 

3) Literature Coverage: The majority (entirety) of literature covering replications in 

Empirical Software Engineering refers to formal experiments, not case studies. We have 

borrowed the terminology from such literature in this study. This situation is not ideal 
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because case studies have less power than formal experiments and therefore should be 

approached differently. Peer reviewed literature needs to be published which outlines case 

study replication guidelines. 
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CHAPTER THREE 
 
 

THE CORRESPONDENCE BETWEEN SOFTWARE QUALITY MODELS AND 

TECHNICAL DEBT ESTIMATION APPROACHES11 

 
 

3.0 Abstract 
 
 

This Chapter summarizes a report that identified a gap in the capabilities of 

modern QA research tools. In this motivational research, we performed a case study that 

analyzed the similarities between results of state-of-the-art operational quality and TD 

measurement tools. We estimated quality and TD across 10 releases of 10 open source 

systems and found that only one TD estimation technique had a strong correlation to the 

quality attributes of reusability and understandability. In a multiple linear regression 

analysis, we also found that a single different TD estimation technique had a significant 

relationship to the quality attributes of effectiveness and functionality. These results 

indicate that a gap exists within the state-of-the-art; specifically that the results of 

operational quality and TD estimation tools disagree. 

 
 
 
 
 
 

                                                 
11 Based on: 
Griffith I., Reimanis D., Izurieta C., Codabux Z., Deo A., Williams B., "The Correspondence between 
Software Quality Models and Technical Debt Estimation Approaches," IEEE ACM MTD 2014 6th 
International Workshop on Managing Technical Debt. In association with the 30th International 
Conference on Software Maintenance and Evolution, ICSME, Victoria, British Columbia, Canada, 
September 30, 2014. 



41 
 

 

3.1 Introduction 
 
 

The desire to measure the quality of a software product has existed nearly as long 

as software engineering itself [27]. Because of this, several operational models that 

estimate software quality have surfaced in industry. Largely, these models perform static 

analysis of a code-base to identify the degree to which code aligns to quality goals, such 

as ‘Security’ or ‘Maintainability’. Complementary to software quality is Technical Debt 

(TD), which is a metaphor established by Ward Cunningham to describe the gap between 

the current state of a software system and the ideal state [20]. In essence, TD captures the 

effects of decisions that sacrifice good design principles for on-time delivery of software. 

Many times these decisions take the form of shortcuts or workarounds in code that 

complete the task at hand, but at the expense of decreased quality. TD is analogous to 

financial debt in that some debt is beneficial, because it facilitates growth, but too much 

debt becomes a burden because of the need to repay it at the expense of valuable 

resources. Drawing parallels from financial debt, principal and interest are two attributes 

of TD. Given a task to implement, principal refers to the cost in effort to complete the 

task. Interest refers to the gap between maintenance costs under ideal conditions versus 

conditions where maintenance is higher due to accrued debt from tasks where TD is not 

repaid. Effectively managing TD is multifaceted problem, because the need the need to 

implement new features must be leveraged with the need to refactor to cleanse the code-

base. 

This motivational research poses the following question: What does the estimate 

of technical debt provided by approach X mean in the context of quality model Y? In 
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other words, how can we evaluate the accuracy of technical debt estimation approaches in 

the context of an external quality model? Capturing the relationship between TD 

estimation methods and software quality will reveal the accuracy of the various TD 

estimation approaches. 

To perform this study, we considered three TD estimation approaches. These 

approaches are the SonarQubeTM1 TD-Plugin [32], CAST’s method of technical debt 

estimation identified by Curtis, Sappidi, and Szynkarski [20][21], and Marinescu’s 

method of technical debt estimation using design disharmonies [49]. We used three 

versions of the CAST TD estimation method, each version capturing different high-level 

goals from an organization’s perspective. In total, we evaluated five TD estimation 

approaches against the QMOOD quality model [7]. 

 
3.2 Background and Related Work 

 
 
3.2.1 TD Estimation Techniques 
 

The first TD estimation method we implemented was the SonarQube™ TD-

Plugin [32]. This method uses the following formula to calculate the technical debt value 

[32]: 

Debt = duplication + violations + comments + coverage + 

 complexity + design (1) 

duplication = cost_to_fix_one_block * duplicated_blocks   (2) 

violations = cost_to_fix_one_violation * mandatory_violations (3) 

comments = cost to comment on API * public_undocumented_API (4) 
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coverage = cost_to_cover_one_of_complexity 

* uncovered_complexity_by_tests (5) 

design = cost_to_cut_an_edge_between_two_files 

* package_edges_weight  (6) 

complexity = cost_to_split_a_method  

* (function_complexity_distribution ≥ 8)  

+ cost_to_split_a_class 

* (class_complexity_distribution ≥ 60)   (7) 

Where duplication, violations, comments, coverage, complexity and cycles 

secondary formulas are each measured in man-days. Each of the costs used in the 

secondary formulas can be set as parameters. We used the default values as described by 

table 3.1. Duplication refers to the estimated effort associated with the removal of 

duplicated code in the system. Violations is the estimated effort associated with the 

removal of violations in the system. Coverages represents the estimated effort required to 

bring test coverage up to 80%. Complexity is the total estimated effort required to split 

every method and every class (of those requiring such a split). Comments refers to the 

estimated effort associated with documenting the undocumented portions of the API. 

Design refers to the estimated effort associated with cutting all existing edges between 

files. Each of the cost (estimated effort) (table 3.1) are defined in man-hours, in order to 

convert this to man-days for the debt calculation, the default value of 8 hours per day is 

used. A final calculation is then performed to evaluate the cost per man-day of technical 

debt using a default value of $500. 
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The second TD estimation method we chose was developed by Curtis, Sappidi, 

and Szynkarski [20][21], which estimates technical debt principal using a cost model 

based on detected violations. This method uses estimates of time to fix and cost to fix in 

order to connect these identified violations to a monetary value. The following equation 

is proposed as a means to measure the technical debt principal: 

TDE = (ΣHS * %HS * 𝐻𝑆𝑓
̅̅ ̅̅ ̅* HScost) 

+ (ΣMS * %MS * 𝑀𝑆𝑓
̅̅ ̅̅ ̅̅ * MScost)    (8) 

 + (ΣLS * %LS * 𝐿𝑆𝑓
̅̅ ̅̅̅* LScost) 

Where ΣHS, ΣMS, and ΣLS are the count of high severity, medium severity, and 

low severity violations respectively. The values for %HS, %MS, and %LS represent the 

percentages of high, medium, and low severity violations intended to be fixed. The values 

of 𝐻𝑆𝑓
̅̅ ̅̅ ̅, 𝑀𝑆𝑓

̅̅ ̅̅ ̅̅ , and 𝐿𝑆𝑓
̅̅ ̅̅̅ represent the average time (in hours) required to fix per instance of 

each severity level. Finally, the values of HScost, MScost, and LScost represent the cost in 

monetary value per hour to perform the work. Curtis, Sappidi, and Szynkarski, provide 

three estimates for technical debt (see table 3.2). 

Table 3.1 Default cost values used in the calculation of Technical Debt in the 
SonarQube TD-Plugin [4] 

 



45 
 

 

 

The final TD estimation method we chose was developed by Marinescu [49]. This 

method utilizes design disharmonies in the software to derive an index of the underlying 

issues in quality. Marinescu proposes that we measure the impact of these design 

disharmonies based on how they influence the underlying design, the level of granularity 

at which they manifest themselves (class or method) and the underlying severity of the 

disharmony based on the amount of code it impacts. Here the influence, Idisharmony, is one 

of the following values: high=2.0, medium = 1.0, and low = 0.5. The granularity, 

Gdisharmony, is either of the following values: method=1.0 or class=3.0. Finally, the 

severity, Sinstance, is based on how much a disharmony violates a given metrics threshold. 

The impact score of a given instance of a disharmony is calculated using the following 

formula [49]: 

ISinstance = Idisharmony* Gdisharmony* Sinstance  (9) 

Once the impact score is computed the overall debt symptoms index (DSI) can be 

evaluated using the following equation [49]: 

𝐷𝑆𝐼 =  
∑ 𝐼𝑆𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑎𝑙𝑙 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

𝐾𝐿𝑂𝐶
 

Table 3.2 Values for estimates of TDE as proposed by Curtis, Sappidi, and 
Szynkarski [21]. 
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Where KLOC is the number of thousands of lines of code for the software system 

under consideration. Marinescu indicates that this index value acts as a surrogate measure 

for the technical debt level of a software system. 

 
3.2.2 Quality Estimation  
 

We used the QMOOD [7] quality model to evaluate the quality of each project. 

The QMOOD quality model is based on the ISO 9126 specification [35] and uses of a 

combination of design metrics to indicate changes in system quality. Each of the 

QMOOD quality aspects is measured using a combination of metrics as identified in [7] 

(see table 3.3). The model is composed of the following six quality attributes: reusability, 

understandability, flexibility, effectiveness, functionality, and extendibility. The 

calculation of each of the quality attributes from the metrics listed in table 3.3 is provided 

in table 3.4. In order to measure these metrics, we used the tool Understand™. The 

QMOOD quality aspects and their relationships are provided in table 3.4. 
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Table 3.3 QMOOD [7] metric measurements using 
Understand. 
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3.3 Summary of Results 

 
 

In terms of presentation of the results, the label ‘TDE1’ refers to the SonarQube 

TD-plugin estimation technique, ‘TDE2a’ refers to the first estimation configuration 

described in table 3.2, ‘TDE2b’ refers to the second one, and ‘TDE2c’ refers to the third 

one. Finally, ‘TDE3’ refers to Marinescu’s method of TD estimation.  

We calculated Kendall’s Tau correlation coefficient between each TD estimation 

technique and each quality attribute value. These are shown in table 3.5 and figure 3.1. 

We tested for correlation between each paired sample using p < 0.05 as a significance 

level, and significant correlations are shown in bold in table 3.5. The associated 

scatterplots for the correlations are displayed in figure 3.1. Figure 3.1 can be read by 

finding the pair of variables along the diagonal finding either the scatterplot (below the 

Table 3.4 QMOOD quality attribute equations [49]. 

 



49 
 

 

diagonal) or correlation value (above the diagonal) where the rows and columns of the 

variables intersect. 

 

As can be seen in table 3.5, in all cases TDE3 shows weak correlation (< 0.45) (or 

no significant correlation) to each of the quality attributes. For reusability, 

understandability, and functionality there is moderate to strong correlation to TDE1, 

TDE2a, TDE2b, and TDE2c as shown in table 3.5. Although these results are somewhat 

promising, they do not take into account the differences in size between the different 

systems nor the changes in size between releases of a system. To alleviate this threat, we 

also developed a multiple linear regression model which compensates for these issues. 

 
Figure 3.1 Scatterplot and correlation matrix for TDE1, TDE2a, TDE2b, TDE2c, 
TDE3, Reusability, Understandability, Functionality, Effectiveness, Extendibility, 

and Flexibility 
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The significance of the results from the multiple linear regression analysis are 

displayed in table 3.6. For each of the technical debt estimation approaches we found that 

there was little to no evidence suggesting that the selected technical debt estimates have a 

relationship to reusability, understandability, functionality, and extendibility (as defined 

by the QMOOD quality model), while controlling for LOC and the number of releases in 

systems. With the exclusion of one TD estimation technique (TDE2c), each of the 

remaining technical debt estimation techniques show little to no evidence of a 

relationship to flexibility or effectiveness. 

Table 3.5 Correlation between TD estimates and quality attributes 
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The significance of the results from the multiple linear regression analysis are 

displayed in table 3.6. For each of the technical debt estimation approaches we found that 

there was little to no evidence suggesting that the selected technical debt estimates have a 

relationship to reusability, understandability, functionality, and extendibility (as defined 

by the QMOOD quality model), while controlling for LOC and the number of releases in 

systems. With the exclusion of TDE2c, each of the remaining technical debt estimation 

techniques show little to no evidence of a relationship to flexibility or effectiveness. 

In summary, as seen in table 3.6, it appears that for all technical debt estimates 

excluding TDE2c they appear to have no relation to the QMOOD quality model, 

regardless of the correlation analysis shown in table 3.5 and figure 3.1. We have 

demonstrated here, there is no evidence to suggest that these estimates of technical debt 

reflect the expected relationship to quality. 

Table 3.6 Indication of a relationship between each of the technical 
debt estimates and each of the QMOOD quality attributes. An X 

indicates no relationship and a check indicates a relationship 
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3.4 Conclusions  
 
 

This motivational study investigated the level of agreement from 5 methods of 

estimating technical debt principal to an external quality model. To address agreement, 

we conducted both a correlation analysis and a regression analysis. The results of this 

analysis showed that with the exception of one estimation method (for flexibility and 

effectiveness) there was no observable relationship between the quality attributes and the 

technical debt estimates. Additionally, given prior research showing that technical debt 

impacts both reusability and understandability of a software system, we found that for 

these quality attributes none of the technical debt principal estimates showed any 

relationship when taking size into consideration. These results illuminate a clear gap in 

the state-of-the-art, specifically that modern quality and TD estimation techniques do not 

provide results that align with one another. 
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CHAPTER FOUR 
 
 

INTERLUDE 

 
A synthesis of the results from our studies in Chapters 2 and 3 reveals several 

integral findings which provide motivation for the remainder of this work and the greater 

contributions to the field. The findings presented in Chapter 2, specifically that the file 

pairs we identified as having a large number of modularity violations also contributed to 

a large number of bugs in future releases, validated the intuition of the developers where 

the study was conducted (i.e., Golden Helix). The lead developer stated that the findings 

of the research aligned with his intuition of the ‘problem areas’ within the code-base. 

From an empirical perspective, our results provide the data to back the lead developer’s 

intuition, which is a valuable result. Developers at Golden Helix had already begun 

refactoring the problem areas of the code-base prior to our study, yet their decision to do 

so was based entirely on their intuition. Our methods and tools provided validation for 

Golden Helix developers, suggesting that their decision to refactor was a good decision, 

as well as provided construct validity for our work as QA researchers. 

The findings from the work in Chapter 3 revealed a potential flaw with the state-

of-the-art methods and tools used to measure quality and TD in a system. Specifically, 

there was no relationship between quality attributes and TD estimators (with the 

exception of one estimation method for flexibility and effectiveness) after accounting for 

system size. In and of itself, this finding is surprising, as one would expect some tools to 

agree that TD does affect quality. In the case of our case study however, this 
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disagreement poses a problem because each of these tools and methods claim to provide 

meaningful estimates of software quality to stakeholders, yet there is no agreement on 

what they consider to be important quality features. Practitioners expect methods and 

tools that indicate areas of concerns and thus allow for the improvement of software 

quality. To support practitioners, tools should provide results that agree given similar 

systems.  

 A synthesis of these results reveals two research gaps. First, the form of analysis 

presented in both studies is restricted to static analysis, which only considers the 

structural aspects of a code-base. The structure of a system includes the classes, class 

members (variables, functions, etc.), and relationships between classes. While structural 

analysis provides an important perspective into a software system, it does not capture 

every aspect of best practice violations. Complementary to structural analysis techniques 

is behavioral analysis, which entails identifying violations of best practices due to 

unexpected runtime behaviors. This can be achieved either by normal runtime behavior 

or simulation of cases that execute chunks of the code-base, similar to Unit Testing and 

Integration Testing methods from the software testing domain. The key difference 

between the behavioral analysis presented in this research and Unit Testing is that our 

goal is to identify violations of best practices within program behaviors, while Unit 

Testing seeks to identify correct program behaviors and outcomes. A second research gap 

revealed by our studies presented in Chapters 2 and 3, is the lack of domain-specific 

parameters in the models. Domain-specific parameters refers to terms within a model that 

capture variables pertaining to the domain space, which grant the ability to configure the 
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model to allow for different generation and/or interpretation of results. The work with 

CLIO (c.f. Chapter 2) found that simple intuition instigated changes in the process, and 

our methods and tools validated those decisions. In Chapter 3 we identified that the out-

of-the-box implementations of quality and TD analysis tools did not produce results that 

aligned with one another. While a user of these tools can technically configure them to 

modify the results, as practitioners do in domain-specific contexts, the tools provide no 

indication of an empirical process of calibration. Currently, selecting quality attribute 

weight values is entirely arbitrary, based on perceived importance of each quality 

attribute. This is not an empirical and data-driven way of approaching the QA process, 

and requires improvement. 

 Ultimately, our goal as software quality assurance researchers is to provide 

software stakeholders with better methods and tools to measure and monitor the quality 

of their products. Providing behavioral analysis capabilities will help with this goal, 

because it provides a new perspective that will complement existing structural 

approaches. Furthermore, the introduction of domain-specific parameters into these 

models will proactively supply stakeholders with configurable solutions that cater 

towards their quality concerns. These two points motivate the remainder of this research.  

We frame our research into behavioral analysis by considering design pattern 

evolution. This decision is made because design patterns are considered micro-

architectures of good design and have well-known expectations of structure and behavior. 

The work presented in this document encompasses design pattern evolution, yet the 

methods and tools can be generalized to consider any setting.  
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CHAPTER FIVE 
 
 

A RESEARCH PLAN TO CHARACTERIZE, EVALUATE, AND PREDICT THE 

IMPACTS OF BEHAVIORAL DECAY IN DESIGN PATTERNS12 

 
5.0 Abstract 

 
 
 We propose a research plan to further the understanding of design pattern 

evolution. Current research into design pattern evolution focuses on the structural 

elements of decay, which is realized as structural grime. We plan to expand the current 

state of research by introducing the notion of behavioral grime, or unwanted artifacts that 

appear at run-time in a pattern. This form of grime may be transparent to the current 

analysis models. We seek to classify types of grime into taxonomy, evaluate each type in 

terms of impacts on technical debt and quality in the pattern and system as a whole, and 

predict future occurrences of behavioral grime. Studies are designed for each of these 

respective goals. The results of this research will further the understanding of design 

patterns, assisting practitioners and researchers alike. 

 
5.1 Introduction 

 
 

 Design patterns embody recurring solutions to common object-oriented problems 

in software development. Patterns are design decisions that are reusable, maintainable, 

                                                 
12 Based on: 
Reimanis D., Izurieta C., "A Research Plan to Characterize, Evaluate, and Predict the Impacts of 
Behavioral Decay in Design Patterns," IEEE ACM IDoESE, 13th International Doctoral Symposium on 
Empirical Software Engineering, Beijing, China, October 19, 2015. 
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and attempt to minimize re-design in the future [31]. However, the evolution of design 

patterns is controversial. The original intent of the pattern may become obscured for 

many reasons, including new developers contributing to a pattern, or the unforeseen 

changes to elements participating in the pattern. Empirical work has shown that the 

structure of a pattern has the potential to decay as the pattern ages [33] [34] [37] [38] 

[39]. Furthermore, research has shown that the structural decay of patterns results in 

decreased system quality and increased technical debt [22]. 

Although significant work has been made towards understanding design pattern 

structural decay, little work has been made towards understanding behavioral decay. 

Behavioral decay refers to the deterioration of the runtime design of a system. Behavioral 

decay is complementary to structural decay, yet a large gap and dearth of research is 

evident. The exploration of behavioral decay in design patterns will yield greater insights 

into the benefits and detriments of utilizing design patterns. 

This chapter is organized as follows: Section 5.2 discusses related work. Section 

5.3 outlines the current challenges in the field, including research gaps and relevant 

problems. Section 5.4 outlines research objectives. Section 5.5 describes the approach. 

Section 5.6 identifies the threats to the validity of the proposed study, and section 5.7 

provides concluding remarks. 
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5.2 Background and Related Work 
 
 
4.2.1 Technical Debt 
 

Technical debt (TD) is a metaphor coined by Ward Cunningham to describe the 

gap between the current state of a software system and the ideal state [19]. TD captures 

the effects of decisions that sacrifice good design principles for on-time delivery. Many 

times these decisions take the form of shortcuts or workarounds in code that complete the 

task at hand, but at the expense of decreased quality. Principal and interest are two 

attributes of TD. Given a task to implement, principal refers to the cost in effort to 

complete the task. Interest refers to the gap between maintenance costs under ideal 

conditions versus conditions where maintenance is higher due to accrued debt from tasks 

where TD is not repaid. Effectively managing TD is multi-faceted problem, where the 

need to implement new features must be leveraged with the need to refactor. 

Tom et al. performed a systematic literature review of the current state of TD in 

academic literature [74]. The study reports that many of the difficulties of managing TD 

are a result of poor problem definition and representative models. As an outcome of this 

study, Tom et al. propose a fundamental framework of TD; this work follows this 

framework. 

Tom et al.’s framework identifies architectural technical debt (ATD) as a specific 

type of TD that focuses on items originating from the design or architecture of a software 

project. These are items such as modularity violations [79], architecture dependency 

issues [66], and design pattern decay [11] [33] [34] [37] [38] [39]. Several operational 

models for estimating TD have recently surfaced in the field [20] [32] [46] [49] [54], 
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however no single method has surfaced as a clear better approach, possibly because they 

fail to capture domain specific information in a system.  

 
5.2.2 Software Quality 

Software quality has been categorized into a set of characteristics, each of which 

is composed of related sub-characteristics. The ISO-IEC 25010 Software Quality 

Specification formalizes a set of eight characteristics to form an abstract model for 

measuring quality [36]. These characteristics, or attributes, are evaluated to the extent to 

which a system realizes that characteristic. Several domain-agnostic quality models that 

realize this specification have been developed. Two quality models, QMOOD and a 

robust alternative QUAMOCO, have surfaced as operational quality models [7] [76].  

 
5.2.3 Software Behavior 

Preliminary research reveals that software behavior can be of two types; internal 

and external. Internal behavior refers to the interior mechanisms and API calls that occur 

during system runtime. Internal behaviors are not necessarily seen except at the point in 

time in which they are executing. In this manner, internal behaviors are more a temporary 

artifact that exists only for the duration of their execution. External behavior refers to the 

external and observable result that the system produces. These may be represented as 

system goals and are the consequences of internal behaviors. That is, internal behaviors 

cause external behaviors.  
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5.2.4 Software Decay 

Code decay is a term that refers to the case where code is “harder to change than 

it should be” [24]. Similarly, software decay refers to software that is more difficult to 

change than it should. Several types of software decay have been identified, including 

code smells, anti-patterns, and design pattern decay [11] [28] [37] [38] [39]. Design 

pattern decay refers to implementations of design patterns that gain undesired elements or 

lose desired elements as they evolve. In this sense, the benefits that the pattern offers are 

lost as its design becomes obfuscated. Studies have found that design pattern decay 

negatively impacts testability and understandability of systems [11] [37]. 

Previous work in design pattern decay has focused on the structure of patterns 

[22] [33] [34] [37] [38] [39]. These are realized as unwanted or missing artifacts that do 

not follow the structural specification of the pattern. When these artifacts obscure the 

implementation of a pattern while still maintaining some of the integrity of the original 

pattern, they are referred to as design pattern grime. Alternatively, when these artifacts 

obscure an implementation of a pattern to such an extent that the integrity of the pattern is 

entirely lost, they are referred to as design pattern rot. Empirical studies have only 

confirmed the existence of pattern grime.  

Further work has classified the types of design pattern grime into three disjoint 

categories: class grime, modular grime, and organizational grime [34] [37] [38] [39]. Of 

these, Schanz and Izurieta expanded the modular grime category, identifying strength, 

scope, and direction as attributes of modular grime [67]. Additionally, Griffith and 
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Izurieta expanded the class grime category, identifying strength, scope, and 

direction/context as attributes of class grime [34].  

 
5.2.4.1 Design Pattern Specification. The process of identifying pattern grime 

consists of recognizing differences between a pattern instance and a pattern’s 

specification. A common language used to specify patterns is the Role-Based Meta-

Modeling Language (RBML) [43]. RBML is realized in the Unified Modeling Language 

(UML 2.0)13 and is an abstract language that generalizes each actor in a pattern to a 

single common role. Depending on the type of pattern, there will be a number of possible 

roles. For example, the Observer pattern has a Subject role and an Observer role. 

Observer pattern instances have classes that fulfill both these roles. 

Dae-Kyoo Kim has shown that RBML alone is not sufficient for specifying 

patterns because it lacks constraint templates that limit the capabilities of roles [42]. In 

order to combat this, the Object-Constraint Language (OCL) is used to provide necessary 

constraints to RBML models.  

 
5.3 Current Research Challenges 

 
 
5.3.1 Research Gaps 
 

The current knowledge base of design pattern grime features only structure-based 

disconformities, or grime that is captured from a static snapshot of a pattern instance. 

This works seeks to extend the knowledge base of pattern grime by considering behavior-

based disconformities, or grime that is captured during the runtime execution of a design 

                                                 
13 http://www.uml.org/ 
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pattern. In an effort to achieve this goal, the authors have identified the following 

research gaps.  

1. Characterization of Behavioral Grime: Structural grime is incapable of 

capturing whether or not a design pattern is behaving as intended. A pattern 

instance may have no structural grime, but the runtime execution of the pattern 

may not match the expected runtime execution of the pattern. Cases such as this 

are not captured by the current knowledge base of pattern grime. This notion 

forms the basis for this research. Given this, the characterization of behavioral 

grime is a gap that needs clear definitions. 

2. Behavioral Grime Taxonomy: To the best knowledge of the authors, no attempt 

has been made at categorizing the types of behavioral grime in the context of 

design patterns.  

3. Impacts on Quality: Previous studies have identified the impact of structure-

based grime on quality attributes, showing that testability and maintainability are 

negatively impacted from structural grime [34] [39]. However, no attempt has 

been made at quantifying the impact of behavioral grime on these quality 

attributes and the additional quality attributes featured in the ISO 25010 software 

quality specification. 

4. Impacts on Technical Debt: Dale and Izurieta showed that the injection of 

modular grime into patterns increases the technical debt of the pattern [22]. No 

work has sought to capture the impact of behavioral grime on technical debt.  
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5. Relationships between Behavioral and Structural Grime: Several questions 

arise that are concerned with the relationships between behavioral and structural 

grime. For example: How are structural grime and behavioral grime related? Is 

the appearance of structural grime causal to the existence of behavioral grime? Is 

the reverse true? Are there cases where structural grime exists but behavioral 

grime does not? 

6. Tool Support: Currently, there is no known tool support to operationalize 

behavioral concepts. Implementing a tool is an important contribution to the 

community. 

7. Predicting Pattern Decay: No research has looked into predicting when a pattern 

is prone to decaying, or even if certain patterns are more prone to decay. Bridges 

to these two research gaps would give valuable insight to developers regarding the 

implementation of patterns, and even when to be aware that a pattern might be 

near decaying/rotting. 

 
5.3.2 Operational Gaps 
 

A pilot study was performed, in the form of a controlled experiment; in which 

realizations of observer patterns were studied. We created three instances of the observer 

pattern; one instance behaved as defined, one instance featured Subjects that waited a 

significant amount of time before updating their Observers when their state changed, and 

the final instance featured Subjects that did NOT update their Observers when their state 

changed. These three instances exemplify cases where, respectively, (1) a pattern behaves 

properly, (2) a pattern behaves properly but a disharmony exists during its lifetime, and 
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(3) a pattern behaves significantly different from its intended usage. The SonarQube [32] 

tool, used to estimate Technical Debt, and the inCode tool14, used to identify design 

flaws, were run across the pattern instances. Neither of these tools identified a major 

difference between the three pattern instances, suggesting that state-of-the-art tools used 

to identify issues are not capable of detecting problems concerning design pattern 

behavior. This experiment highlights the need to explore this area further. 

 
5.3.3 Proposed Contributions 
 

To address current gaps, the following contributions are proposed: 

1. The formal characterization of behavioral grime in design patterns 

2. The development of taxonomy to classify behavioral grime 

3. The development of empirical studies to capture the impacts of grime on TD and 

quality 

4. The identification of patterns that are prone to behavioral grime 

5. The creation of a tool that aids in the detection of behavioral grime 

6. The development of a method that allows predictive capabilities for recognizing 

grime  

 
5.3.4 IDoESE Feedback Sought 
 

Advice on the following topics is sought: 

1. Overall Scope: Whilst all topics presented in this paper are interesting and 

necessary research items, advice on the estimation of work and its feasibility is 

                                                 
14 https://www.intooitus.com/products/incode 
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sought. For the scope of a doctoral-level degree, is this plan too ambitious? If so, 

what parts should be prioritized? 

2. Automation: Currently, there is very little automation of these processes. This is 

a result of exploring a new area of research. To what extent should we focus on 

operationalizing behavioral detection and quantification? 

3. Pattern Dataset: The only available dataset of design pattern instances is the 

Perceron’s dataset [2]. This dataset only features instances of 10 unique pattern 

types, all from the Java programming language. This means that this research has 

limited generalizability. Is it necessary or worth the effort to look at more pattern 

types and/or patterns instances from other languages? 

 
5.4 Objectives 

 
 
5.4.1 Research Objectives 
 

RG1: Investigate design pattern instances for the purpose of identifying and 

characterizing internal and external behavioral grime with respect to proper pattern 

behavior as defined by the design pattern specification from the perspective of the 

software system in the context of design patterns in open source and commercial 

software. 

RQ1.1: Does the behavior of a design pattern instance deviate from the expected 

behavior of that pattern type? 



66 
 

 

Rationale: This is the basic question of this research. If it is possible to identify 

design pattern instances where the actual behavior deviates from expected behavior, then 

the need to further explore this phenomenon is apparent.  

RQ1.2: Do common types of behavioral grime exist within multiple instances of 

a single pattern type? 

Rationale: If common grime types can be identified within a specific pattern, 

other instances of that pattern may be circumspect to the same type of grime. 

RQ1.3: Do common types of behavioral grime exist across multiple instances of 

different pattern types? 

Rationale: If common types of behavioral grime exist across different types of 

patterns, we will have attained some level of generalizability that applies to a larger set of 

pattern types.  

RG2: Express the difference between structural and behavioral grime for the 

purpose of illustrating the importance of studying behavioral grime with respect to design 

pattern instances from the perspective of design pattern instances in the context of open 

source and commercial software. 

RQ2.1: To what extent can patterns have both structural and behavioral grime? 

Rationale: Consider the grime quadrant in table 5.1. Columns indicate whether 

structural grime exists in a pattern, and rows indicate whether behavioral grime exists in 

the same pattern. Current research has identified design patterns with grime, but those 

patterns are constrained by cases A and B. This research needs to be expanded to 

discover patterns that fall in cases C and D. This will illustrate that this work is novel. 
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RQ2.2: Does the current knowledge base of structural grime instances include 

cases of behavioral grime? 

Rationale: There may be behavioral grime in many of the patterns that exhibit 

structural grime.  

RQ2.3: What is the relationship between behavioral grime and structural grime? 

Rationale: Intuitively, it appears a relationship exists between behavioral and 

structural grime. Discovering the precise nature of this relationship will help developers 

understand pattern decay in the future. 

RG3: Quantify the impact of grime in internal and external design pattern 

behavior for the purpose of capturing the effects on system quality and TD with respect 

to proper pattern behavior as   defined by the design pattern specification from the 

perspective of the software system in the context of design patterns in open source and 

commercial software. 

RQ3.1: To what extent does behavioral grime affect the quality attributes of a 

design pattern? 

Table 5.1 Grime quadrant of possible grime types. For a given pattern, rows 
correspond to at least once instance of behavioral grime existing in the pattern, and 
columns correspond to at least one case of structural grime existing in the pattern. 

 Structural grime does 
not exist 

Structural grime exists 

Behavioral grime does 
not exist 

Case A Case B 

Behavioral grime exists Case C Case D 
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Rationale: This research question seeks to quantify the impact behavioral grime 

has on the quality of the pattern. 

RQ3.2: Is the quality of certain types of behavioral grime worse than other types? 

Rationale: This question attempts to identify the forms of behavioral grime that 

are worse than others. 

RQ3.3: To what extent does behavioral grime affect the TD of a software project? 

Rationale: In essence, TD captures the financial impact of behavioral grime. 

Understanding this impact is crucial for developers and project managers alike so 

decisions regarding release timelines or refactorings can be made. 

RQ3.4: Is the TD of certain types of behavioral grime worse than other types? 

Rationale: This question attempts to identify the forms of behavioral grime that 

are worse than others. 

RQ3.5: Are the current TD estimation and quality measurement tools capable of 

capturing behavioral grime? 

Rationale: Behavioral grime may have an impact on the TD estimate and quality 

of the pattern. If the current tools are not sufficient in capturing these impacts, then the 

tools need to be extended in order to reflect the impact. 

RG4: Investigate the evolution of internal and external behavior in design 

patterns for the purpose of capturing trends of behavioral grime over time with respect to 

proper pattern behavior from the perspective of the software system in the context of 

pattern in open source and commercial software. 

RQ4.1: Can common trends of behavioral grime be captured as a pattern evolves? 
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Rationale: This question identifies if patterns are more prone to certain 

behavioral grime types. If we can predict which patterns tend towards building behavioral 

grime, then development efforts can be more pro-active in addressing pattern evolution. 

RQ4.2: Can behavioral grime be predicted? 

Rationale: This question focuses on the possibility that underlying mechanisms 

may exist that allow us to predict when a pattern will accumulate behavioral grime in the 

future. 

 
5.4.2 Research Metrics 
 

Following the GQM approach [9], several metrics are identified that will be used 

to answer the research questions. 

M1: Structural Grime Count (SGC) – The total amount of grime accumulated in a 

single pattern realization that is identified from structural models. This metric will be 

used to answer RQs 2-4. 

M2: Behavioral Grime Count (BGC) -- The total amount of grime accumulated in 

a single pattern realization that is identified from behavioral models. This metric will be 

used to answer RQs 2-4. 

M3: Technical Debt Principal (TDP) – A measure of the cost required to 

complete a task. This metric will be used to answer RQ 3.  

M4: Technical Debt Interest (TDI) – A measure of differences in cost required to 

complete tasks under ideal conditions versus the current condition of the system. This 

metric will be used to answer RQ 3. 
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M5: Pattern Quality (PQ) – An aggregated measure of the eight quality 

characteristics featured in the ISO 25010 software quality specification [36]. Each quality 

characteristic is further broken down into a number of (sub)-characteristics. This metric 

reflects an aggregation of the (sub)-characteristics. This metric will be used to answer RQ 

3. 

M6: Probability to Deviate (PD) – The probability that a pattern will accumulate 

grime in the future, given its pattern type, past and current SGC, BGC, TDP, TDI, and 

PQ. This metric will be used to answer RQ 4. 

 
5.4.3 Working Hypotheses 
 

H1: There exist instances of behavioral grime that are not captured by current 

structural grime models. 

H2: Common forms of behavioral grime exist within the same pattern type. 

H3: Common forms of behavioral grime exist across different pattern types. 

H4: Including behavioral grime in the current grime models will allow the 

detection of pattern rot. 

H5: Quality and TD 

H5.1: Behavioral grime has a negative effect on the quality of the (a) pattern 

realization, and (b) software system as a whole. 

H5.2: Behavioral grime has a negative effect on the TD calculation of the (a) 

pattern realization, and (b) software system as a whole. 
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H6: Given the pattern type, and past and current measurements of SGC, BGC, 

TDP, TDI, and PQ, it is possible to predict whether a pattern will accumulate grime in the 

future, with a degree of uncertainty. 

 
5.5 Approach 

 
 
5.5.1 Data Collection 
 

Design pattern instances will be collected across a variety of open source and 

commercial software systems. The Perceron’s dataset features 4500 pattern instances 

from Java open source software systems [2]. The patterns featured in this database will be 

downloaded to provide an initial set of design pattern instances. Additionally, design 

patterns will be manually extracted from a commercial software system owned by a local 

firm with an established relationship.  

Models of each design pattern instance will be captured using UML class 

diagrams and UML sequence diagrams15. Class diagrams capture the structural elements 

of the pattern instance, and sequence diagrams capture the behavioral elements of the 

pattern instance. Additionally, pattern specifications for each pattern type will be 

captured in UML class and sequence diagrams, using RBML and OCL.  

The PQ, TDI, and TDP of each pattern instance will be calculated. These metrics 

will be calculated for both individual pattern instances and the entire software system that 

the pattern originates from. This data will be stored in a relational database.  

 
 
 
                                                 
15 http://www.uml.org/ 
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5.5.2 Research Approach 
 

Once the data collection process is complete, a variety of case studies and 

experiments will be used to answer the research questions. Juristo and Moreno’s guide on 

experimentation in software engineering will be used to initially construct experiments 

[40]. 

RQ1.1-3 will be evaluated using a case study, wherein the taxonomy of design 

pattern grime will be extended to incorporate behavioral grime types. All pattern 

instances will be categorized according to their behavioral and structural conformance 

from the grime quadrant of table 5.1. We will manually sort through each category, 

identifying design pattern violations. Violations that share similarities (OCL or RBML) 

will be grouped. 

RQ2.1-3 will be evaluated using a case study. Conformance checking algorithms 

will be implemented that validate the structural conformance and behavioral conformance 

according to the work done by [42] [71]. All available pattern instances will be 

categorized into one of the four groups defined in table 4.1. A binomial regression model 

will be fitted from the sample in order to answer RQ2.3. 

RQ3.1-5 will be evaluated using a controlled experiment. Patterns will be blocked 

according to pattern type and then randomly selected from the available dataset. Patterns 

will be evaluated for TD and quality using a suite of static and dynamic analysis tools, as 

discussed in section 4.2. After measurements are recorded, forms of grime will be 

randomly selected and injected into patterns. After injecting, we will re-evaluate the TD 

and quality measurements. To analyze the data, two ANOVA tests will be utilized. 
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RQ3.1-4 will be answered by fitting a two mean model, containing a mean for non-

injected patterns and a mean for injected patterns. That is, the respective TD and quality 

measurements from all tools that analyzed non-injected patterns will be averaged. 

Respectively, the same analysis will be done for injected patterns. RQ3.5 will be 

answered by fitting a separate means model; that is, each quality analysis tool will have a 

mean. Variance will be measured over all the analysis tools, for each of non-injected and 

injected patterns. 

RQ4.1-2 will be evaluated using an observational study. Patterns will be divided 

by pattern type and assessed for the existence of grime across their lifetime in terms of 

project releases. For each release, a record will exist documenting whether that pattern 

instance has grime or not. Further, an ARIMA analysis will be performed. This will give 

an indication into the tendencies of a pattern to collect grime as it ages. 

 
5.6 Threats to Validity 
 

There exist several threats to the validity of this study. Internal validity refers to 

the ability to recognize a causative relationship in the study, and not as a result of 

confounding variables. Internal validity is threatened because other design defects may 

exist alongside grime in a pattern; thus design defects are a confounding variable in this 

study. To attempt to remove the effect of design defects, we utilize a large number of 

pattern instances in the analysis and block across pattern type. This mitigates the chance 

that a design defect will affect the results of the study. 

External validity refers to the ability to generalize from the results of the study. 

External validity is threatened because of the limited datasets of design pattern instances. 
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To combat this threat, we have utilized the Perceron’s dataset, which is the only 

publically available dataset of patterns that features a large number of instances (over 

4500), and pattern instances from a local commercial software firm. Patterns from both 

these datasets are implemented in Java, and the Perceron’s dataset features only open 

source patterns. Therefore, the ability to generalize the results is limited to the population 

of patterns in this study. 

 
5.7 Conclusions 
 

We have outlined the work that will result in a doctoral dissertation in hopes that 

we can receive feedback on the merit of this research. Research gaps are presented and 

studies are designed that fill them. We intend to contribute novel research that 

strengthens the current state of empirical software engineering. 

This research is in its early stages. Currently, preliminary research has been 

performed, for the purpose of illustrating the research gaps. This research includes 

generating pattern instances and manually injecting grime into them, as described in 

section 5.2. Additionally, two potential forms of behavioral grime have been identified. 

Next steps call for the analysis of a larger number of pattern instances that expand the 

taxonomy of behavioral grime. 
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CHAPTER SIX 
 
 

EVALUATIONS OF BEHAVIORAL TECHNICAL DEBT IN DESIGN PATTERNS: A 

MULTIPLE LONGITUDINAL CASE STUDY16 

 
6.0 Abstract 

 
 
 Design patterns represent a means of communicating reusable solutions to 

common problems, provided they are implemented and maintained correctly. However, 

many design pattern instances erode as they age, sacrificing qualities they once provided. 

Identifying instances of pattern decay, or pattern grime, is valuable because it allows for 

proactive attempts to extend the longevity and reuse of pattern components. Apart from 

structural decay, design patterns can exhibit symptoms of behavioral decay. We 

constructed a taxonomy that characterizes these negative behaviors and designed a case 

study wherein we measured structural and behavioral grime, as well as pattern quality 

and size, across pattern evolutions pertaining to four design pattern types. We evaluated 

the relationships between structural and behavioral grime and found statistically 

significant cases of strong correlations between specific types of structural and behavioral 

grime. Furthermore, we identified the rates at which behavioral grime accumulates in 

pattern instances using multiple linear regression analysis. We extended the QATCH 

software quality model to incorporate design pattern grime, and measured and correlated 

                                                 
16 Based on: 
Reimanis D., Izurieta,C, "Behavioral Evolution of Design Patterns: Understanding Software Reuse through 
the Evolution of Pattern Behavior," 18th International Conference on Software Systems and Reuse, ICSR 
2019. In: Peng X., Ampatzoglou A., Bhowmik T. (eds) Reuse in the Big Data Era. Vol 11602, Springer 
Cham. https://doi.org/10.1007/978-3-030-22888-0_6 Cincinnati, OH, June 26-28 2019. 
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software quality to the presence of behavioral grime in software systems. Our results 

suggest a strong inverse relationship between software quality and behavioral grime. 

 
6.1 Introduction 

 
 

Software products have evolved rapidly over the last several decades. 

Increasingly complex software requirements from customers have prompted advances in 

software development practices and automation across all disciplines. These 

circumstances have helped create an ecosystem where the expectations of software 

products is significantly higher, and where once minor upgrades were sufficient, now 

fully functional and highly specialized products are expected. To cope with higher 

expectations and complex requirements, software quality assurance is becoming a 

mainstream approach to meet those needs. 

The deployment of complex products with multiple components does not come 

without its drawbacks, however. The expectation that multi-component complex systems 

are delivered on time and within budget, require the adoption of robust processes to 

accommodate all phases of the product’s software life-cycle. One such process is 

software quality assurance (QA); which seeks to measure and monitor all aspects of 

software quality over the entire lifetime of a software product. In fact, traditional 

software testing is no longer enough, and more advanced QA methods, such as 

continuous integration, are necessary approaches to ensure the quality of every 

component at all stages of the product’s life-cycle. Software design is one phase in the 

software life-cycle where QA techniques are necessary. Software design represents the 
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vision of a software solution, considering current and potential future requirements. 

Designs must be flexible enough to accommodate change, facilitate extensibility, and 

promote the ease of interchangeable and reusable software components, while still 

maintaining a high level of quality. One common strategy to assist with this balance is to 

use design patterns. 

Design patterns embody recurring and reusable solutions to common problems 

encountered in the software development process [31]. Design patterns capture 

experience reuse and represent decisions that are made in the design phases of software 

life-cycles. They have the properties of being reusable, maintainable, and easy to extend 

in future versions. The choice to utilize design patterns in a project comes with the 

understanding of an important assumption– specifically, that the initial implementation of 

a pattern instance may take longer than a non-pattern implementation, but future 

revisions and maintenance efforts will be faster and therefore cheaper if a pattern is 

present. This assumption holds true in a theoretical sense, yet is controversial in a 

practical sense. Historically, design pattern realizations have been found to deviate or 

drift from their initial intent, thus eliminating many of the beneficial qualities the pattern 

offers in the first place. Such a deviation may occur if a new developer is unfamiliar with 

a code-base, or if pressure from management to ship a product requires ’quick-and-dirty’ 

extensions of the pattern. Such a phenomenon is referred to as technical debt (TD) [4], 

and the existence and extent of TD are not fully explored; for example, it is not known 

whether the presence of such a deviation within a design pattern provides more harm to a 

software product than choosing not to utilize a design pattern in the first place. 
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6.1.1 Research Problem 
 

Previous research efforts have both explored the existence and measured the 

effects of design pattern deviations from only a structural perspective. The structural 

perspective of a design pattern refers to the class members of the pattern, including the 

operations and attributes of the pattern’s classes, as well as the relationships between 

class members. This research has found that such deviations do exist within a design 

pattern’s evolution, and that these deviations have a negative effect on software quality. 

However, the structural perspective is one of many perspectives into a design pattern. 

Another perspective necessary to understand design patterns is the behavioral 

perspective, or the events that occur as a design pattern instance is operating at program 

run-time, which are not visible from a structural perspective. A behavioral perspective 

offers additional insights into a design pattern and its evolution, thus refining existing 

scientific models and taxonomies [67] [34] [83] that capture design pattern evolution. 

 
6.1.2 Research Objective 
 

The goal of this research is to expand the body of knowledge surrounding 

software quality and technical debt, as it pertains to design pattern evolution, from a 

behavioral perspective. Four specific activities aligned with our overarching goal are 

identified. First, the identification of design pattern deviations from a behavioral 

perspective. Second, the characterization of behavioral deviations into a structured 

organizational scheme, a taxonomy. Third, the comparison of behavioral grime to current 

grime models, specifically structural grime. Fourth, the evaluation of the effects that 
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behavioral deviations have on software quality and technical debt. Meeting these 

objectives complements structural approaches, and provides software stakeholders with 

more advanced techniques and tools to monitor software quality, so that important 

decisions pertaining to software products can be made with increased certainty. 

 
6.1.3 Contributions 
 

The contributions of this work include:  

• A taxonomy that captures behavioral grime in design pattern instances.  

• Evaluation of the relationships between structural grime and behavioral grime.  

• Analyses illustrating the rate at which behavioral grime accumulates in a pattern 

instance. 

• Extension of the QATCH [70] quality model to include design pattern evolution 

quality properties. 

• Evaluations of the relationships between behavioral grime and software quality. 

 
6.2 Background and Related Work 

 
 

In the following subsections we discuss relevant background and research, which 

can be broadly labeled as software quality assurance. We also provide definitions for key 

terms, and follow by detailing the process we employed to identify important research 

topics aligned with our goal. 
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6.2.1 Software Quality 
 

Software product quality, hereafter referred to as software quality, is broadly 

defined by the ISO-25010 specification as the degree to which a software product 

satisfies its various needs [36]. This general definition can be applied to any and all 

software products. To aid in the operationalization of such an abstract concept, a 

hierarchy of software quality characteristics and attributes are provided by the 

specification. At the second-highest level in the hierarchy, software quality is divided into 

eight characteristics, which themselves consist of multiple sub-characteristics or 

properties. An illustration of the software product quality model is presented in figure 

6.1. Largely, every quality sub-characteristic or quality property is defined as the degree 

to which a software product satisfies it. 

 

Because of its abstract nature, the ISO-25010 quality model can be viewed more 

as an academic, or research tool, not a practitioner’s tool.  This conflicts with the goal of 

the quality model, because its purpose is to facilitate operationalization, and ideally help 

 
Figure 6.1 The ISO-25010 software product quality model [36]. Software product 

quality is divided into eight primary quality characteristics, which each have multiple 
quality sub-characteristics or properties themselves. 
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quantify or qualify software products with the intention that practitioners use the results 

to better understand their software. As the model is defined, it does not immediately 

provide practitioners with guidance for measuring each of the characteristics. Fortunately, 

several research projects have taken steps to improve the model’s usefulness by 

operationalizing the model with concrete measurements of each quality characteristic or 

property, at the code level. Such operational models perform static analysis on a 

product’s code-base, identifying violations of coding best practices or suggestions for 

improvements (such as insufficient code commenting). Following the code-level analysis, 

all findings are aggregated and mapped to corollary characteristics or properties within 

the quality model. This mapping effectively connects the abstract levels of the quality 

model with its operationalized counterparts, thereby providing practitioners with 

meaningful and actionable methods to measure software quality. 

 
6.2.2 Technical Debt 
 

TD is a metaphor coined by Ward Cunningham in the seminal Wycash Portfolio 

Management System report [19]. TD captures the trade-offs between spending time to 

follow good design and development practices versus rushing a product to market to 

secure a market niche before competitors. If more time is spent on product quality, the 

product may never be released in a timely manner. Yet if more time is spent on shipping 

a product to market, the quality of the underlying design and code may suffer, meaning 

future changes may be more difficult to make. Contrary to intuition, TD is not a 

minimization or maximization problem, but rather a portfolio management problem. With 

the understanding that it is very difficult or, in many cases impossible, to predict the 



84 
 

 

future direction of a product, it is preferable to provide stakeholders with a TD report and 

allow them to make an informed decision regarding the state of TD in their product. 

Some scenarios may encourage TD remediation efforts, while some scenarios may 

encourage the push to production. Additionally, the domain of the company, and 

subsequent products, may have an effect on the decision to re-mediate TD items. Recent 

work from a Dagstuhl17 seminar narrowed the scope of the TD field to consider only 

internal code issues, stemming from the quality characteristic of Maintainability [4]. This 

narrowing of scope was necessary as a means to identify the search space of TD, in order 

to effectively measure TD in a software system. 

 
6.2.3 Design Pattern Formalization 
 

Design patterns can be formally specified using a combination of the Role-Based 

Meta-Modeling Language (RBML) [42] and the Object Constraint Language (OCL) [77]. 

RBML specializes the Unified Modeling Language (UML) [65] meta-model and captures 

key elements of a design pattern, based on specific roles that participants in that design 

pattern may take. A design pattern specification consists of two sub-specifications, the 

Structural Pattern Specification (SPS) and the Interaction Pattern Specification (IPS) 

[42]. An SPS characterizes the structural elements of a pattern, including the class 

members, attributes, operation signatures, and relationships. An IPS characterizes the 

behavioral elements of a pattern, referring to the flow of information that occurs when a 

design pattern is in operation, at program run-time. SPSs are analogous to UML class 

diagrams, whereas IPSs are analogous to UML sequence diagrams at the M2 level of 

                                                 
17 https://www.dagstuhl.de/en/ 
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design specification. For example, consider the Observer pattern instance illustrated in 

figure 6.2. In this example inspired by [29], we consider an Observer pattern 

implementation that controls the operation of a kiln system. Two kiln classes, 

CeramicKiln and SteelKiln are Subjects in this example, and each kiln is monitored by 

two Observers, an LEDObserver and a RemoteObserver. The UML class diagram of this 

system is shown on the left half of the figure, and the corresponding UML sequence 

diagram of the system is shown on the right half. Both of these diagrams are depicted as 

M1 level specifications. The diagram also shows the respective M2 level SPS (top-left) 

and IPS (top-right) specifications of the Observer pattern. Dotted lines capture mappings 

from individual elements of the kiln system to the corresponding design pattern role 

characterized by the specification. The arrows represent conformance to the intended 

design of the pattern. To improve clarity, individual mappings for the operations and 

attributes are not shown, yet they are considered in the actual mapping process. This 

example is naive in the sense that this kiln system nearly perfectly aligns to the Observer 

pattern SPS and IPS; such close alignments are unlikely in practical systems. However, 

the example serves as a visual representation of mappings from design pattern instance to 

design pattern specification. 
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Figure 6.2 Example Observer pattern instance of a kiln system. The class and sequence diagrams for the kiln system are shown on 

the bottom half, and the SPS/IPS for the Observer pattern are shown on the top half. Mappings are shown, using dotted arrows, 
from concrete instance to SPS (on the left), and to IPS (on the right) 
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6.2.4 Design Pattern Decay 
 

Software applications are used every day, yet they do not ’wear out’ over 

extended use periods in the classical sense, as physical objects would. Instead, software is 

subject to a different type of wear, related to the maintenance of the underlying design 

and code. Over time, many factors such as unforeseen changing requirements, developer 

turnover, legacy code dependencies, and others, will contribute to the degradation of 

software quality. This phenomenon is captured by the terms software decay and code 

decay. Software and code are deemed decayed if they are harder to change than they 

should be [24]. A specific form of software decay is design pattern decay. Design pattern 

decay refers to the addition of undesired elements or loss of desired elements in a design 

pattern instance, over the lifetime of the design pattern [37] [38]. Design pattern decay is 

considered a sub-domain of design decay, which is analogous to code decay with the 

exception that the decay occurs in the design level of a software project instead of at the 

code level. Design pattern decay consists of two categories; design pattern grime and 

design pattern rot [38]. Design pattern grime, hereafter referred to as grime, is defined as 

the build-up of unintended artifacts, or elements, over the lifetime of a design pattern 

instance. These artifacts do not contribute to the pattern’s intended role in the overall 

software project, detracting from the beneficial qualities the pattern would otherwise 

provide. A key distinction exists between grime and elements that are necessary for the 

implementation of the design pattern in the system; specifically that grime considers the 

evolution of the design pattern instance, illustrating elements that appear over time that 

do not reflect an initial and clean version of the design. 
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Previous work has shown that the presence of grime is associated with decreases 

in testability and adaptability, as well as the presence of anti-patterns [39]. Additionally, 

recent work has shown that the presence of grime is related to the depreciation of system 

correctness, system performance, and system security [26]. Furthermore, Feitosa et al. 

has found that grime has a tendency to accumulate linearly, suggesting the quality of a 

pattern worsens as the grime of that pattern increases [25]. Design pattern rot, hereafter 

referred to as rot, is defined as the removal of key elements of the pattern such that the 

pattern no longer retains its core elements. A pattern that has succumbed to rot no longer 

identifies as such; instances of rot in software projects has eluded researchers because of 

the difficulty in identifying it. From a formal perspective, a pattern has succumbed to rot 

when it no longer conforms to, or successfully maps to, a pattern’s SPS or IPS. The 

degree to which a pattern instance conforms to its intended design is a research topic that 

has not been explored. 

 
6.2.5 Literature Review 
 

In an effort to identify important and relevant research topics, we utilized a 

Systematic Mapping Study (SMS) as outlined by Peterson et al. [61]. A SMS seeks to 

provide an organized overview of a research area, categorizing the quantity and type of 

research performed by various research groups. Within our SMS, we employed Budgen’s 

protocol for identifying research ‘gaps’ as well as ‘clusters’ using mapping studies [14]. 

Gaps present research areas that have little exploration, where new or improved primary 

studies are required. Alternatively, clusters indicate areas that already have been 

explored, where more complete Systematic Literature Reviews (SLRs) may be 
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undertaken. After finding several clusters in software quality assurance, with respect to 

software quality and TD, we performed a formal literature review with a focus on 

identifying research goals with respect to evident gaps. The following section details this 

process by introducing research accomplishments in software quality assurance with 

focus on software maintainability and technical debt. Along with these definitions of 

software quality and technical debt, we briefly describe several state-of-the-art 

operational research-based quality assurance tools and discuss their impact on open 

source and commercial software projects. Following, we draw logical connections across 

research groups as well as operational tools to highlight gaps in the research area. 

Table 6.1 presents the results from our SMS using Budgen’s formatting [14]. We 

have elected to remove the column titled ‘Period Searched’ because the scope of focus 

for this study includes all publications from the listed author(s) until the current date. 

Synthesizing the results, we identify an immediate research gap in behavioral TD 

analysis. Every research cluster presented in the table utilizes some form of structural 

analysis to perform their research, yet none has considered the behavioral aspects, or the 

intricacies of how software quality and TD are affected by the run time attributes and 

properties of code. More specifically, behavioral aspects in the context of design patterns, 

of which we have quite formal specifications for understand that deviations away from 

the formal specification is a form of TD [82]. This clear gap provides the need and basis 

for the extent of this study.
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Table 6.1 Results from our Systematic Mapping Study, following the format of Budgen [14]. 
Author(s) Years 

Published 
Topic No. of 

Studies 
Form of Research Sources Searched 

Seaman, Shull, Guo 2006-2018 TD 
Management 

26 TD Management; TD 
identification and 
decision-making 

frameworks 

Google Scholar & dblp 
database 

Cai, Wong, Kazman, 
Xiao 

2007-2016 Architectural 
TD 

24 Version Control/Ticket 
System Analysis & 

Tool development & 
Case Studies 

Google Scholar & dblp 
database & ACM library 

Morisio, Vetro, 
Torchiano 

2004-2017 Automatic 
Static Analysis 

Issues 

10 Model and Evaluation Google Scholar & dblp 
database & ACM library 

Fontana, Zanoni, 
Roveda 

2011-2018 Code Smells 19 Code smell 
identification, Code 

smell evaluation 

dblp database 

Kim, France, Bieman 2002-2018 Design Pattern 
Formalization 

33 Model formalization, 
Model checking, 

conformance 

dblp database 

Izurieta, Griffith, 
Reimanis 

2007-2016 Design Pattern 
Evolution 

24 TD Identification, TD 
evaluation, TD 

injection, TD evolution 

Google Scholar & ACM 
library 

Avgeriou, Ampatzoglou, 
Chatzigeorgiou, Feitosa 

2003-2019 Software 
Architecture 

Evolution 

31 TD management, TD 
evaluation, TD evolution 

Google Scholar & dblp 
database 
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6.3 Research Approach 
 
 

In an effort to expand on software quality assurance, as it pertains to design 

pattern evolution from a behavioral perspective, the strategy employed in this research 

has three-steps; first, the identification and detection of unintended behavioral items, as 

they appear in the code of design pattern instances. Second, the characterization of 

unintended behavioral items into categories that simplify the remediation effort. Third, 

the measurement of severity of unintended behavioral items so that remediation efforts 

can be prioritized. The third step has three sub-steps, involving first the comparison of 

behavioral items to existing structural items, second the exploration of how unwanted 

behavioral items come to appear in design pattern instances, and third, the evaluation of 

behavioral items as they affect software quality and TD. 

 
6.3.1 GQM 
 

We use Basili’s Goal-Question-Metric (GQM) approach [10] as a guide for this 

research. The GQM approach dictates an outline of high-level research goals (RG) 

supplemented with questions (RQ) and metrics (M) that guide the research. The GQM for 

this research is listed below: 

RG1: Explore design pattern instances for the purpose of identifying and 

characterizing behavioral deviations with respect to proper pattern behaviors as defined 

by the design pattern’s specification from the perspective of the software system in the 

context of design patterns in open source software systems. 
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RQ1: How does the behavior of a design pattern instance deviate from the 

expected behavior of that pattern type? 

RQ2: Is there evidence to suggest that behavioral grime is present in pattern 

instances of a single pattern type? 

RQ3: Is there evidence to suggest that behavioral grime is present in pattern 

instances across different pattern types? 

RQ4: To what extent can a pattern instance have both structural and behavioral 

grime? 

RG2: Evaluate design pattern behavioral grime for the purpose of understanding 

the value of behavioral grime with respect to structural grime and software evolution 

from the perspective of the software system in the context of design patterns in open 

source software systems. 

RQ5: What is the relationship between structural and behavioral grime? 

RQ6: Is the size of a design pattern instance related to the amount of behavioral 

grime in that pattern instance? 

RQ7: What is the rate at which patterns accumulate behavioral grime? 

RG3: Quantify the impact of behavioral grime for the purpose of capturing the 

effect of behavioral grime on patterns with respect to quality of pattern implementation 

and greater software system from the perspective of the software system in the context of 

design patterns in open source software systems. 

RQ8: Are state of the art software quality analysis tools capable of identifying 

behavioral grime? 
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RQ9: How can the ISO 25010 software quality specification be implemented to 

consider design pattern grime? 

RQ10: What is the relationship between behavioral grime and system quality and 

TD? 

Metrics: Several metrics are outlined that will aid in answering the questions. 

• M1: Structural Conformance 

• M2: Behavioral Conformance 

• M3: Structural Grime 

• M4: Behavioral Grime 

• M5: Pattern Integrity 

• M6: Pattern Instability 

• M7: Pattern Size 

• M8: Pattern Age 

• M9: Pattern Quality 

Table 6.2 describes the formulations for each metric, with respect to a pattern 

instance P. 
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Table 6.2 Summary of the metrics selected for this analysis. 
Metric Name Description 
Structural Conformance (M1) The percentage of structural 

roles in P that conform to at least one structural role 
from P’s SPS. 

Behavioral Conformance 
(M2) 

The percentage of behavioral 
roles in P that conform to at least one behavioral role 
from P’s IPS. 

Structural Grime (M3) A tuple <SGΣ, SGδ+, SGδ->, referring to the <count, 
number of additional elements, and number of 
removed elements>, respectively, that constitute 
structural grime in a single pattern P, in a single 
version. 

Behavioral Grime (M4) A tuple < BGΣ, BGδ+, BGδ- >, referring to the: 
<count, number of additional elements, and number 
of removed elements>, respectively, that constitute 
behavioral grime in a single pattern P, in a single 
version. 

Pattern Integrity (M5) M1 + M2

2
 

Pattern Instability (M6) Adopted from Martin’s 
Instability metric (I) [50], the afferent coupling of P 
divided by the sum of the efferent coupling of P and 
the afferent coupling of P. 

___Ce(P)___ 
Ce(P) + Ca(P) 

Pattern Size (M7) Adopted from Li and Henry’s 
Size2 metric (size2) [48], the sum of attributes and 
methods across all classes in P. 

Pattern Age (M8) Age of a design pattern 
instance, calculated as a count of the number of 
software versions one design pattern instance appears 
in. 

Software Quality (M9) Scores of quality and all eight 
quality characteristics across an entire software 
project at a single version, derived from the QATCH 
toolchain [70] 
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6.3.2 Study Design 
 

The study design for this research is depicted in figure 6.3. To begin, we selected 

several software projects to study according to the selection process presented in the 

paragraph below. From these software projects, we identified design pattern instances 

using the design pattern detection tool described by Tsantalis et al. in [75]. We chose this 

tool because it is based on strong theory and claims little to no false positives in practice.  

Additionally, we used the tool SrcML [18] to assist in the source code parsing process. 

We chose this tool because it offers a translation from language-specific source code to 

standard format XML, meaning this process becomes language-agnostic. Following 

XML generation, we reverse-engineered the UML class and sequence diagrams of the 

entire software project. The entire software project’s UML class and sequence diagrams 

need to be reverse-engineered, not just a subset, because the behavioral aspects that we 

wish to study require a holistic view of the software project, so that function calls and 

data types are assigned correctly. Once we had reverse-engineered the UML class and 

sequence diagrams, we generated a UML representation of the design pattern by 

combining the design pattern’s detection results with the corresponding UML diagrams. 

Next, we subjected each design pattern instance to a process of coalescence. The process 

of pattern coalescence involves identifying members of the design pattern not captured by 

the design pattern detection tool. Such members may be sub-classes, super-classes, or 

pattern-methods within a pattern class that the design pattern detection tool may have 

missed. Following coalescence, we extracted the evolution of each pattern instance by 

tracking and connecting contributing roles of patterns across software versions.  
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Once pattern instance evolutions were generated, we entered the evaluation stage 

wherein we evaluated pattern conformance, pattern grime, and pattern quality/size for 

each version (pattern instance) in the pattern instance evolution. Regarding pattern 

conformance, we chose to evaluate each pattern instance to the pattern’s SPS and IPS 

presented in the RBML specification [29]. While any user can modify a given pattern’s 

SPS or IPS based on expectations for the pattern instance, utilizing the SPSes and IPSes 

presented in the specification offer a general solution that caters to domain differences, 

 
Figure 6.3 Summary of study design. Design pattern instances are extracted from 

software projects, and the associated UML is reverse-engineered from source code. 
The evolution of each pattern instance is generated, and evaluations for conformance, 

grime, and metrics are found across each pattern instance evolution. 
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even though such SPSes and IPSes may be considered too formal for many developers. 

Regarding pattern grime, there is the question of whether a non-pattern element is 

considered essential for the application, even if it might not align with the pattern’s 

specifications. Such elements are not considered grime because the design pattern 

definition is flexible enough to allow for non-pattern elements to be present in the pattern 

instance while still allowing complete conformance. However, pattern grime has been 

shown to be present, and therefore we need to differentiate between non-pattern members 

that represent grime or not. To alleviate this differentiation, we made the assumption that 

each pattern is allowed one incoming non-pattern element and one outgoing non-pattern 

element. This assumption is based on usage of patterns; ideally a pattern will have one 

client, and we allow it to use up to one non-pattern class. Anything else is considered 

grime. While these precise values are configurable based on application, we chose such 

strict allowances for this study to model applications where program conformance is a 

necessity. The complete tool-chain is available under the MIT license at the following 

GitHub repository18. 

The process of selecting experimental units, or software projects, is as follows. In 

an effort to increase generalizability of results, we chose to analyze ten projects in total. 

To ensure relevancy, projects were selected based on their popularity ranking on the 

online code repository GitHub19. Specifically, we ranked all projects according to their 

’number of stars’, which is synonymous with a favorite or bookmark, and selected the 

first ten projects such that each project had at least 2,000 commits, 20 releases, and 100 

                                                 
18 https://github.com/MSUSEL/msusel-pattern-behavior 
19 www.github.com 
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unique contributors. In most cases, all projects had significantly more than the minimum 

required filters; for example, the Selenium project features 23,550 commits, 116 releases, 

and 424 contributors. From each project, we selected 20 minor releases evenly divided 

between the oldest release and most recent release, under the assumption that each project 

followed traditional notation for release numbers, which is: [major.minor.bug fix]. As an 

example, if a project had releases labeled v2.0 through v2.40, in which 40 minor releases 

existed between v2.0 and v2.40, we selected every other minor release (v2.0, v2.2, v2.4, 

..., v2.38, v2.40). We utilized this process to generate an even spread of data points 

between the most recent release and the first release, providing an accurate summary of a 

project’s history. The outcome from this project selection process is presented in table 

6.3, along with the release numbers and respective release dates. 

 

Table 6.3 Demographics of the projects under analysis. 
Project name Domain Releases Release Dates 

Apache Commons-
lang 

Java Libraries 1.0 - 3.9 Jul 2007 - Apr 2019 

Elasticsearch Distributed Search 
Engine 

2.0.0 - 6.6.2 Oct 2015 - Mar 2019 

Glide Image caching 
library 

3.3.0 - 4.9.0 Sept 2014 - Feb 2019 

Google Guava Java Libraries 9.0 - 27.1 Apr 2011 - Mar 2019 
Hystrix Fault tolerance 

library 
1.0.2 - 1.5.18 Nov 2012 - Nov 2018 

Mockito Unit Testing 
Framework 

1.8.0 - 2.28.1 Jul 2009 - May 2019 

Netty Asynchronous 
application 

4.0.0 - 4.1.34 Jul 2013 - Mar 2019 

RxJava Asynchronous 
Streaming 

2.0 - 2.2.7 Oct 2016 - Feb 2019 

Selenium Testing Framework 3.0 - 3.141.59 Oct 2016 - Nov 2018 
Spring-boot Java packaging 

framework 
1.0 - 2.1.3 Apr 2014 - Feb 2019 
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We chose to focus our analysis on seven pattern types; the Factory Method and 

Singleton patterns from the ‘Creational’ category [31], the Decorator and Object-Adapter 

patterns from the ‘Structural’ category [31], and the Observer, State, and Template 

Method patterns from the ‘Behavioral’ category [31]. Our initial intuition was that 

patterns in the behavioral category may be more prone to behavioral deviations, so we 

selected three pattern types from that category. Additionally, these seven pattern types 

provided us the largest sample size of detected pattern instances; many projects featured 

zero pattern instances of certain types, such as the Visitor or Prototype pattern. The count 

of pattern instance evolutions for each pattern type and across each project under analysis 

is shown in table 6.4. Note this is a count of pattern instance evolutions, not pattern 

instances; the difference being pattern instance evolutions track a single pattern instance 

across multiple versions, while pattern instances refer to a single pattern instance at a 

single software version. 
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Table 6.4 Count of pattern instance evolutions for each of the projects under analysis. 
Project Name Decorator 

Evolutions 
Factory 
Method 

Evolutions 

(Object) 
Adapter 

Evolutions 

Observer 
Evolutions 

Singleton 
Evolutions 

State 
Evolutions 

Template 
Method 

Evolutions 
commons- 

lang 
1 0 1 0 15 0 9 

elasticsearch 13 68 126 0 214 186 81 
glide 9 2 21 1 18 25 8 
guava 4 20 4 0 35 28 89 
hystrix 0 1 0 0 14 5 5 
mockito 12 15 35 0 18 37 14 

netty 14 52 42 0 97 138 56 
rxjava 6 5 21 0 5 125 10 

selenium 5 11 17 0 6 28 7 
springboot 2 0 4 0 13 10 15 

Total 66 174 271 1 435 582 294 
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6.4 Results 
 
 
6.4.0 Preliminary Work20 
 
 

To address the research questions, we began with a preliminary experiment in 

which we identified two specific behavioral deviations that can commonly occur while 

implementing design patterns. We know these behaviors are deviations because they 

detract from the intent of the design pattern and thus, have an undesired effect on TD. To 

illustrate these behaviors, consider the RBML sequence diagram of the IPS for the 

Observer pattern shown in figure 6.4 [30]. This example features a system that tracks the 

temperature and pressure of a kiln. The RBML sequence consists of the two roles in the 

Observer pattern; the Subject and the Observer. The two roles and their expected 

behaviors are shown on the top of the diagram. For behavioral conformance, it is 

expected that the Subject role calls the Update() operation on all the Observer roles when 

the Notify() operation is called. Then, the Observer calls the Subject using a GetState() 

operations. The bottom of the figure shows a pattern instance. Notice that the 

implementing classes in the sequence diagram conform to their role expectations. We use 

figure 6.4 as a baseline to which we inject our two behavioral deviations. Specifically, the 

two deviations we identifed are Excessive Action(s) and Improper Order of Sequences.  

                                                 
20 Based on: 
Reimanis D., Izurieta C., "Towards Assessing the Technical Debt of Undesired Software Behaviors in 
Design Patterns," IEEE ACM MTD 2016 8th International Workshop on Managing Technical Debt. In 
association with the 32nd International Conference on Software Maintenance and Evolution, ICSME, 
Raleigh, North Carolina, October 4, 2016. 



102 
 

 

 

 
6.4.0.1 Excessive Action(s). The first behavior deviation we consider involves 

one or more ‘excessive’ action(s) that occur during the standard runtime operation of the 

pattern. The excessive action(s) perform operations that are un-essential to the functional 

runtime behavior of the pattern. That is, if the excessive action(s) were to be removed, the 

pattern would behave in entirely the same manner (as expected). We characterize this 

type of behavior as behavioral grime because the excessive action(s) cause the pattern 

instance to not conform to the pattern’s IPS. The excessive action(s) are not necessarily 

structural grime, but may be the result of implementing new functional requirements. 

Regardless, the intent of the pattern, according to its IPS is violated. The addition of 

excessive action(s) affects software maintainability and TD, because while the pattern 

will achieve the same external behavior, modifying the pattern in the future will require 

domain knowledge of the action(s) and their intent. 

 
Figure 6.4 Diagram of the RBML sequence diagram for the Observer pattern [30], 
image from [64]. The Subject and Observer roles and their sequence of behaviors 
are shown on the top, and a conforming pattern instance is shown on bottom. The 

pattern instance conforms to the RBML sequence diagram. 
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Our illustrative implementation of this behavioral deviation uses a loop construct 

that counts to 100 and sums values along the way. The loop’s internal and external 

behaviors are not referenced by any other components in the remainder of the software 

application. Practically speaking, this may happen when a developer forgets to delete 

debugging code or decides upon a different strategy for the implementation of an 

algorithm half-way through development and forgets to delete the original code. 

Although all design patterns allow for the introduction of new tasks (i.e., 

excessive actions) as interspersed elements of existing behaviors, the introduction itself 

needs to be explicitly described by elements of the RBML IPS diagram. If not, then the 

introduction of the behavior is unintended, even if it provides needed functionality for the 

software. The IPS of a design pattern must then be responsible for capturing the strictness 

of adherence with which instances are created. Only then, new functionality can be 

planned for without affecting TD. To illustrate how this behavior violates the RBML IPS 

diagram in our implementation, refer to figure 6.5 [30]. The Observer RBML IPS is 

shown on the top. Our implementation of the Observer pattern is shown on the bottom. 

This figure is similar to figure 6.4, with the exception that the excessive behavior has 

been injected. The excessive behavior is shown in red, and labeled with the operation 

‘Excessive()’. Notice that in the RBML IPS, the Observer role only performs one 

operation, which is to call GetState() from the Subject role. Conversely, the TempObs 

class performs two operations, Excessive() and then GetState(). Because of this, 

TempObs has behavioral grime. 
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6.4.0.2 Improper Order of Sequences. The second behavioral deviation we 

consider involves cases where the order of operations that a pattern should be following, 

according to the SPS and IPS, is improperly sequenced. This type of behavioral deviation 

constitutes behavioral grime because it causes the pattern instance to not conform to the 

IPS of the pattern. Additionally, this type of behavioral deviation affects the 

maintainability and TD of the pattern for much the same reasons as the excessive 

action(s) does; any modification of the pattern instance in the future will be hindered by 

the need to first understand the order of sequences in the application. 

In our implementation of this behavioral deviation, we injected a class that 

represents a valid extension of each pattern. However, the injected class was only 

instantiated from the incorrect class role in each pattern. In other words, in our Observer 

 
Figure 6.5 Excessive behavior grime in an Observer 

pattern instance (ObserverExcess) [30], image from [64]. 
The top sequence of this image illustrates the RBML IPS 
of the Observer pattern. The bottom sequence illustrates 

our application of the Observer, with the injected 
behavior ‘Excessive()’. The injected behavior constitutes 

behavioral grime because it does not conform to the 
pattern’s IPS. 
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pattern instance we injected an observer that only received updates from other observers. 

This is incorrect behavior for this pattern because the Observer pattern instance should 

enforce that the subject is responsible for updating the observer. Practically speaking, this 

would happen if a developer who was unfamiliar with the Observer pattern, either a 

novice developer or a new hire, made changes to the existing pattern. 

Figure 6.6 [30] illustrates the improper order of sequences errant behavior in our 

application. The top sequence of the figure features the RBML IPS of the Observer 

pattern. The bottom sequence illustrates the behavior of the Observer pattern in our 

application. The TempObs2 class was added to the pattern, which has the potential to be 

a proper extension to the pattern instance. However, its state is being updated from the 

TempObs class, which belongs to the Observer role. This is a violation of the RBML of 

the Observer pattern because the Subject is responsible for updating the Observers. 

TempObs2 is being updated immediately after the update to TempObs, even before 

TempObs has called the GetState() operation. This type of behavior constitutes 

behavioral grime. 
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6.4.1 RQ1 
 

With preliminary results identified, we began our assessment of research question 

1, which is concerned with identifying how the behavior of a design pattern instance can 

deviate from the expected behavior of that pattern type. To further assess this question, 

we performed an in-vitro experiment [40] in which we implemented the proposed 

behavioral deviations from section 6.4.0. Specifically, we began with an implementation 

of the Observer pattern such that the implementation perfectly aligned to its SPS and IPS. 

 
Figure 6.6 Improper order of sequences behavior grime in an Observer pattern 

instance (ObserverImprop) [30], image from [64]. The top sequence of this image 
illustrates the RBML IPS of the Observer pattern. The bottom sequence illustrates 

our application of the Observer, with the injected class TempObs2 and injected 
operation Update(s) (shown in red). The injected behavior constitutes behavioral 

grime because it does not conform to the pattern’s IPS. 
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Such an instance might be impractical in the real-world, yet would mark a starting point 

for our experiments. To this Observer pattern instance, we injected code that constitutes 

modular structural grime, as presented by Schanz and Izurieta [67]. Modular structural 

grime is concerned with the relationships that pattern members may have with either 

other pattern members, or non-pattern members. Therefore, modular structural grime 

provides a constraint on all possible pattern behaviors. In other words, a given behavior, 

whether between pattern members or non-pattern members, cannot exist unless the two 

members share a relationship. To each injected modular grime instance, we applied the 

behavioral deviations as presented by Reimanis and Izurieta [64]. Specifically, these 

deviations are ‘Improper Order of Sequences’, in which expected behaviors occur in an 

incorrect order, and ‘Excessive Actions’ in which excessive actions hamper the run-time 

expectations of a pattern. For this work, we chose to focus on a subset of Excessive 

Actions, which we refer to as ‘Repetitive Actions’, or cases where the same behavior is 

performed within the same scope, or function call, of a pattern instance at run-time. After 

applying said behavioral deviations to the modular grime taxonomy, we generated a 

taxonomy of behavioral grime, which is shown in figure 6.7.



 
 

 

108 

 
Figure 6.7 Behavioral grime taxonomy. Dimensions of behavioral grime are listed on the left, and corresponding 

characterizations are shown in the taxonomy tree. 
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The dimensions for this taxonomy are mirrored from the modular grime 

taxonomy [67], which are explained as follows. Strength refers to the strength of a 

relationship between two UML members; Persistent Strength refers to a UML association 

while Temporary Strength refers to a UML use-dependency. Scope refers to the context 

of the relationship between two UML members; Internal Scope refers to a relationship 

between two pattern members, and External Scope refers to a relationship between one 

pattern member and one non-pattern member. Direction refers to the direction of the 

relationships. Afferent Direction refers to an incoming relationship while Efferent 

Direction referring to an outgoing relationship. In the taxonomy, the Classification row 

refers to the acronym that captures that type of behavioral grime; for example, the PIO 

classification is an acronym for ‘Persistent-Internal-Order’ grime. This behavioral grime 

taxonomy closely mirrors the modular grime taxonomy presented in [67], with two 

exceptions. First, we have incorporated the ‘Behavioral Deviations’ dimension, which 

corresponds to the type of behavioral grime (Order or Repetition). Second, the taxonomy 

is not symmetrical across Order and Repetition sub-trees; specifically, the sub-tree 

pertaining to External Efferent Order (-EEO) type grime is nonexistent. This is because 

this sub-tree represents an outgoing relationship from a pattern member to a non-pattern 

member cannot be in an incorrect order; such relationships are not captured by the design 

pattern, and thus cannot be in an incorrect order.  

While the taxonomy of behavioral grime was initially created from synthetic in-

vitro examples, we validated this taxonomy by identifying instances of each form of 
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behavioral grime in real-world systems. These results are presented in research questions 

2 and 3.  

 
6.4.2 RQ2 
 

This section reports the results from RQ2, which postures, “Is there evidence to 

suggest that behavioral grime is present in pattern instances of a single pattern type?.” To 

answer this question, consider table 6.5, which summarizes the grime counts found from 

our analysis. Each cell in the table refers to a non-unique count of behavioral grime 

across all pattern instances under analysis, of the corresponding pattern type. The 

phrasing non-unique grime refers to counting the same grime artifact more than once, if it 

appears in more than one pattern version. For this specific research question, we consider 

the columns of the table, because the columns report counts of behavioral grime for a 

single pattern type. For all patterns except the Observer pattern, we see relatively large 

counts of behavioral grime, with the State pattern reporting the largest raw count of non-

unique instances of grime. However, these numbers appear inflated because we 

encountered a different number of pattern instances for each pattern type. To counter this 

inflation, we have included a ‘Normalized Total’ row, which refers to the Raw Total 

divided by the count of pattern instances for each pattern type.
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Table 6.5 Count of behavioral grime across each pattern instance. 
Behavioral 
Grime Type 

Decorator Factory 
Method 

(Object) 
Adapter 

Observer Singleton State Template 
Method 

Total 

PEAO 0 0 0 0 0 372 0 372 
PIO 0 0 0 0 0 13 0 13 
TEAO 0 0 0 0 0 4014 0 4014 
TIO 0 0 0 0 0 30 0 30 
PEAR 1155 117 8309 0 0 14580 192 24353 
PEER 9375 7722 12572 0 3340 25741 6458 65208 
PIR 3723 102 1182 0 0 6206 164 11377 
TEAR 8998 1166 15007 0 0 66026 258 91455 
TEER 41655 41407 82704 0 34632 201773 76324 478495 
TIR 3691 739 2683 0 24 9148 617 16902 
Raw Total 68597 51253 122457 0 37996 327903 84013  
Normalized Total 64.47 19.66 34.50 0 10.70 39.83 19.65  
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To answer this exploratory research question, we look at the raw and normalized 

counts of grime across the various pattern types. We encountered behavioral grime from 

every pattern we studied except the Observer pattern, and the most prevalent form of 

behavioral grime for each individual pattern type was TEER grime, or Temporary 

External Efferent Repetition grime. This is not a surprise, as grime of this type manifests 

itself as non-pattern members that are used by a pattern, but only as a use-dependency 

(not an association). This may occur when a new functionality requires extension of a 

design pattern instance, but pressures from management or clients force a quick-and-dirty 

change. Generally speaking, behavioral grime concerned with Order was the rarest form 

of grime, and was only identified in State pattern instances. The counts were low; for 

example, we identified only 13 instances of PIO (Persistent Internal Order) grime in our 

study. Upon further investigation, we discovered that all PIO grime came from the same 

pattern instance, suggesting that this form of behavioral grime might be rare. 

Furthermore, we found no evidence of behavioral grime in the Observer pattern instances 

under our analysis. However, because we identified only a single Observer pattern 

instance from the ten projects under analysis, a meaningful exploration of the Observer 

pattern is not possible. Regardless, in terms of answering our second research question 

(RQ2), we are able to answer in the affirmative for six out of seven of our pattern types 

(all except the Observer pattern), that behavioral grime is indeed present in pattern 

instances of a single pattern type. 
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6.4.3 RQ3 
 

This section reports the results from RQ3, which generalizes RQ2 to consider, “Is 

there evidence to suggest that behavioral grime is present in pattern instances across 

different pattern type?.” To answer this research question, we begin by referencing table 

6.5, considering the rows of the table which represent the counts of behavioral grime 

types across pattern instances. We see that many behavioral grime types are present in 

pattern instances of more than one pattern type. Specifically, PEER, TEER, and TIR 

grime appear in all pattern types analyzed, except the Observer pattern. PEER (Persistent 

External Efferent Repetition) and TEER (Temporary External Efferent Repetition) grime 

are not necessarily a surprise, based on intuition. Grime of these forms represents a 

relationship from a pattern member to a non-pattern member, likely indicating an 

extension of the pattern instance to accommodate new functionalities within the software 

project. TIR (Temporary Internal Repetition) grime refers to temporary use dependencies 

that appear between two or more pattern members as the pattern ages, indicating new 

relationships between that likely facilitate new functionalities elsewhere in the code-base. 

The appearance of PEER, TEER, and TIR grime across the Decorator, Factory-Method, 

(Object) Adapter, Singleton, State, and Template-Method patterns confirms that these 

patterns are susceptible these forms of grime. 

Furthermore, PEAR, TEAR, and PIR grime was found in five of the seven pattern 

types analyzed, excepting the Observer and Singleton pattern. PEAR (Persistent External 

Afferent Repetition) and TEAR (Temporary External Afferent Repetition) grime refers to 

non-pattern members that establish a relationship to pattern members, over the pattern’s 
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lifetime. The lifetime of these non-pattern members is not specified under this analysis; 

they could be new classes added later in the project’s lifetime, or they could be classes 

that have existed since the first version of the software, and the relationship between it 

and the pattern might have been established in a later version. PIR (Persistent Internal 

Repetition) grime refers to a stronger relationship, exclusively between pattern members. 

The elusiveness of these three forms of grime (PEAR, TEAR, PIR) in the Singleton 

pattern is not a surprise. The majority of Singleton pattern instances featured only one 

class, and did not deviate from the expected structure or behavior. Because of the 

uniqueness of a Singleton pattern, specifically that only one instance of that class is 

allowed, intuitively it seems rare that additional classes would be created that depend on 

the Singleton because these additional classes would not be able to retrieve a new 

instance of the Singleton. There is an important distinction here, between PIR and TIR 

grime. Recall TIR grime refers to the addition of UML use-dependencies between two 

pattern members, and PIR grime refers to the addition of UML associations between two 

pattern members. Our results indicate that TIR grime was found in Singleton instances, 

but PIR grime was not. If PIR grime was found in a Singleton, it might indicate that an 

extraneous class variable references the Singleton class itself, which violates the purpose 

of the Singleton pattern because the Singleton object should only be stored and 

retrievable from one single class variable. The Singleton IPS allows class variables to 

reference the Singleton class itself, but the existence of PIR grime suggests this is 

happening more than the allowable amount. Such an instance of a Singleton would be 

referred to as a rotted pattern, because the addition of elements would have violated its 
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purpose. Therefore, our results indicate that only five of the seven pattern types analyzed 

are susceptible to PEAR, TEAR, and PIR grime. These pattern types are the Decorator, 

Factory-Method, (Object) Adapter, State, and Template-Method patterns. 

Order grime was the rarest form of grime encountered from our analysis, and was 

only present in small amounts in State pattern instances. We see three likely viable 

options for this phenomenon. First, it could hold that the State pattern is the only design 

pattern under our analysis that is susceptible to Order grime. However, when answering 

RQ1, in section 6.4.1, we successfully injected Order grime into an Observer pattern 

instance to show that Order grime can exist in Observer patterns. Because this occurred 

in an in-vitro setting and not an in-vivo one [40], we have chosen to not consider it in this 

discussion. A second viable explanation for this phenomenon holds that the State pattern 

was the largest sampled pattern type in our analysis, and thus the scope of our results 

when considering the State pattern is over-amplified. In statistical terms, these results 

could have appeared due to a sampling bias which increases the likelihood that grime 

might exist in a State pattern instance. A third explanation for this result is related to the 

second explanation, but considers that we did not sample enough of the other pattern 

members to uncover the ‘true population group’ that such a form of grime exists in. It 

seems most likely that this third option holds true; that Order grime is indeed rare but that 

other pattern types are exposed to it, yet replicating these experiments on more pattern 

instances and across more software projects might yield pattern instances that contain 

Order grime. 
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6.4.4 RQ4 
 

This question considers the extent to which a pattern instance can have both 

structural and behavioral grime. To answer this question, we consider the presence of 

structural and behavioral grime for a single pattern instance, across each pattern type. The 

grid in figure 6.8 displays the labels for all four possibilities of structural and behavioral 

grime presence and absence, in a single pattern instance. For example, the label A would 

be applied to a pattern instance if the instance accumulated at least one case of both 

structural and behavioral grime, over its evolution. In order to answer this question, we 

labeled every pattern instance in our analysis according to this labeling scheme and 

summed the counts of each label across each pattern type. The results from this 

aggregation are presented in table 6.6. 

 

 

 Behavioral grime 
present 

Behavioral 
grime absent 

Structural grime present A B 

Structural grime absent C D 

Figure 6.8 Grime quadrant of possible grime types. For a given 
pattern, rows correspond to at least once instance of behavioral grime 
existing in the pattern, and columns correspond to at least one case of 

structural grime existing in the pattern. 
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Table 6.6 shows the counts of each grime possibility label across each pattern 

type under our analysis. The most immediate and striking result from this table is that the 

column featuring the label C is nearly empty, only showing six cases where a pattern 

instance evolution contained behavioral grime, but no structural grime. Additionally, all 

six cases occurred within the Template Method design pattern. Upon initial glance, this 

result seems counter-intuitive; the structure of a pattern dictates behavior, so it seems 

impossible for a pattern instance to be susceptible to behavioral grime when there is no 

structural grime. However, the important distinction is that grime is only considered as 

such if it manifests as unexpected elements within a pattern instance. In pattern instances 

where behavioral grime is present yet structural grime is absent, the structural elements 

are correct and expected while the behavioral elements are unexpected. As an example 

where such an occurrence would appear, consider a variable that is being initialized more 

times than expected; the fact the variable has a dependency or association to another class 

matches with structural expectations, but structural checks would fail to find issue when 

the same variable is being initialized more than once. The structural perspective only 

illustrates such a case as one single structural element; thus a deeper level of granularity 

Table 6.6 Count of labels, according to figure 6.8, for each pattern instance evolution, 
separated by pattern type. 

Pattern Type A counts B counts C counts D counts 

Decorator 53 13 0 0 
Factory Method 91 76 0 7 
(Object) Adapter 232 34 0 5 

Observer 0 1 0 0 
Singleton 122 312 0 1 

State 411 139 0 32 
Template Method 131 147 6 10 

Total 1040 722 6 55 
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into the system is required, which is what behavioral grime analysis provides. While we 

only found six instances of label C across our pattern instance evolutions, label A shows 

the case where both structural and behavioral grime were found at least once in a pattern 

instance evolution. Label A is the most prevalent label, suggesting that patterns tend to be 

susceptible to both structural and behavioral grime. Label B considers cases where 

structural grime is present, yet behavioral grime is absent. Similar to label C, this label 

may seem non intuitive– how can a pattern instance have structural grime elements with 

no behavioral grime elements? The explanation is similar to the explanation for label C, 

yet flipped. A pattern can have unexpected structural elements that constitute grime, but 

if each of those elements behave how they are expected to behave; i.e., properly, there 

would be no behavioral grime. Such a case might occur when applying a design pattern 

for a library, that will be used heavily by other components in the project, or other 

projects. Compared to label A, we found a slightly lower number of label B patterns, yet 

still more than labels C and D. This result suggests that the structural aspects of a pattern 

are violated more frequently than the behavioral aspects, but the most common case is 

that both structure and behavior are violated together. 

 
6.4.5 RQ5 
 

This research question is concerned with identifying the relationship between 

structural and behavioral grime. To answer this question, we began by generating a 

pairwise scatter-plot for each type of structural and behavioral grime, which is shown in 

figure 6.9. Structural grime is shown on the x-axis, and behavioral grime is shown on the 
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y-axis. Points in the scatter-plot represent the count of modular grime and type of 

behavioral grime for a single pattern instance. 

 

To assess the strength of each relationship between structural and behavioral 

grime, we calculated pairwise correlation coefficients and respective p-values for each of 

structural grime and behavioral grime. The nature of our data is a count, which falls 

under the ratio numeric scale, and a visual assessment of the scatter-plots suggests a 

 
Figure 6.9 Pairwise scatter-plots illustrating the relationships between structural grime, 

shown on the x-axis, and behavioral grime, shown on the y-axis. 
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linear relationship in several plots. We choose to use Pearson’s method to evaluate the 

precise nature of the relationships, because Pearson’s provides a parametric estimate of 

correlation coefficients, compared to the nonparametric alternatives of Spearman’s ρ or 

Kendall’s τ. The application of Pearson’s requires addressing two primary assumptions; 

the normality assumption and the independence assumption. We may say we have not 

violated the normality assumption to a great extent because of the large sample size of 

our data [87]. However, we cannot say we have satisfied the independence assumption. 

Specifically, each data point comes from a single pattern instance in a single software 

version, and pattern instances may appear in more than one software version, meaning 

grime in a future version might be, and likely is, dependent on grime in previous 

versions. We alleviate this concern because of the number of pattern instance evolutions 

we have detected, which is captured in table 6.4, but we cannot say we have satisfied the 

independence assumption. Regardless, we assume this threat to validity, and provide the 

correlation coefficients for each pairwise relationship between structural and behavioral 

grime in table 6.7, with strong relationships (r > 0.60 or r < 0.60) shown in bold. We also 

calculated the p-values for each pairwise correlation coefficient, which is shown after 

every correlation coefficient values in table 6.7. Because this work is concerned with 

identifying the strength of the relationship between pairwise metrics, we chose to assume 

a very weak relationship exists in the first place. In other words, all of our null 

hypotheses assume no correlation. Therefore, each p-value corresponds to the probability 

that the correlation coefficient we received did not occur because of chance, under the 

assumption that the true correlation coefficient is zero, which implies a very weak 
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relationship. P-values across each pairwise comparison are shown as the second value in 

each cell in table 6.7. 

 

Because of the inherent relationship between structure and behavior, specifically 

that structure enforces behavior, our initial expectations held that grime types across their 

mirrored dimensions would share a strong relationship. Specifically, these would be 

forms of grime that share every dimension except for their structural or behavioral 

distinction. For example, TEE (Temporary External Efferent) grime and TEER 

(Temporary External Efferent Repetition) grime share every dimension except for their 

Table 6.7 Correlation coefficients and respective p-values for each pairwise type of 
grime, using Pearson’s method. Columns feature structural grime, while rows feature 

behavioral grime. Correlation coefficients are shown first and p-values second, 
separated by a forward slash. Strong relationships (r > 0.60 or r < −0.60) are shown in 

bold. 
 PEA grime PEE grime PI grime TEA 

grime 
TEE 
grime 

TI grime 

PEAO grime 0.2511 / 
<1e-16 

0.1583 / 
<1e-16 

0.6633 / 
<1e-16 

0.5962 / 
<1e-16 

0.1488 / 
<1e-16 

0.6812 / 
<1e-16 

PIO grime -0.0055 / 
0.37 

0.0003 / 
0.96 

-0.0021 / 
0.73 

-0.0061 / 
0.33 

0.0027 / 
0.66 

-0.0022 / 
0.72 

TEAO grime 0.0971 / 
<1e-16 

0.4705 / 
<1e-16 

0.1321 / 
<1e-16 

0.2181 / 
<1e-16 

0.4000 / 
<1e-16 

0.3688 / 
<1e-16 

TIO grime -0.0008 / 
0.89 

0.0433 / 
2.65e-12 

-0.0060 / 
0.34 

-0.0063 / 
0.31 

0.0294 / 
2.04e-6 

-0.0045 / 
0.47 

PEAR grime 0.2475 / 
<1e-16 

0.1311 / 
<1e-16 

0.4653 / 
<1e-16 

0.5028 / 
<1e-16 

0.1178 / 
<1e-16 

0.5090 / 
<1e-16 

PEE grime 0.1694 / 
<1e-16 

0.6984 / 
<1e-16 

0.3415 / 
<1e-16 

0.3453 / 
<1e-16 

0.5991 / 
<1e-16 

0.4174 / 
<1e-16 

PIR grime 0.1408 / 
<1e-16 

0.2630 / 
<1e-16 

0.4215 / 
<1e-16 

0.4251 / 
<1e-16 

0.2571 / 
<1e-16 

0.4453 / 
<1e-16 

TEAR grime 0.0675 / 
<1e-16 

0.0537 / 
<1e-16 

0.1398 / 
<1e-16 

0.3237 / 
<1e-16 

0.0527 / 
<1e-16 

0.1527 / 
<1e-16 

TEER grime 0.2395 / 
<1e-16 

0.6912 / 
<1e-16 

0.2607 / 
<1e-16 

0.2613 / 
<1e-16 

0.8219 / 
<1e-16 

0.4101 / 
<1e-16 

TIR grime 0.1306 / 
<1e-16 

0.3837 / 
<1e-16 

0.3201 / 
<1e-16 

0.3325 / 
<1e-16 

0.3841 / 
<1e-16 

0.3941 / 
<1e-16 
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structural and behavioral distinction. We found that only two such pairs of mirrored 

grime shared strong relationship; PEE (Persistent External Efferent) and PEER 

(Persistent External Efferent Repetition), and TEE and TEER grime. These two pairs 

support our expectations, but no other mirrored pairs do. This is an interesting finding 

because it suggests that across mirrored pairs, structural and behavioral grime do not 

appear at the same rate. Two scenarios explain this result. The first scenario considers 

one instance of structural grime that has multiple behavioral grime instances associated 

with it, such as a variable that constitutes structural grime, that is being improperly 

initialized multiple times. In such a case, each improper initialization would constitute as 

behavioral grime. The second scenario considers pattern members that contain structural 

grime, yet their behavior aligns with behavioral expectations, so they would not 

constitute behavioral grime. Upon initial inspection, this scenario appears impossible 

because if a pattern element has structural issues, then surely any behaviors associated 

with it are issues as well. However, this is not the case because the definition of pattern 

grime allows for this scenario. As an example, consider a pattern instance that contains 

two different variables that fulfill the same role, as a relationship between pattern 

members. Additionally, these two variables have identical behaviors that match 

behavioral expectations of the pattern. If the specifications of this pattern hold that only 

one variable should be fulfilling that role, then one variable would constitute structural 

grime. However, because the two variables behave identically, we cannot say which 

variable should be the one that constitutes structural grime. Therefore, such a pattern 

would contain structural grime with no behavioral grime, illustrating our second scenario. 
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Such a scenario might be rare in the real world, yet it is important to consider that it 

exists and may explain this situation. 

Considering grime types that are not mirrored across their dimensions, we found 

strong relationships between the following pairs: TEER/PEE, PEER/TEE, PEAO/PI, 

PEAO/TEA, and PEAO/TI. Discussing Repetition grime first (TEER/PEE and 

PEER/TEE), strong relationships between these two pairs are not unexpected. The 

dimensions these pairs of grime share are ‘External Efferent’, which refer to non-pattern 

members that a pattern member uses. Grime of these types would appear in a pattern 

instance to accommodate new features in the software project that the pattern instance 

uses. From a design perspective, this means the pattern instance is being extended, but 

not in the correct and intended manner. Such improper extensions would happen if under 

pressure to release new features quickly, or perhaps if a developer was unfamiliar with 

the design pattern. In terms of the strong Order grime relationships we encountered, a 

visual analysis of the scatter plots in figure 6.9 suggests that these strong correlation 

coefficient values might be unfounded. Order grime was the rarest form of grime we 

encountered, yet when it was found the counts for it were relatively high. This, coupled 

with the numerous counts of structural grime we encountered across pattern instances 

with any type of Order grime, implies that a pattern instance with Order grime likely has 

high structural grime, which explains the strong relationship. This result may be 

contentious, as the correlation coefficients are strong and their respective p-values are 

low, yet a visual analysis of the plots shows otherwise. Our claim is that Order grime and 

structural grime are related in that the presence of Order grime is associated with high 
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values of structural grime, but ultimately patterns that contain more instances of Order 

grime are required before a more accurate correlation coefficient describing the 

relationship can be attained. 

Of particular note in these relationship plots are the low p-values. Recall our null 

hypothesis that there exists a very weak relationship between structural and behavioral 

grime types, specifically one in which the correlation coefficient is zero. All p-values 

with respect to Repetition grime are very low, suggesting that we reject the null 

hypothesis that the correlation coefficients are equal to zero. This result advocates that a 

relationship does exist between structural and behavioral grime types. However, we 

cannot claim that the correlation coefficients we found are accurate estimates of the true 

relationship between any pair of structural and behavioral grime instance. Though, we 

can point out that due to the large sample size of grime instances, coupled with visual 

analyses of the scatter plots, the correlation coefficients may provide a good estimate of 

the actual relationship. Of course, more experiments need to be performed to assert this 

result. 

 
6.4.6 RQ6 
 

This research question is concerned with identifying if the size of a design pattern 

instance is related to the amount of behavioral grime in that pattern instance. To capture 

design pattern size, we chose to use an adaptation of Li and Henry’s Size2 metric, which 

we refer to as M7 and is explained in table 6.4. Similarly to RQ5 in section 6.4.5, we 

began by generating pairwise scatter-plots showing size and each behavioral grime type 

to visually assess trends. This scatter-plots are shown in figure 6.10. 



125 
 

 

 

An initial visual inspection of the scatter plots in figure 6.10 reveals that no clear 

relationship appears from the data. Some patterns with small size (0-40 members) have 

large counts of behavioral grime, while some pattern with medium size (190-230 

members) also have large counts. The internal Repetition grime cases (PIR and TIR) 

appear to have the most monotonically linear relationship, but many points in the plot 

feature zero grime. To further assert the data, we calculated the correlation coefficients 

 
Figure 6.10 Scatter plots of behavioral grime and pattern size. Behavioral grime is on 

the y-axis, Pattern Size is on the x-axis, and points in the plot represent individual 
pattern instances, which are shaped and colored according to their design pattern type. 
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and respective p-values for each pair of behavioral grime and pattern size, under similar 

conditions as our structural vs behavioral analysis, in section 6.4.5. That is, because the 

nature of our data is a count which falls under the ratio numeric scale, we chose to use 

Pearson’s method for calculating the correlation coefficients. Pearson’s requires 

assessment of the independence assumption, which we cannot say we have satisfied 

because of several confounding factors, such as the fact that our data consists of 

evolutionary data, in which one value likely depends on a value from a previous 

evolution state. We can say we have alleviated the independence assumption slightly 

because of our large sample size, and that any one evolutionary chain will not carry as 

much weight because of the sheer number of data in the analysis. The null hypotheses we 

use to test our p-values are the cases where correlation coefficient is equal to zero, which 

implies a very weak relationship. Therefore, each p-value corresponds to the probability 

that the correlation coefficient we received is not due to chance, under the assumption 

that the true correlation coefficient is zero. We show the correlation coefficients and 

respective p-values in table 6.8. 
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As expected based on our visual analysis of the scatter plots in figure 6.10, the 

correlation coefficients as presented in table 6.8 are relatively low for all forms of 

Repetition grime (0.18 - 0.34), and most forms of Order grime (0.00 - 0.45). This 

suggests a weak relationship between these forms of pattern grime and pattern size. 

Furthermore, the p-values associated with these correlation coefficients are very low, 

suggesting we reject the hypotheses that the relationship between size and each type of 

behavioral grime is zero. In other words, the correlation coefficient values we received 

are correct in the context of this study, under the assumption that the true relationships 

between behavioral grime and pattern size is zero. However, they are still quite low and 

would not be useful in any predictive sense. This finding is interesting though; it implies 

that behavioral grime appears in pattern independently of the pattern’s size. The 

definitions and specifications of design patterns that we use are extendable in the sense 

that a pattern could have any number of members, yet still conform perfectly (i.e., no 

grime or rot). And indeed, we see this from the data. Several pattern instances that have 

Table 6.8 Correlation coefficients and respective p-values for each type of 
behavioral grime and pattern size, using Pearson’s method. Columns show the 

correlation coefficients and p-values, and rows shows behavioral grime. 
Behavioral grime type Correlation Coefficient p-value 
PEAO grime 0.4508 <1e-16 
PIO grime 0.0114 0.06 
TEAO grime 0.1751 <1e-16 
TIO grime 0.0090 0.14 
PEAR grime 0.3456 <1e-16 
PEE grime 0.2797 <1e-16 
PIR grime 0.3231 <1e-16 
TEAR grime 0.1897 <1e-16 
TEER grime 0.2918 <1e-16 
TIR grime 0.2874 <1e-16 
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over 500 members have zero behavioral grime. Pattern instances such as these would be 

considered good implementations of the expected design pattern because they do not 

deviate from their intent. Therefore, extending these pattern instances to allow for future 

functionalities would be easier than one deviates significantly. Our results indicate that 

pattern instances with the opposite measurements are present too. That is, pattern 

instances with small size yet a high count of behavioral grime. Some patterns under this 

designation feature dozens of behavioral grime instances while only having a single-digit 

size. In code, this occurs when one or a few members are used in an unexpected manner a 

multitude of times; consider a pattern instance’s variable that is used by numerous non-

pattern members, in an unexpected manner. Pattern instances such as these illustrate 

cases where the amount of behavioral grime makes the pattern instance difficult to extend 

and maintain, which sacrifices many of the good qualities usage of the pattern offers in 

the first place. 

 
6.4.7 RQ7 
 

Research question 7 is concerned with identifying the rate at which patterns 

accumulate behavioral grime. This question is fairly broad, but left so intentionally. We 

understand that numerous confounding factors exist in this space that affect the rate at 

which a pattern instance accumulates behavioral grime, such as project coding standards, 

developer habits, changing technology dependencies, project domain, etc., but several of 

these confounding factors are impossible to retrieve and capture in a model. Therefore, 

we outline the process and results from our analysis, but we leave the format of the 

statistical models general so that terms can be added to it, to capture these confounding 
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factors if a particular domain has knowledge of them. The process we chose to answer 

this question involved first identifying the factors that have a significant effect on 

behavioral grime. To do this, we performed several ANOVA calculations, one for each 

form of behavioral grime, with three factors we had available based on our project 

selection process, and one derived factor. The factors we had available from the selection 

process are Project, Pattern Type, and Software Version, which are all categorical 

variables. The derived factor is Pattern Age, explained in the metrics table, table 6.2 in 

section 6.2, which is a categorical variable representing the number of previous software 

versions we have seen a pattern instance in. This makes each of our ANOVAs a four-way 

ANOVA, but to generalize this model one would include the factors they had captured 

from their specific circumstance. Because of our intuition that interacting factors likely 

exist in our data, i.e. that behavioral grime is contingent on the combination of Project 

and Pattern Type, and the fact we have a large sample size, we chose to consider several 

combinations of interactions in our ANOVA. Specifically, the interaction terms we 

considered were Project and Pattern Type, Project and Pattern Age, Pattern Type and 

Pattern Age, and the three-way interaction between Project, Pattern Type, and Pattern 

Age. We chose not to look at interaction terms involving Software Version because (1) 

such interactions do not have a meaningful explanation in the real world, and (2) it 

increases model complexity to a point where computational power starts to become 

questioned. In terms of assumptions, we assessed the independence assumption, the 

normality assumption, the equal variance assumption, and the homogeneity assumption. 
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We found that there were no major violations of any assumption for each ANOVA. The 

final model we used is presented below: 

𝑌𝑖𝑗𝑘𝑙 =  𝜇 + 𝛼𝑖 + 𝛽𝑗 + 𝛾𝑘 + 𝛿𝑙 + (𝛼𝛽)𝑖𝑗 + (𝛼𝛿)𝑖𝑙 + (𝛽𝛿)𝑗𝑙 + 𝛼𝛽𝛿𝑖𝑗𝑙 + 휀𝑖𝑗𝑘𝑙 

where: 

𝑌𝑖𝑗𝑘𝑙 refers to the measurement of behavioral grime with levels i, j, k, l 

𝜇 refers to the grand mean. 

𝛼𝑖 refers to the ith level of the Project variable.  

𝛽𝑗 refers to the jth level of the Pattern Type variable. 

𝛾𝑘 refers to the kth level of the Software Version variable.  

𝛿𝑙 refers to the lth level of the Pattern Age variable. 

휀𝑖𝑗𝑘𝑙 refers to the random error present in the data. 

Table 6.9 shows the results from our ANOVA models, listing the F-values in the 

cells of the table. We chose to do this because the F-values provide more insight into the 

data than simple p-values, because many of our p-values are incalculably small. 

However, we have emboldened F-values that have corresponding statistically significant 

p-values < 0.05.
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Table 6.9 Results from ANOVA models. Behavioral grime types are shown on the rows, and ANOVA model terms 
(including interaction terms) are shown on the columns. Cells show the F-value corresponding to the variance the column 
term takes on the given behavioral grime type. Emboldened F-values represent statistically significant p-values p< 0.05. 

Behavioral 
Grime Model 

 
Project Pattern 

Type 
Software 
Version 

 
Pattern 

Age 
Project: 

Pattern Type 
Project: 
Pattern Age 

Pattern 
Type: 

Pattern Age 

Project: 
Pattern 
Type: 

Pattern Age 
PEAO grime 97.653 159.102 1.442 46.852 36.524 12.944 7.331 5.217 
PIO grime 2.785 7.257 0.687 1.484 2.379 0.326 0.864 0.276 

TEAO grime 46.944 58.613 0.225 1.948 18.234 0.974 1.239 0.371 
TIO grime 78.910 199.884 0.055 10.626 35.054 5.761 2.677 1.930 

PEAR grime 43.219 150.872 0.403 8.672 27.077 2.194 2.443 0.967 
PEER grime 135.943 186.576 1.569 0.622 54.096 5.062 2.364 5.124 
PIR grime 71.393 458.892 0.175 27.677 30.901 2.984 4.4345 2.322 

TEAR grime 6.084 29.763 0.484 0.389 4.082 0.765 0.161 0.529 
TEER grime 106.499 89.940 0.178 2.166 16.141 4.206 0.260 1.030 
TIR grime 78.910 199.884 0.055 10.626 35.054 5.761 2.677 1.930 
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 The results from our ANOVAs in table 6.9 provide several insightful glimpses 

into our exploration of the terms that dictate the presence of behavioral grime. First, three 

model terms accounted for a statistically significant amount of variance for every 

behavioral grime type; Project, Pattern Type, and the interaction between Project ID and 

Pattern Type. Particularly, Pattern Type accounted for the most variance in the model in 

all cases except for TEER grime, followed by Project, and finally the interaction between 

the two. This means that the type of design pattern nearly always accounts for more 

variance in the data with respect to behavioral grime than the software project. Though, 

the software project still accounts for a large and significant amount of the variance in the 

data as well. The interaction between the two, which explained in less statistically 

technical terms translates to ‘the combination of the design pattern type and the software 

project that the design pattern instance exists in’, also accounts for a significant amount   

of variance in the data, but less so than either one of its two building terms. The Software 

Version term accounted for a statistically significant amount of variance for the PEE 

(Persistent External Efferent) grime type, but it was much lower of a contribution than 

the other terms. Pattern Age accounted for a significant amount of variance in half of the 

models, specifically the PEAO, TIO, PEAR, PIR, and TIR grime models. This means that 

Pattern Age may play an important role when considering the presence of PEAO, TIO, 

PEAR, PIR, or TIR grime, but the ANOVA results only yield explanations of the 

variance in the data, and do not provide any causative or predictive power. Finally, the 

interaction terms including Pattern Age frequently accounted for a statistically significant 
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amount of variance in the data, but these yielded low F-values respective to the individual 

terms that make up the interaction terms. 

 The results from the ANOVAs table are insightful, but they themselves do not 

provide an equation that explains the rate at which behavioral grime appears in patterns. 

Rather, the next step in our process to answer this research question involves utilizing the 

results from our ANOVAs table, table 6.9, to generate regressions that explain the data. 

While seeming applicable, time series analysis does not apply to our data because 

classical time series analysis considers one sampling of data across a series of time, and 

our data contains many replicates. Additionally, our variables related to time, specifically 

Software Version and Pattern Age, are categorical variables and do not represent equally 

continuous spaces of time between each measurement; rather, they represent discrete 

points with the potential of having little direct relation to the previous measurement, 

because it is impossible to glean what has occurred between two successive 

measurements. Instead of time series analysis, we perform regression analysis, the first 

step of which is to generate plots to visually assess the nature of relationships between 

behavioral grime counts and the statistically significant terms in our models. These plots 

are presented in figure 6.11, with two exceptions. First, we have not shown Order grime 

in these plots because of the few instances of Order grime. Most plots with Order grime 

showed little counts of behavioral grime. Second, we have chosen to exclude pattern 

instances that have behavioral grime counts of zero in these plots alone. Because of the 

large number of pattern instances with zero behavioral grime counts, it was very difficult 

to distinguish between trendlines, representing the mean of the data. These cases are 
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excluded from the plots only, and only to aide in visual inspection. The final model we fit 

does include these cases where the behavioral grime count is zero.  

 

 A visual inspection of the plots shows a lot of variance in the data, but largely 

linear relationships between grime count and both of Pattern Type and Project. Because 

of these reasons, we choose to fit a linear regression model from the data, considering the 

 
Figure 6.11 Counts of Repetition behavioral grime over Pattern Age, across the 

Pattern Type factor on the left column and the Project factor on the right column. 
Every point within the plots refers to a singular pattern instance. To generate visually 
clear plots in which the linear regression lines can be clearly seen, we have chosen to 
exclude pattern instances that have behavioral grime counts of zero. Our linear model 
fitting, explained in section 6.4.7, does include these cases, but for visual aesthetics 

they are excluded here. 
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terms Pattern Type, Project, and Pattern Age. Note that we understand Pattern Age is a 

categorical variable, yet we treat it as if it were a continuous variable to keep the resulting 

model simple. Though with this decision, we do not make interpolation or extrapolation 

claims with Pattern Age, and we address this decision in the Threats to Validity section, 

section 6.6. For similar reasons, we chose not to include the interaction terms because of 

the increased complexity every interaction term would add to the model; with 7 Pattern 

Types and 10 Projects we would have 69 additional model coefficients. Note that one 

combination of Pattern Type and Project would be captured by the intercept term within 

the model, so we would only generate 69 coefficients. The results from our linear 

regression analysis is shown in tables 6.10 through 6.17, with each table referring to a 

single type of behavioral grime, each row representing the variable term from the model, 

and each column referring to the statistical estimate of corresponding model term. We 

have elected to exclude tables for PIO and TIO grime because they featured very low 

counts of grime, and the estimates we calculated from them are inaccurate and therefore 

provide limited value. Furthermore, the first row showcasing ‘Intercept’ refers to the case 

capturing the Decorator Pattern Type in the commons-lang Project. 

 Table 6.10 shows the results from our fitted model for PEAO grime. As an 

example of how to glean a rate from this table, consider the Coefficient values from the 

table for the rows Intercept, elasticsearch, Factory Method, and Pattern Age. These 

estimates provide the statement: “The rate at which PEAO occurs in the elasticsearch 

project in Factory-Method pattern instances is equal to 0.002 + (-0.010) + (-0.009) + 

(Pattern Age * 0.0007). Generally speaking, we found very few instances of PEAO grime 
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so the estimates are near zero. Many of them are negative, suggesting that PEAO grime is 

less in contexts corresponding to the row name the coefficient comes from. Though the 

Intercept, which represents the commons-lang Project and the Decorator Pattern Type, 

and the (Object) Adapter, Observer, and State Pattern Types, and the netty project 

provided positive estimates, suggesting that in these contexts PEAO grime is higher. 

Pattern Age is slightly positive, demonstrating that PEAO grime increases as a pattern 

ages. Ultimately, these low estimates are likely due to the low count of PEAO grime 

instances we identified in our study; future studies are needed to assert the strength of 

these findings. 

 

Table 6.10 PEAO grime model linear regression estimates. p-values, which test 
the null hypothesis that the estimate is equal to zero, are shown emboldened if 

they are statistically significant (< 0.05) 

Variable Coefficient Standard Error t-value p-value 
Intercept 0.002 0.008 0.31 0.75989 
elasticsearch -0.010 0.007 -1.29 0.19778 
glide -0.019 0.008 -2.28 0.02257 
guava -0.010 0.007 -1.27 0.20358 
hystrix -0.010 0.010 -1.03 0.30436 
mockito -0.019 0.008 -2.28 0.02253 
netty 0.028 0.007 3.69 0.00022 
rxJava -0.040 0.008 -5.01 5.5e-07 
selenium -0.025 0.008 -3.01 0.00265 
springboot -0.010 0.009 -1.08 0.28162 
Factory Method -0.009 0.004 -2.22 0.02655 
(Object) Adapter 0.001 0.004 0.26 0.79716 
Observer 0.010 0.028 0.38 0.70057 
Singleton -0.007 0.004 -1.91 0.05649 
State 0.045 0.003 11.64 <2e-16 
Template Method -0.004 0.004 -1.16 0.24568 
Pattern Age 0.0007 0.0001 5.19 2.1e-07 
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 Table 6.11 shows the results from our fitted model for TEAO grime. As an 

example of how to glean a rate from this table, consider the Coefficient values from the 

table for the rows Intercept, elasticsearch, Factory Method, and Pattern Age. These 

estimates provide the statement: “The rate at which TEAO occurs in the elasticsearch 

project in Factory Method pattern instances is equal to 0.033 + (-0.137) + (-0.107) + 

(Pattern Age * 0.005). Similarly to PEAO grime, we found very few instances of TEAO 

grime, so many of the estimates are near zero. Additionally, many of them are negative, 

suggesting that TEAO grime is less in contexts corresponding to the row name the 

coefficient comes from. However, and identical to PEAO grime, the (Object) Adapter, 

Observer, and State Pattern Types, and the netty project provided positive estimates, 

suggesting that in these contexts TEAO grime is higher. Note that the Intercept, which 

represents the commons-lang Project and the Decorator Pattern Type, was also positive. 

Pattern Age is slightly positive, demonstrating that TEAO grime increases as a pattern 

ages. Similarly to PEAO grime, these low estimates are likely due to the low count of 

TEAO grime instance we identified in our study; future studies are needed to assert the 

strength of these findings. 
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Table 6.12 shows the results from our fitted model for PEAR grime. As an 

example of how to glean a rate from this table, consider the Coefficient values from the 

table for the rows Intercept, elasticsearch, Factory Method, and Pattern Age. These 

estimates provide the statement: “The rate at which PEAR occurs in the elasticsearch 

project in Factory Method pattern instances is equal to 1.368 + (-0.298) + (-1.439) + 

(Pattern Age * 0.020). We found many more instances of PEAR grime than PEAO or 

TEAO grime, and therefore our estimates are generally larger than the estimates for either 

PEAO or TEAO grime. Though, many of them are negative, suggesting that PEAR grime 

is less    in contexts corresponding to the row name the coefficient comes from. Though, 

the positive Intercept representing the commons-lang Project and the Decorator Pattern 

Table 6.11 TEAO grime model linear regression estimates. P-values, which test 
the null hypothesis that the estimate is equal to zero, are shown emboldened if 

they are statistically significant (< 0.05). 

    Variable       Coefficient   Standard Error   t-value   p-value 
Intercept      0.033   0.145      0.23  0.8156   
elasticsearch  -0.137  0.133      -1.03 0.3016   
glide          -0.202  0.146      -1.39 0.1652   
guava          -0.099  0.137      -0.73 0.4684   
hystrix        -0.110  0.175      -0.63 0.5281   
mockito        -0.201  0.144      -1.39 0.1639   
netty          0.371   0.134      2.77  0.0056   
rxJava         -0.420  0.138      -3.04 0.0024   
selenium       -0.263  0.145      -1.81 0.0700   
springboot     -0.103  0.159      -0.65 0.5166   
Factory Method -0.107  0.075      -1.43 0.1536   
(Object) Adapter   0.019   0.071      0.27  0.7839   
Observer       0.122   0.487      0.25  0.8015   
Singleton      -0.075  0.068      -1.10 0.2718   
State          0.486   0.067      7.23  4.8e-13  
Template Method    -0.052  0.071      -0.73 0.4625   
Pattern Age    0.005   0.002      2.37  0.0179    
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Type offsets some of these negative values.  Similar to PEAO and TEAO grime, the 

(Object) Adapter, and State Pattern Types, and the netty project provided positive 

estimates, suggesting that in these contexts PEAR grime is higher. Pattern Age is slightly 

positive, illustrating that PEAR grime slowly increases as a pattern ages. 

 

 Table 6.13 shows the results from our fitted model for PEER grime. As an 

example of how to glean a rate from this table, consider the Coefficient values from the 

table for the rows Intercept, elasticsearch, Factory Method, and Pattern Age. These 

estimates provide the statement: “The rate at which PEER occurs in the elasticsearch 

project in Factory Method pattern instances is equal to 9.952 + (-0.601) + (-6.713) + 

(Pattern Age * 0.031). Our coefficients are generally larger than the estimates for Order  

Table 6.12 PEAR grime model linear regression estimates. p-values, which test 
the null hypothesis that the estimate is equal to zero, are shown emboldened if 

they are statistically significant (< 0.05). 

Variable Coefficient Standard Error t-value p-value 
Intercept 1.368 0.393 3.47 0.0005 
elasticsearch -0.298 0.360 -0.82 0.407 
glide -1.144 0.394 -2.89 0.003 
guava -0.556 0.370 -1.50 0.132 
hystrix -0.518 0.473 -1.09 0.273 
mockito -0.978 0.390 -2.50 0.012 
netty 0.812 0.362 2.24 0.025 
rxJava -1.364 0.373 -3.65 0.0002 
selenium -1.078 0.393 -2.73 0.006 
springboot -0.832 0.431 -1.93 0.053 
Factory Method -1.439 0.202 -7.09 1.33e-12 
(Object) Adapter 1.218 0.193 6.29 3.21e-10 
Observer -0.400 1.319 -0.30 0.761 
Singleton -1.434 0.185 -7.71 1.29e-14 
State 0.627 0.181 3.45 0.0005 
Template Method -1.235 0.193 -6.38 1.76e-10 
Pattern Age 0.020 0.006 3.35 0.0008 
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grime, and are larger than PEAR grime estimates. Though, many of them are negative, 

suggesting that PEER grime is less in the contexts corresponding to the row name the 

coefficient comes from. Similarly to PEAR grime, the large and positive Intercept offsets 

many of these negative coefficients. Aside from the Intercept which represents the 

commons- lang Project and the Decorator Pattern Type, only two contexts provided 

positive coefficient estimates, which were the hystix and netty projects. This suggests that 

PEER grime is higher in these contexts. Interestingly, Pattern Age is slightly negative, 

asserting that PEER grime slowly decreases as a pattern ages. 

 

 Table 6.14 shows the results from our fitted model for PIR grime. As an example 

of how to glean a rate from this table, consider the Coefficient values from the table for 

Table 6.13 PEER grime model linear regression estimates. p-values, which test 
the null hypothesis that the estimate is equal to zero, are shown emboldened if 

they are statistically significant (< 0.05). 

Variable Coefficient Standard Error t-value p-value 
Intercept 9.952 0.679 14.65 2e-16 
elasticsearch -0.601  0.621 -0.97 0.33306 
glide -1.445  0.681 -2.12 0.03400 
guava -2.484  0.639 -3.89 0.00010 
hystrix 0.147 0.817 0.18 0.85728 
mockito -1.865  0.674 -2.77 0.00564 
netty 2.522 0.625 4.03 5.6e-05 
rxJava -3.911  0.645 -6.06 1.4e-09 
selenium -2.692  0.679 -3.96 7.4e-05 
springboot -2.542  0.744 -3.41 0.00064 
Factory Method -6.713  0.350 -19.18 2e-16 
(Object) Adapter -5.386  0.334 -16.11 2e-16 
Observer -8.243  2.276 -3.62 0.00029 
Singleton -9.133  0.321 -28.46 2e-16 
State -5.672  0.313 -18.09 2e-16 
Template Method -7.384  0.334 -22.11 2e-16 
Pattern Age -0.031  0.010 -2.91 0.00364 
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the rows Intercept, elasticsearch, Factory Method, and Pattern Age. These estimates 

provide the statement: “The rate at which PIR occurs in the elasticsearch project in 

Factory Method pattern instances is equal to 3.442 + (-0.070) + (-3.579) + (Pattern Age *  

0.009). Our coefficients relating to Project are similar in size to the estimates for Order 

grime, but are much smaller than PEAR or PEER grime estimates. However, the 

coefficients relating to Pattern Type are larger. This suggests that Project Type holds 

more weight when providing PIR grime rates. Many coefficient estimates are negative, 

suggesting that PIR grime is less in the contexts corresponding to the row name the 

coefficient comes from. Similarly to PEAR and PEER grime, the large and positive 

Intercept offsets many of these negative coefficients. Aside from the Intercept which 

represents the commons-lang Project and the Decorator Pattern Type, only two contexts 

provided positive coefficient estimates, which were the netty and selenium projects. This 

suggests that in these contexts PIR grime is higher. Pattern Age is slightly positive, 

demonstrating that PIR grime slowly increases as a pattern ages. 
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 Table 6.15 shows the results from our fitted model for TEAR grime. As an 

example of how to glean a rate from this table, consider the Coefficient values from the 

table for the rows Intercept, elasticsearch, Factory Method, and Pattern Age. These 

estimates provide the statement: "The rate at which TEAR occurs in the elasticsearch 

project in Factory Method pattern instances is equal to 9.705 + (2.40) + (-9.966) + 

(Pattern Age * 0.001). Our coefficients are much larger than the coefficients capturing 

Order grime, and are similar in value to the coefficients for Persistent Repetition grime. 

Many coefficient estimates are negative, suggesting that TEAR grime is less in the 

contexts corresponding to the row name the coefficient comes from. Similarly to the 

forms of Persistent Repetition grime, the large and positive Intercept corresponding to the 

Table 6.14 PIR grime model linear regression estimates. p-values, which test the 
null hypothesis that the estimate is equal to zero, are shown emboldened if they 

are statistically significant (< 0.05). 

Variable Coefficient Standard Error t-value p-value  
Intercept 3.442 0.160 21.42 2e-16 
elasticsearch -0.070 0.147 -0.48 0.6303   
glide -0.068 0.161 -0.43 0.6692   
guava -0.144 0.151 -0.95 0.3405   
hystrix -0.128 0.193 -0.66 0.5064   
mockito -0.313 0.159 -1.97 0.0493   
netty 0.458 0.148 3.10 0.0019   
rxJava -0.702 0.152 -4.60 4.2e-06  
selenium 0.261 0.160 1.63 0.1032   
springboot -0.319 0.176 -1.81 0.0697   
Factory Method -3.579 0.082 -43.22 2e-16 
(Object) Adapter -3.129 0.079 -39.58 2e-16 
Observer -3.458 0.538 -6.42 1.4e-10  
Singleton -3.575 0.075 -47.09 2e-16 
State -2.684 0.074 -36.19 2e-16 
Template Method -3.470 0.079 -43.91 2e-16 
Pattern Age 0.009 0.002 3.95 7.7e-05 
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commons-lang Project and the Decorator Pattern Type offsets many of these negative 

coefficients. Aside from the Intercept, only two contexts provided positive coefficient 

estimates, which were the elasticsearch and netty projects. This suggests that in these 

contexts TEAR grime is higher. Pattern Age is very slightly positive, demonstrating that 

TEAR grime slowly increases very slowly as a pattern ages. 

 

 Table 6.16 shows the results from our fitted model for TEER grime. As an 

example of how to glean a rate from this table, consider the Coefficient values from the 

table for the rows Intercept, elasticsearch, Factory Method, and Pattern Age. These 

estimates provide the statement: "The rate at which TEER occurs in the elasticsearch 

project in Factory Method pattern instances is equal to 41.631 + (2.739) + (-31.750) + 

Table 6.15 TEAR grime model linear regression estimates. p-values, which test 
the null hypothesis that the estimate is equal to zero, are shown emboldened if 

they are statistically significant (< 0.05). 

Variable Coefficient Standard Error t-value p-value 
Intercept 9.705 3.579 2.71 0.0067   
elasticsearch 2.400 3.275 0.73 0.4636   
glide -4.452 3.591 -1.24 0.2151   
guava -1.532 3.369 -0.45 0.6492   
hystrix -1.238 4.308 -0.29 0.7737   
mockito -4.176 3.551 -1.18 0.2396   
netty 2.106 3.297 0.64 0.5228   
rxJava -5.539 3.400 -1.63 0.1033   
selenium -5.044 3.579 -1.41 0.1587   
springboot -2.017 3.923 -0.51 0.6070   
Factory Method -9.966 1.844 -5.40 6.6e-08  
(Object) Adapter -5.208 1.761 -2.96 0.0031   
Observer -5.265 11.996 -0.44 0.6607   
Singleton -10.879 1.691 -6.43 1.3e-10  
State -0.611 1.652 -0.37 0.7112   
Template Method -9.590 1.760 -5.45 5.1e-08  
Pattern Age 0.001 0.056 0.03 0.9798  
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(Pattern Age * 0.017). Our coefficients are the largest coefficients for all forms of grime 

we identified, which is not a surprise considering TEER grime was the most widely 

encountered. Many coefficient estimates are negative, suggesting that TEER grime is less 

in the contexts corresponding to the row name the coefficient comes from. Similarly to 

the forms of Persistent Repetition grime, the large and positive Intercept corresponding to 

the commons-lang Project and the Decorator Pattern Type offsets many of these negative 

coefficients. Aside from the Intercept, only two contexts provided positive coefficient 

estimates, which were the elasticsearch and netty projects. This suggests that in these 

contexts TEER grime is higher in these projects. Pattern Age is very slightly positive, 

demonstrating that TEER grime slowly increases very slowly as a pattern ages. 

 

Table 6.16 TEER grime model linear regression estimates. p-values, which test 
the null hypothesis that the estimate is equal to zero, are shown emboldened if 

they are statistically significant (< 0.05). 

Variable Coefficient Standard Error t-value p-value 
Intercept 41.631 5.433 7.66 1.9e-14  
elasticsearch 4.739 4.972 0.95 0.34049  
glide -18.853 5.452 -3.46 0.00055  
guava -15.067 5.114 -2.95 0.00322  
hystrix -5.593 6.540 -0.86 0.39238  
mockito -13.407 5.391 -2.49 0.01290  
netty 23.159 5.005 4.63 3.7e-06  
rxJava -21.977 5.162 -4.26 2.1e-05  
selenium -12.757 5.433 -2.35 0.01889  
springboot -12.185 5.956 -2.05 0.04078  
Factory Method -31.750 2.800 -11.34 2e-16    
(Object) Adapter -18.379 2.673 -6.87 6.4e-12  
Observer -22.922 18.211 -1.26 0.20816  
Singleton -41.871 2.567 -16.31 2e-16   
State -16.160 2.508 -6.44 1.2e-10  
Template Method -22.893 2.672 -8.57 2e-16    
Pattern Age 0.017 0.085 0.20 0.84198 
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 Table 6.17 shows the results from our fitted model for TIR grime. As an example 

of how to glean a rate from this table, consider the Coefficient values from the table for 

the rows Intercept, elasticsearch, Factory Method, and Pattern Age. These estimates 

provide the statement: “The rate at which TIR occurs in the elasticsearch project in 

Factory Method pattern instances is equal to 3.845 + (-0.457) + (-3.489) + (Pattern Age * 

0.007)”. The scalar values of our coefficients are small for Repetition grime, and on par 

with Order grime coefficients. Many coefficient estimates are negative, suggesting that 

TIR grime is less in the contexts corresponding to the row name the coefficient comes 

from. Similarly to the other forms of Repetition grime, the relatively large and positive 

Intercept corresponding to the commons-lang Project and the Decorator Pattern Type 

offsets many of these negative coefficients. Aside from the Intercept, only one context 

provided positive coefficient estimates, which was the netty project. This suggests that 

TIR grime is higher in the netty project. Pattern Age is slightly positive, demonstrating 

that TIR grime slowly increases slowly as a pattern ages. 
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 The results from tables 6.10 through 6.17 illustrates one important finding that is 

not immediately revealed through the ANOVAs tables in table 6.9. Specifically, as 

expected from our ANOVAs table analysis shown in table 6.9, the Project and Pattern 

Type variables dictated the count of behavioral grime much more strongly than Pattern 

Age. In fact, the coefficient values we calculated for Pattern Age were consistently very 

small, with the largest being from PEAR grime in table 6.12 with a value of 0.020. 

Practically speaking, this means that ignoring the Project and Pattern Type, a pattern 

instance would have to age through roughly 50 versions before it saw a single instance of 

PEAR grime. This is in our highest Pattern Age coefficient too; lower Pattern Age 

coefficients imply cases where a pattern instance would have to age longer than this 

Table 6.17 TIR grime model linear regression estimates. p-values, which test the 
null hypothesis that the estimate is equal to zero, are shown emboldened if they 

are statistically significant (< 0.05). 

Variable Coefficient Standard Error t-value p-value  
Intercept 3.845 0.263 14.61 2e-16 
elasticsearch -0.457 0.240 -1.90 0.05767  
glide -0.939 0.264 -3.55 0.00038  
guava -0.567 0.247 -2.29 0.02195  
hystrix -0.400 0.316 -1.26 0.20675  
mockito -1.116 0.261 -4.27 1.9e-05  
netty 0.711 0.242 2.93 0.00337  
rxJava -0.918 0.250 -3.67 0.00024  
selenium -0.972 0.263 -3.69 0.00022  
springboot -0.507 0.288 -1.76 0.07865  
Factory Method -3.489 0.135 -25.71 2e-16 
(Object) Adapter -2.718 0.129 -20.98 2e-16 
Observer -2.971 0.882 -3.37 0.00076  
Singleton -3.718 0.124 -29.89 2e-16 
State -2.468 0.121 -20.30 2e-16 
Template Method -3.482 0.129 -26.90 2e-16 
Pattern Age 0.007 0.004 1.85 0.06504 
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predicted value to generate a single instance of behavioral grime. This finding illustrates 

that the Project and Pattern Type have much more bearing on how grime is added or 

removed from a pattern instance. An interesting side-note is that in the PEER grime table, 

table 6.13, the estimated coefficient for Pattern Age is negative. This suggests that PEER 

pattern grime generally is removed as a pattern ages. From a quality perspective, PEER 

grime can be considered an especially unwanted type of grime because it refers to cases 

where a pattern class contains an association to a non-pattern class. As associations are 

stronger relationships than use-dependencies, it would be preferable to remove Persistent 

forms of grime for the equivalent Temporary form of grime, if the situation allows. The 

data reflects this thought, for PEER grime types. 

 
6.4.8 RQ8 
 

Our eighth research question considers if state of the art software quality analysis 

tools are capable of identifying behavioral grime. This is the first step in our exploration 

of how design pattern grime affects pattern and system quality. Our rationale is as 

follows: if state of the art software quality analysis tools are capable of detecting and 

measuring behavioral grime, the results from such tools would heavily complement the 

findings from this study. If these tools are not capable of such, it is required to extend 

upon those tools to capture an understanding of how behavioral grime affects system 

quality. To assess this research problem, we performed a systematic search to identify 

state of the art software analysis tools that perform behavioral analysis. The systematic 

approach that involved searching popular search engines for terms including the 

keywords ‘software quality analysis tools’. For each tool we identified, we searched 
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features of the tool on their website, specifically looking for terms that indicate 

behavioral analysis, such as ‘Behavioral Analysis’. We reason that if a tool performs 

some form of behavioral analysis similar to what we perform in this study, they would be 

quick to generalize the capabilities of their tool, and therefore would label their form of 

analysis ‘Behavioral Analysis’. The findings from this study is presented in table 6.18. 

 

The results from table 6.18 indicate that none of the software quality analysis 

tools we identified from our search are capable of performing behavioral analysis. Nearly 

all tools advertised ‘static code analysis’ as their primary feature, of which behavioral 

analysis is the corollary to. To verify the results from this study, we performed an in-vitro 

experiment [40] wherein we tested the tool SonarQube [32] on a pattern instance 

Table 6.18 Summary of results from RQ8, which considers if state of the art software 
quality analysis tools are capable of identifying and/or measuring behavioral grime. 

Tool name Tool description Behavioral 
Analysis? 

FindBugs Static analysis tool 
to look for bugs 

No 

PMD An extensible 
cross-language static analyzer 

No 

SonarQube Your teammate for 
Software Quality and Security 

No 

QATCH[6] An Adaptive 
framework for software product 

quality model assessment 

No 

Understand Visualize your code No 
Parasoft Automated 

Software Testing Tools for 
Creating High Quality Software 

No 

Coverity Find and fix 
security and quality issues as you 

code, fast 

No 
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evolution. This pattern instance evolution is the same one used to answer RQ1 in section 

6.4.1, in which we started with a perfect implementation of an Observer pattern, with 

perfect conformance to specifications and no grime. Recall that to this pattern instance 

we simulated design pattern evolution by injecting one singular form of grime, which 

constituted a version. We removed each injected grime instance in the next version to 

ensure that the presence of pattern grime was the only variable that was changing. We 

evaluated the quality and technical debt of this pattern instance evolution using the tool 

SonarQube, and found that the changing quality of each pattern instance across versions 

was insignificant, and any deviation was due to the addition or removal of lines of code, 

which serve as a normalization value in SonarQube results. This means that SonarQube, 

which does not claim to perform behavioral analysis, is incapable of performing 

behavioral analysis. However, this result illustrates a gap in the state of the art, 

specifically that these tools are incapable of performing behavioral analysis. This means 

the next steps of this research will seek to extend existing quality models to provide 

behavioral analysis capabilities, which can ultimately be incorporated into these state-of-

the-art quality tools to provide more useful results to practitioners and stakeholders alike. 

 
6.4.9 RQ9 
 

Research question 9 considers how the ISO 25010 software quality specification 

[36] can be implemented such that a resulting operational model includes design pattern 

grime in its calculations. Recall from section 6.2.1 that the ISO 25010 software product 

quality model consists of eight primary quality characteristics at its highest level of 

abstraction, and each of those eight quality characteristics has a set of quality properties 
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that represent the grounding of various properties that are important from an 

implementation perspective. The problem of extending and implementing the ISO 25010 

software quality model involves identifying code-level violations and mapping them to 

the various quality properties, which in term map to the quality characteristics. We have 

elected to perform this mapping process in the same manner as the tool QATCH [70], 

which provides a holistic approach to the mapping process and greater quality 

calculations, in a simple manner that ensures the resulting model is not too complex that 

it distracts from the value it offers. Models that fit into this category of being too 

complex, such QUAMOCO [76], rarely see practical use because of the complicated 

nature of the mapping process, which requires in-depth and manual calibration involving 

connecting each code-level measurement to each software quality property or 

characteristic, as well as manually specifying the weight that each measurement has on 

each quality entity. The tool QATCH avoids this issue by requiring stakeholders to 

specify fuzzy levels of importance for each quality property, characteristic, and code-

level measurement in a table format, and automatically performing the mapping process 

based on its holistic assumption. See figure 6.12 for a visual example of the QATCH 

model, which is taken from [70]. As an example illustrating how the mapping process 

occurs, a user of QATCH specifies that a code-level measurement A is twice as impactful 

as code-level B measurement on the quality property C, and therefore will generate 

weights between A and C, and B and C, that illustrate this relationship. The mathematical 

process that is responsible for generating the weights involves a Fuzzy Logarithmic Least 

Squares method wherein each entity (measurement, property, or characteristic) at each 
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layer in the quality hierarchy is ranked according to the other entities at that layer, and 

mapping weights are assigned based on the lower quartile, median, and upper quartile 

values that the entity was  calculated, such that the sum of all weights going into the next-

higher level of the hierarchy sums to 1. The utilization of this model to capture system 

quality assures that an extension has no effect on the default model’s code-level 

measurement calculations, and only affects the edge weights that make up the calculation 

for next-highest level of the overall hierarchy. In other words, the effect of each code-

level measurement from the default QATCH model on each quality property and 

characteristic remains the same, yet we allow for the incorporation of design pattern 

grime measurements such that we can understand the effects of design pattern grime on 

each quality property and characteristic. 

 

To perform this model extension, we first need to select metrics that summarize 

the code-level measurements for design pattern grime we have computed. This step is 

 
Figure 6.12 Visual illustration of the QATCH model, image taken from [70]. 
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important for two reasons. First, it ensures the resulting model is not too complex that it 

will preserve the simplicity property, which was a major reason for choosing QATCH in 

the first place. Specifically, we have 16 code-level measurements for design pattern 

grime, one for each form of grime including both structural and behavioral, and the 

inclusion of all 16 code-level measurements would substantially increase the number of 

quality rankings an end-user would need to perform. This increase is on the order of 

thousands of more rankings, because all metrics need to be pairwise ranked against all 

other metrics, and for each quality characteristic under consideration, which is eight 

according to the ISO 25010 specification [36]. Second, the default QATCH model 

hierarchy consists of metrics that summarize code-level measurements, so for consistency 

sake we also build metrics that summarize design pattern grime. The metrics we selected 

to summarize design pattern grime are presented in table 6.19. 
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Table 6.19 also shows the expected relationship each metric takes with quality via 

the column ‘Relationship with Quality’. In other words, this column signifies how quality 

changes as the metric’s measurement changes. A direct relationship implies that both 

increase or decrease together, while an inverse relationship implies the opposite happens; 

as the measurement increases, quality decreases, or vice versa. We selected values for the 

relationship with quality borrowing from analogous Object-Oriented system metrics, such 

as Pattern Instability being the design pattern equivalent of Instability from [50], as well 

as domain knowledge of the metrics, i.e., Pattern Structural and Behavioral Aberrations 

embody negative and unexpected additions to a design pattern, therefore are inversely 

related to quality. In terms of integration into the QATCH model, each metric from table 

18 fits into the ’Properties’ layer, representing their own node, presented from figure 

Table 6.19 Summarization metrics we have selected for the QATCH model 
extension. 

Metric name Description Range Relationship 
with Quality 

Pattern Structural 
Integrity 

M1 from table 3.1 [0,1] direct 

Pattern Behavioral 
Integrity 

M2 from table 3.1 [0,1] direct 

Pattern Instability M6 from table 3.1 [0,1] inverse 
Pattern Structural 

Aberrations 
Count of 

occurrences of all 
structural grime in a 

pattern instance 
divided by the pattern 

size. 

[0, ∞] inverse 

Pattern Behavioral 
Aberrations 

Count of 
occurrences of all 

behavioral grime in a 
pattern instance 

divided by the pattern 
size. 

[0, ∞] inverse 
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6.12. Because of the simplicity of QATCH, nothing else from the base model needs to be 

changed; therefore we ensure this extension has no effect on the default model’s code-

level measurement calculations, and corresponding quality properties. However, because 

of the holistic nature of QATCH, the values of the quality characteristics and greater 

quality measurement will be changed, but that change indicates the extension has been 

completed correctly. 

 
6.4.10 RQ10 
 

Research question 10 is concerned with identifying the relationship between 

behavioral grime and system quality and TD. In essence, this question involves 

calculating system quality using the QATCH model [70] for each version of each project 

under analysis, and applying a correlation analysis to quality and design pattern 

behavioral grime. A key point here is that because of QATCH’s holistic nature, which 

provides a better estimation of system quality than piece-wise analysis, we do not capture 

the quality or grime counts of individual pattern instances. Rather, we use aggregation 

measurements to summarize quality and grime counts of individual pattern instances 

across projects and versions. In other words, each project at each version will have one 

measurement for both quality and pattern behavioral grime. Before the QATCH model 

can be applied to these data, two important steps are necessary; ranking quality entities 

and model calibration. 

 
6.4.10.1 Ranking Quality Entities. The process of ranking quality entities involves 

specifying the importance for each Property and Characteristic entity presented in figure 
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6.12, compared to all other entities a that layer, to make up the later above it. That is, for 

each layer in the QATCH model we need to specify importance of each entity in the 

layer below it. For the Property layer, we consider all Measurements of the QATCH 

default model, including (Bad Functionality, Comprehensibility, Redundancy, 

Structuredness, Assignment, Resource Handling, Cohesion, Coupling, Complexity, 

Messaging, and Encapsulation) and our extension Measurements presented from research 

question 9 in section 6.4.9 (Pattern Structural Integrity, Pattern Behavioral Integrity, 

Pattern Instability, Pattern Structural Aberrations, Pattern Behavioral Aberrations). The 

Measurements from the QATCH default model come from the PMD ruleset list21 and the 

CKJM (Chidamber and Kemerer Java Metrics[16]) extended metric package22. For the 

Characteristics layer, we properly exemplify the ISO-25010 specification by considering 

all eight quality properties (Functional Suitability, Performance Efficiency, Compatibility, 

Usability, Reliability, Security, Maintainability, Portability) from figure 6.1. 

We complete the ranking process in a bottom-up approach, starting with the 

Measurements so that we can complete the Property layer. To complete the rankings, we 

utilized the default QATCH rankings as well as our domain knowledge of design pattern 

grime. The Property rankings are presented in appendix A, figures 6.16a and 6.16b, with 

Characteristics shown on the left side of each line, and each Property’s ranked 

importance is shown on top of each line. Tick lines indicate when multiple Properties 

share the same importance. Once the Properties layer has been completed, we completed 

                                                 
21 https://pmd.github.io/ 
22 https://github.com/mjureczko/CKJM-extended 
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the Characteristics layer. When completing this layer, we assumed what we consider to 

be a ‘Standard Operations’ perspective, or one that models the average work week of a 

practitioner in an agile setting. In this perspective, a practitioner maintains a status quo, 

with perhaps a few pressing matters, yet not in an emergency mode. Of course, this is not 

true for all situations, yet the benefits of using QATCH allows for easy re-configuration 

of rankings to fit any need. Our rankings for the Characteristics layer is presented in 

appendix A, figure 6.17. 

 
6.4.10.2 Model Calibration. QATCH requires model calibration before it can be 

appropriately applied to measure quality in a project. The calibration process involves 

calculating the metrics that make up the Properties layer across a large number of 

projects, and selecting the lowest, median, and highest value of each metric after 

removing outliers via inter-quartile range selection [70]. This process of ensures that the 

model contains maximum level of variability from the benchmark data. To calibrate our 

model, we used all of the projects and all their versions we present in this study treating 

each as if it were an independent project. We do this because we don’t concern ourselves 

with the scalar values of system quality, but rather we care about the relationships 

between quality and behavioral grime. Regardless, in [70], it is shown that little to no 

statistical difference occurs in model calibration when the benchmark repository features 

greater than 1.3 million lines of code, which we surpass with our projects. Once our 

model was calibrated, we evaluated every project and every version of this analysis (in 

table 6.3) using our implementation and calibration of QATCH.  
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After model calibration, we calculated the Total Quality Index (TQI) for each 

project across each version. The precise value of the TQI comes from the calibration 

process; if the model is calibrated on different benchmark repositories then each of these 

projects will yield different TQI values. Though, as [70] suggests, as the size of the 

benchmark repository increases, little statistically significant change is seen in TQI 

scores. The TQI value can be interpreted as follows: ‘The quality score of a project when 

considering all of the benchmark repository as a reference point.’ The TQI score must be 

in range [0,1], inclusive, and it is considered that scores between [.8 and 1.0] represent 5-

star quality, [.6 to .8] represent 4 star quality, etc. The TQIs for each project are presented 

in figure 6.13. The Software Versions are presented on the x-axis, while TQI 

measurement is presented on the y-axis. Lines on the graph capture the TQI score of a 

software project over the versions under analysis. Recall that Software Version is a 

categorical variable, so while tempting, we cannot perform time-series analysis on these 

data. A visual inspection of figure 6.13 reveals that the quality of these projects does not 

majorly fluctuate over the versions we analyzed, beyond roughly a 5% change in TQI 

score. Though none of the projects feature monotonicity, which implies that either or 

both of: (1) when new features are added their quality is higher than existing code, or (2) 

developers are actively taking steps to refactor their code to improve quality. 
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After quality calculations were complete, we generated scatter plots between 

pattern grime and quality to identify the precise nature of the relationship. Specifically, 

we use our metric Pattern Behavioral Aberrations, from table 6.19, as an aggregation of 

pattern grime per software project and across versions because of the holistic nature of 

our quality measurement. This scatter plot is presented in figure 6.14, with TQI scores 

shown on the y-axis, and scores of Pattern Behavioral Aberrations are shown on the x-

axis. Pattern Behavioral Aberration scores capture how few instances of behavioral grime 

exist in a project, compared across projects in the benchmark repository. The score of 

Pattern Behavioral Aberrations is non-intuitive; high scores on the x-axis indicate lower 

individual measurements of grime, i.e. better pattern conformance, and lower scores 

indicate higher individual measurements of grime. Points in the graph represent an 

individual project’s TQI score and Pattern Behavioral Aberration score. Generally, we 

 
Figure 6.13 Quality scores (TQI) for each project under analysis, over each version 
under analysis. Software Version is shown on the x-axis, while TQI measurement is 
shown on the y-axis. Lines on the graph capture the TQI score of a software project 

over the versions under analysis 
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see a linear trend between Pattern Behavioral Aberrations and TQI, suggesting our 

relationship will be linear in nature. Because the nature of our data is a rank-based 

percentage, the rank being based on the benchmark repository we calibrated our QATCH 

model on, it falls under the ordinal numeric scale. This means we cannot use Pearson’s 

method for calculating the correlation coefficients capturing the relationship between TQI 

and Pattern Behavioral Aberrations as we did for research question 5, from section 6.4.5. 

Instead, we use Spearman’s rank-order correlation calculation. Spearman’s provides a 

nonparametric alternative to Pearson’s. The only assumption required for Spearman’s is 

that the data has ordinal nature, which ours does. The estimate of Spearman’s ρ for these 

data is 0.594, suggesting a strong positive relationship between TQI and Pattern 

Behavioral Aberration score. When asserting the null hypothesis that the relationship is 

equal to zero, which implies no relationship, we received a p-value of < 2.2−16, 

suggesting that the estimate of 0.594 is an accurate non-zero estimate of the true 

relationship between TQI and the Pattern Behavioral Aberration score. 
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A strong relationship between TQI and Pattern Behavioral Aberration score 

indicates that pattern behavioral grime and system quality are strongly and inversely 

related. Recall that the Pattern Behavioral Aberration score captures how few instances of 

pattern behavioral grime occur in a software project when compared to all other projects 

in our benchmark repository. That is, a higher score indicates fewer instances of 

behavioral grime. Because of this, when we synthesize the results and translate Pattern 

Behavioral Aberration scores to design pattern behavioral grime measurements, we need 

to consider inverted relationships. Therefore, because we identified a strong relationship 

between TQI and Pattern Behavioral Aberration score, we can assert that a strong inverse 

relationship exists between quality and pattern behavioral grime. 

 
Figure 6.14 Scatter plot of TQI and Pattern Behavioral Aberrations. Scores of TQI are 
shown on the y-axis, and scores of Pattern Behavioral Aberrations are shown on the x-

axis. Pattern Behavioral Aberration scores capture how few instances of behavioral 
grime exist in a project, compared across the other projects we used to calibrate the 

model. High scores indicate lower individual measurements of grime, i.e. better 
pattern conformance, and lower scores indicate higher individual measurements of 
grime. Points in the graph represent an individual project’s TQI score and Pattern 

Behavioral Aberration score. 
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This research question also aims to consider the relationship between pattern 

behavioral grime and Technical Debt. Recall that in research question 8, from section 

6.4.8, we identified that no state-of-the art tools are capable of identifying or measuring 

behavioral grime, and that as a case study the state-of-the-art TD measurement tool 

SonarQube did not detect behavioral grime. Additionally, we know that results from a 

recent Dagstuhl seminar [4] suggest the definition of TD is narrowed to consider only 

internal code-quality issues, specifically pertaining to Maintainability. From these two 

points, we can conclude that no tools currently exist that calculate the TD score of 

behavioral grime, yet that Maintainability serves as the boundaries on a search space that 

contains all TD items. From this point, we choose to use Maintainability as a surrogate 

measurement for TD. While we do not have the means to calculate the actual effects of 

behavioral grime on TD, which requires domain-specific calibration techniques, we do 

know that any TD items must be contained within the Maintainability quality 

characteristic. Therefore, in order to assess the relationship between pattern behavioral 

grime and TD, we consider the relationship between pattern behavioral grime and 

Maintainability score. 

To identify the relationship between pattern behavioral grime and Maintainability, 

we apply a similar analysis as we did between pattern behavioral grime and quality. This 

entails generating a scatter plot and calculating the Spearman correlation coefficient. The 

scatter plot between Pattern Behavioral Aberrations and Maintainability is shown in 

figure 6.15. Similar to the TQI scatter plot in figure 6.14, scores of Maintainability are 

shown on the y-axis, and scores of Pattern Behavioral Aberrations are shown on the x- 
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axis. Pattern Behavioral Aberration scores capture how few instances of behavioral grime 

exist in a project, compared across projects in the benchmark repository. High scores 

indicate lower individual measurements of grime, i.e. better pattern conformance, and 

lower scores indicate higher individual measurements of grime. Points in the graph 

represent an individual project’s Maintainability score and Pattern Behavioral Aberration 

score. We see a similar linear trend in this scatter plot as we did for the TQI scatter plot, 

and therefore decided to calculate Spearman’s ρ for the same reasons. Our data yields a 

Spearman’s ρ value of 0.6652, implying a strong positive relationship between Pattern 

Behavioral Aberration scores and Maintainability. The p-value for this correlation 

coefficient is < 2.2−16, implying the estimate of 0.6652 is an accurate non-zero estimate 

of the true relationship between Maintainability and the Pattern Behavioral Aberration 

score. For the same reasons as the TQI analysis, we can state that a strong negative 

relationship exists between pattern behavioral grime and Maintainability. Furthermore, 

we generalize this statement to state that a strong negative relationship exists between 

pattern behavioral grime and Technical Debt. 
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6.5 Discussion 

 
 

The high-level goals of our study were two-fold. First, we sought to investigate 

the usefulness of incorporating behavioral analysis in the context of design patterns, 

complementing existing structural models. Second, we sought to evaluate the relationship 

behavior and quality so that high- level goal of our study was to investigate the 

relationship between pattern behavioral grime and system quality and technical debt. 

 

 

 

 
Figure 6.15 Scatter plot of Maintainability score and Pattern Behavioral Aberrations. 
Scores of Maintainability are shown on the y-axis, and scores of Pattern Behavioral 
Aberrations are shown on the x-axis. Pattern Behavioral Aberration scores capture 
how few instances of behavioral grime exist in a project, compared across the other 

projects we used to calibrate the model. High scores indicate lower individual 
measurements of grime, i.e. better pattern conformance, and lower scores indicate 

higher individual measurements of grime. Points in the graph represent an individual 
project’s Maintainability score and Pattern Behavioral Aberration score. 
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6.5.1 Structure vs Behavior 
 

With respect to the relationship between structure and behavior, our results from 

research questions 1-7 indicate that studying behavior offers a new dimension of insight 

into design pattern evolution. Prior to this study, only structural analysis methods have 

been utilized to study design pattern evolution, which do provide better analysis than 

none at all, yet do not provide a complete view of the patterns or system. This statement 

is backed by our findings from table 6.5, which show that pattern instances are most 

likely to contain both structural and behavioral grime at some point in their lifetime. 

Interestingly, a large number of pattern instances contained structural grime but no 

behavioral grime. In the absence of behavioral grime analysis, this distinction would not 

be possible. The two categories of most prevalent grime, labeled A and B according to 

figure 6.8, would be combined as one designation if behavioral grime had not been 

explored. Label C, corresponding to pattern instances that contain behavioral grime but 

no structural grime, were considered impossible in the real world because of our initial 

understandings that structural deviations enforces behavioral deviations. In other words, a 

behavioral deviation would be impossible without a structural deviation in the first place. 

Our findings illustrate a select few pattern instances that violate this level of 

understanding, but it still represents a violation of our perceived understanding of design 

pattern evolution. Our initial statement that structural deviations enforce behavioral 

deviations is misguided; instead, a better statement is that structural deviations guide 

behavioral deviations. In other words, the structural aspects of a pattern, and more 

specifically the instances they are violated in, play a strong role on the presence of 
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behavioral deviations, but they do not restrict the presence of behavioral deviations. 

While the case where behavioral deviations appear in the absence of structural ones 

appears rare in software projects, it is still a possibility. This finding is significant, if not 

just for the context and research area of this study, but for (1) studies that seek to explore 

behavior in non-pattern settings, such as security concerns or computational performance, 

as well as (2) explorations of behavior in tools that perform quality and technical debt 

analysis. It is important to remember that just because an issue does not exist within a 

project’s structure, issues might still exist with the project’s behavior. 

 
6.5.2 Behavior and Quality 
 

Research questions 8-10 sought to answer the high-level goal concerned with the 

relationship between behavior and quality. We first identified that no state-of-the-art tools 

currently exist that identify behavioral grime. This finding, while not being a surprise, 

illustrates a gap in the field. And the identification of this gap, coupled with our results 

from our first high-level research goal which shows that behavior offers a new 

perspective into software quality assurance techniques, reveal that operational models of 

behavioral analysis offer a niche solution to a novel problem. However, it is the view of 

these authors that the implementation details of such operational models will always be 

under contention, simply because different stakeholders hold different views of what 

should be considered important in software quality. For example, a company following a 

rigorous lifecycle to release human-critical software will be concerned with different 

quality items than an indie video game development company; such differences will 

always exist to some degree. This problem is why we have elected to choose a 
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configurable quality model, specifically QATCH [70], to extend. The configuration in 

this model comes from the varying degrees of importance for each of the software quality 

Properties and Characteristics, and we show our rankings for the degrees of importance in 

appendix A, figures 6.16a, 6.16b, and 6.17. We expect that these rankings will change 

under different domains, because of the different quality concerns of stakeholders. Our 

extension of the QATCH model accommodates this, by providing design pattern 

evolution quality Properties that a user of QATCH can configure to their degree of 

importance. Specifically, we focus on the behavioral aspects of this extension because 

that is our primary concern in this research. Yet, this extension shows the process that 

any user of QATCH can follow to properly extend a model they are concerned with. This 

research and process proves the concept that was proposed in [70]. 

In terms of behavioral effects of system quality, we found strong inverse 

relationships between quality and behavioral grime, meaning that under our calibration of 

the quality model QATCH, the addition of behavioral grime elements in a project was 

strongly correlated with a decrease in system quality. We need to point out a few 

assumptions we made to reach this statement. First, we assumed a ‘strict’ implementation 

of design patterns. That is, we allowed each design pattern instance to have one incoming 

non-pattern member, and one outgoing non-pattern member. This decision was based on 

two premises: (1) patterns need some non-pattern relationships to actually be functional, 

and (2) preservation of maintainability in the design pattern instance is more important 

compared to system functionality. The second premise we make because we reason that 

non-design pattern based solutions can be used to solve as many problems as pattern-



167 
 

 

based solutions, but the choice to use a design pattern implies one expends more effort 

designing and developing the pattern instance, but that that effort pays off in the long run 

with faster extensions of the code in the future. This ‘strictness’ expectation can be 

configured though; our tools and methods presented herein have the capability built-in, so 

that users that want a more relaxed implementation of design pattern instances can 

consider such.  

A second assumption we made in this research is that the addition of pattern 

grime has a homogeneic and monotonically-negative impact on system quality. Meaning 

that each instance of grime that is added, per grime type, has the same negative effect on 

system quality. It could very well be that in certain applications, adding grime to a design 

pattern instance is simply the optimal solution to the problem, and our models and tools 

do not capture this possibility. However, capturing this phenomenon is incredibly 

difficult, and would likely require domain-specific implementations of models and tools. 

We aim to provide general models and tools with our research, with the benefit of 

configurability, yet we understand this large assumption in our study. 

 
6.6 Threats to Validity 

 
 

There are several design and implementation considerations in this study that 

threaten the validity of the results. External validity is concerned with the generalization 

of results. In this study, we limited ourselves to 20 minor-release versions of ten Java 

projects, chosen based on popularity from the online repository GitHub. While we 

attempted to systematically select projects so that our results would be generalizable, we 
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can only claim that our results hold true for the projects under analysis, and for the 

language (Java). More case studies are necessary before more general claims can be made 

concerning behavioral impacts, and specifically design pattern behavioral grime. 

However, our extension of the QATCH quality model is generalizable, and the manner in 

which it was developed makes it easy to do so [70]. 

Internal validity refers to the ability to reach causal conclusions based on the 

study design. Internal validity is minimal in this study because we make no causal claims, 

just correlations and linear model-fitting. In terms of the correlation results, specifically 

research question 5 from section 6.4.5, and research question 10 from section 6.4.10, we 

do not make claims beyond identifying the rate at which structural grime and behavioral 

grime, and behavioral grime and quality, increase together. In terms of research question 

7, from section 6.4.7, which identifies the rate that patterns develop behavioral grime, we 

do provide estimates for a linear model equation. However, these estimates and their 

greater equation cannot be used to interpolate or extrapolate the rate at which behavioral 

grime appears in pattern instances. Generally, and though many times done incorrectly, 

linear models should not be used to extrapolate data, which we do not do here. In terms 

of interpolation, we cannot interpolate on these data either. This is because our choice of 

time-dependent variables are Software Version and Pattern Age, which are both 

categorical variables. We do not know how much physical time actually passed in 

between subsequent Software Versions, or resulting Pattern Ages. While Pattern Age is a 

derived metric based on Software Version, we are still under the same constraints; no 

data interpolation can be performed. However, our results showed that Project and 
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Pattern Type had the largest statistically significant impact on design pattern grime, 

suggesting their estimates supply better approximations for pattern behavioral grime. 

Construct validity refers to the choice of independent and dependent variables, 

with respect to the conclusions of the study. Construct validity is threatened in our study 

from two major sources; pattern coupling and the measurements of software quality. In 

terms of the pattern coupling, it is important to note that we do not consider pattern 

coupling in this study. Pattern coupling entails that two or more separate pattern 

instances, likely from two or more separate pattern types, share one or more members. 

Our definitions of design pattern grime, and our conclusions, do not take into account the 

possibility that grime for one pattern instance might be a necessary member of a separate 

pattern instance. In terms of the measurements of software quality, construct validity is 

violated because of the selection of quality Properties used in the default QATCH model. 

The default QATCH model uses 11 Properties, originating from the PMD ruleset list23 or 

the CKJM-extended metric package24. These Properties provide beneficial perspectives 

into quality, but they do not encompass all Properties that need to be considered when 

accounting for quality. We do extend the QATCH model to consider behavioral 

perspectives, but ultimately more Properties may need to be developed before a complete 

grasp of quality can be achieved. 

 

 

 

                                                 
23 https://pmd.github.io/ 
24 https://github.com/mjureczko/CKJM-extended 
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6.7 Conclusion 
 
 

Our research goals focused on the exploration and initial understandings of 

behavioral deviations, as they pertain to design pattern evolution and software quality 

assurance. To this end, we have constructed a taxonomy that classifies behavioral grime 

types. Furthermore, we designed and implemented a case study wherein we measured 

counts of structural and behavioral grime, as well as software quality and TD, across 

pattern instance evolutions pertaining to seven design pattern types, originating from 20 

versions of ten open source software projects. We evaluated the relationships between 

structural and behavioral grime and found statistically significant cases of strong 

correlations between specific types of structural and behavioral grime. We computed 

regressions that capture the rate at which design pattern behavioral grime appears in 

pattern instances, specifically finding that pattern type and project provided the most 

dominating terms in the models. We extended a state-of-the-art operationalized quality 

model, QATCH [70] to incorporate model terms that capture design pattern evolution 

properties, including behavioral grime, and we identified that a strong inverse 

relationship exists between design pattern behavioral grime and system quality. 

Furthermore, we identified a strong inverse relationship between design pattern 

behavioral grime and Maintainability, suggesting that behavioral grime is strongly related 

to TD. 
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CHAPTER SEVEN 
 

 
CONCLUSIONS 

 
 

7.0 Foreword 
 
 
 This chapter presents the conclusions of this doctoral dissertation. We begin in 

section 7.1 by re-iterating the problem statement, followed by a summarization of the 

work presented in the greater body of this document in section 7.2. Section 7.3 lists the 

contributions of this work, and section 7.4 considers the future of this work. Section 7.5 

concludes. 

 
7.1 Problem Statement 

 
 
 Software quality assurance techniques provide software developers and managers 

with the methods and tools necessary to monitor their software product to encourage fast, 

on-time, and bug-free releases for their clients. Ideal circumstances hold that the methods 

and tools of software quality assurance provide significant value and highly-specialized 

results to product stakeholders, while being fully incorporated into a firm’s process and 

with actionable and easy-to-interpret outcomes. However, modern approaches fall short 

on these goals, and while many QA techniques exist that provide results to stakeholders, 

many times these results do not provide their stated value or are simply ignored. We 

claim this is due to two primary influences. First, current software QA approaches do not 

fully reveal all aspects of a software product because of their focus on static, or structural 

analysis. By itself, static analysis is not detrimental, yet it simply does not provide 
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sufficient insight into a product’s inner-workings to allow for a thorough analysis. 

Second, many QA techniques provide general packaged solutions, which fail to capture 

domain-specific concerns. Different firms have different expectations of quality, both 

from an end-user perspective and from an internal software quality perspective. Packaged 

solutions do not provide maximum value because they either do not allow for the ability 

to configure the solution to cater to firm needs, or the customizations they provide are 

difficult to implement because of the arbitrary process in which such a solution is 

calibrated. Specifically, our formal problem statement is as follows: 

Ideal circumstances hold that software quality assurance efforts 

provide significant, highly-specialized, and immediate value to 

software product stakeholders. However, many modern 

approaches fall short on these desires, due to lack of models that 

fully capture the entities of a system, as well as models that fail to 

capture domain specific concerns.  

To remedy these issues, we have committed to the exploration of behavioral 

analysis techniques, which consider the mechanisms that occur as a product is executing 

its code at runtime. Specifically, we focus on design pattern evolution because of the 

known quality properties of design patterns, yet our methods capture all instances where 

expected product behavior is known. The exploration of behavioral analysis techniques 

complements existing structural analysis techniques, expanding upon the capabilities of 

state-of-the-art QA techniques. Furthermore, the manner in which we developed and 

evaluated these newfound capabilities, via extending an existing quality model that is 
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highly-customizable yet easy-to-use and interpret, encourages a straightforward and non-

arbitrary customization that fits all domains.  

 
7.2 Summary of Work 

 
 

Chapter 1 formulated the problem statement of this dissertation, and set the stage 

for the work performed in the greater body of this document. Chapters 2 and 3 served as 

empirical evidence that the problem statement is indeed an issue in the field. Specifically, 

Chapter 2 revealed that modern QA methods support developer intuition, and Chapter 3 

revealed that out-of-the-box implementations of state-of-the-art tools provided differing 

results on what is considered good software quality. These two results laid the 

groundwork for the larger body of work presented in this dissertation.  

Chapter 5 illustrates the results from a presentation [63] to the greater empirical 

software engineering community at the International Doctoral Symposium on Empirical 

Software Engineering (IDoESE’15), of a proposed plan of action to address a clear gap in 

the research. This plan entailed exploring behavioral deviations in the context of design 

pattern evolution, so that QA techniques can be advanced further, to ultimately supply 

practitioners and managers with more advanced and useful techniques to monitor and act 

on software QA. The feedback we received was that our four goals were very ambitious, 

and it was suggested we remove the fourth goal pertaining to prediction of behavioral 

deviations, which we elected to do. Yet it was agreed upon that such a plan would 

provide significant value to the field. 
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Chapter 6, which is based on a publication [83] at the International Conference on 

Software Reuse (ICSR’19) conference, and a work-in-progress submission to the IEEE 

Transactions on Software Engineering, presented the results from the remaining two 

research goals. These goals are paraphrased as: (1) “investigation of design pattern 

instances for the purpose of identifying and characterizing behavioral grime”, and (2) 

“quantify the impact of behavioral grime on quality and TD”. To address the first goal, 

we constructed a taxonomy of design pattern behavioral grime that considers all known 

forms of behavioral grime, and is used as a complement to existing structural taxonomies. 

We then evaluated the relationship between behavioral grime and structural grime, to 

illustrate how the two forms of analysis can complement one another. We found that 

strong relationships exists between five pairs of structural and behavioral grime, 

specifically TEER/PEE, PEER/TEE, PEAO/PI, PEAO/TEA, and PEAO/TI. To address 

the second goal, we extended an existing state-of-the-art operational quality model to 

incorporate model-based behavioral issues, and we used the extended model to evaluate 

the relationship between behavioral grime and quality and TD. We found that the 

presence of behavioral grime has a strong negative correlation with system quality, and a 

strong negative correlation with Maintainability, which serves as a surrogate 

measurement to TD.   

 
7.3 Contributions 

 
 

The contributions of this body of work are the following: 

1. Identification of model-based behavioral deviations in code. 
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2. Classification of model-based behavioral deviations in code into a 

taxonomy. 

3. Comparison to existing structural models to reveal how behavioral 

analysis can complement structural analysis. 

4. Extension of an existing state-of-the-art quality measurement model to 

incorporate model-based behavioral deviations. 

5. Evaluation of the relationship between model-based behavioral deviations 

and system quality and TD. 

 
7.4 Future Work 

 
 
 Because this work marks the beginning of the exploration of a new phenomenon, 

there are many routes for future work to extend this work. First, expanding upon the 

behavioral grime taxonomy would be a valuable prospect. This would require a combined 

effort of in-vitro and in-vivo work, where the in-vitro work represents the possible or 

theoretical forms of behavioral grime, and the in-vivo work validates that such a form of 

behavioral grime exists in the real-world. We were not able to conceive of additional 

forms of behavioral grime when completing this work, but that does not mean additional 

forms of behavioral grime do not exist in software systems. If additional forms of 

behavioral grime are discovered, subjecting them to the same process as presented herein 

would be helpful for generating a deeper understanding of them. Specifically, this would 

entail characterizing their forms in an extended taxonomy, and evaluating them with 

respect to quality and TD. 
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 A second form of future work entails expanding on the projects under analysis. 

The behavioral grime work presented in this dissertation features ten Java project, and 20 

versions of each project. However, this sample is not representative of the entire 

population of software project, so our ability to generalize is limited. Performing 

replication studies on more projects would build on the results from this study, which 

would increase understanding of this field. 

 A third outlet of future work involves exploring more design pattern types for 

behavioral grime. The work in Chapter 6 considers only seven pattern types, which were 

selected because they were the most populous pattern types reported from the design 

pattern detection tool we used [75]. We found numerous forms of behavioral grime 

across six of the seven pattern types, with the exception of the Observer pattern, though 

we only identified one pattern instance evolution of the Observer pattern. Expanding on 

the pattern types will help identify the extent of behavioral grime. 

 
7.5 Conclusion 

 
 
 This body of work encompasses the work performed to fulfill the requirements of 

the Doctor of Philosophy degree. Herein, we identified a gap in the research field 

pertaining to software quality assurance. Chapters 2 and 3 served as empirical evidence 

such a gap exists. Chapter 5 proposed a plan to explore the gap, which was vetted by the 

empirical software engineering research community as being a valuable contribution to 

the field. Chapter 6 completed the proposed contribution, resulting in the identification, 

classification, and evaluation of model-based behavioral deviations in software. 
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Figure 6.16a Our rankings for the Properties for our implementation of the QATCH 
[6] model. Quality Characteristics are shown on the left side of each line, and the 
Property's ranked importance is shown on top of each line. Tick lines indicate when 
multiple Measurements share the same importance. 



188 
 

 

  

 
 
Figure 6.16b Our rankings for the Properties for our implementation of the 
QATCH [6] model. Quality Characteristics are shown on the left side of each 
line, and the Property's ranked importance is shown on top of each line. Tick 
lines indicate when multiple Measurements share the same importance. 
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Figure 6.17 Our rankings for the Characteristics for our implementation 
of the QATCH [6] model. Quality is shown on the left side of each line, 
and the Characteristic's ranked importance is shown on top of each line. 


