
AN EXTENSIBLE, HIERARCHICAL ARCHITECTURE FOR ANALYSIS OF

SOFTWARE QUALITY ASSURANCE

by

David Mark Rice

A thesis submitted in partial fulfillment
of the requirements for the degree

of

Master of Science

in

Computer Science

MONTANA STATE UNIVERSITY
Bozeman, Montana

(December, 2020)

©COPYRIGHT

by

David Mark Rice

(2021)

All Rights Reserved

ii

ACKNOWLEDGEMENTS

This thesis could not have been accomplished without the incredible support

and advice from my advisor, Clemente Izurieta. Your patience, management skills,

openness, and ideas has provided an incredible graduate school experience. Thank

you for all that you do.

I also thank my parents. Your love and support over all phases of my education

has not been forgotten. I would not be where I am now without your amazing support.

Finally, I thank my roommate, Richard, for listening to many of the ideas

surrounding this thesis and providing valuable ideas and conversations. Your ability

to listen and conceptualize ideas I was having trouble with helped direct many of the

routes this thesis took. Thank you.

iii

TABLE OF CONTENTS

1. INTRODUCTION ..1

1.1 Motivation ..2
1.2 Motivation Formalized: GQM...4
1.3 Contributions ..7

2. BACKGROUND... 10

2.1 Quality Modeling... 10
Quality Model Creation... 12
Using a Quality Model for Product Assessment... 12

2.2 Measurement... 13
Metrics and Findings... 13
Static Analysis Tools... 14

2.3 Benchmark Repositories and Utility Functions... 14
2.4 Quality Control Loop... 15

Continuous Integration .. 16
2.5 History of Quality Modeling ... 17

Early Contributions .. 17
Early ISO/IEC 9126 and 25010 Based Extensions 18
Modern Notable Contributions... 19
Potential Uses for Quality Modeling ... 20

2.6 Critiques of Quality Modeling... 21
2.7 Conclusions ... 24

3. SUPPORTING WORK ... 26

3.1 Quamoco .. 26
Terms and Definitions ... 26
Main Concepts.. 28
Mechanisms .. 30
Quality Assessment Process ... 31
Experimental Results .. 32
Quamoco Conclusions ... 33

Framework Concerns.. 34
3.2 QATCH .. 35

Terms and Definitions ... 35
Main Concepts.. 36
Mechanisms .. 37
Quality Assessment Process ... 39

iv

TABLE OF CONTENTS–CONTINUED

Experimental Results .. 39
QATCH Conclusions ... 40

3.3 Conclusions ... 41
What do the Numbers Mean? .. 42
A Platform for Quality Modeling Research ... 42

4. PIQUE SYSTEM DESIGN AND TECHNICAL DETAILS 44

4.1 System Design... 46
High-level View... 46
Model Terms and Definitions ... 48
Quality Model Description... 50
Quality Model .. 52
Components ... 52

Model ... 54
Analysis .. 56
Calibration.. 57
Evaluation... 57
Runner ... 59

Connecting Tools .. 60
4.2 Default Mechanisms... 60

Normalization Functions .. 61
Utility Functions and the Benchmark Repository 61
Subjective Factor Weighting ... 63
Model Node Evaluation Functions .. 65

4.3 Overriding Mechanisms .. 66
Normalization Functions.. 67
Utility Functions... 67
Model Node Evaluation Functions.. 67
Subjective Factor Weighting .. 68
Benchmark Methodology ... 68

4.4 Model Derivation Process... 69
4.5 Product Assessment Process... 70

5. PIQUE OPERATIONALIZED: NEW MODELS; NEW TOOLS 73

5.1 Introduction .. 73
5.2 Deriving and Using a C# Quality Model... 74

A C# Quality Model Description... 75
Integrating Static Analysis Tools.. 78

v

TABLE OF CONTENTS–CONTINUED

Building a Benchmark Repository .. 79
Filling in Comparison Matrices .. 79
Running Derivation and Assessment... 80

5.3 A C# Security Model .. 81
Model Overview.. 83
Model Design.. 84

5.4 Conclusion .. 89

6. TEST CASES... 90

6.1 Introduction .. 90
6.2 Test Designs.. 92
6.3 Test Motivations.. 94
6.4 Model Construction and Implementation Effort Tests 94

TC-01: Derive a C# Model Using Default Mechanisms 94
TC-02: Derive a C# Model Using Modified Mechanisms 96

TC-02A: Modified Normalizer... 96
TC-02B: Modified Utility Function ... 98
TC-02C: Factor Weighting Modification .. 101
TC-02D: Modified Evaluation Function ... 103

TC-03: Operationalize a C# Model ... 105
TC-04: Practitioner Interaction Effort .. 107
TC-05: External System Integration... 109

6.5 Model Understandability Tests ... 111
TC-06: Investigate Model Output Accessability 111

6.6 Model Assessment Result Validity Tests .. 114
TC-07: Introduce In Vitro Product Changes... 114

TC-07A: Inject Flaws... 117
TC-07B: Inject Fixes ... 118
TC-07C: Modify Subjectivity ... 120

TC-08: Quality Output Trustability ... 123
6.7 Summary of Results... 125

7. DISCUSSION ... 128

7.1 Goal 01: The Research Perspective ... 128
Model Generation Effort.. 129
Model Generation Effort (Modified Mechanisms)..................................... 131
Model Operationalization Effort... 134
Model Evaluation Exposure ... 136

vi

TABLE OF CONTENTS–CONTINUED

Model Validity .. 141
Goal 01 Conclusions .. 142

7.2 Goal 02: The Industry Perspective.. 143
Model Tuning Expense .. 143
Assessment Integration Acceptability ... 145
Trust in Assessment Values.. 146
Goal 02 Conclusions .. 148

8. THREATS TO VALIDITY.. 150

8.1 Internal Validity .. 150
8.2 External Validity ... 151
8.3 Construct Validity ... 152

9. CONCLUSION... 154

REFERENCES CITED.. 157

APPENDICES .. 162

APPENDIX A : C# Quality Model Description .. 163
APPENDIX B : C# Operationalized Model: Product Factor Descriptions 173
APPENDIX C : PIQUE Tool Integration Technical Document..................... 175
APPENDIX D : C# Benchmark Repository Information 179
APPENDIX E : C# Operationalized Model: Comparison Matrices 183
E.1 Quality Aspect to TQI layer... 184
E.2 Product Factors to Quality Aspects layer .. 184
APPENDIX F : C# Operationalized Model: Derived Weights 188
F.1 Derived Factor Incoming Weight Values .. 189
APPENDIX G : C# Operationalized Model: Full Model Data 190
APPENDIX H : The Quamoco Meta Model UML 206

vii

LIST OF TABLES

Table Page

3.1 Quamoco base model results versus expert rankings [42] 33

3.2 QATCH model results versus Quamoco and expert
rankings [37] ... 40

3.3 QATCH vs Quamoco scoring of the same products
[42] [37] .. 42

4.1 PIQUE design goals .. 44

4.2 PIQUE quality model configuration field descriptions 51

4.3 Comparison matrix for the quality aspect layer 64

4.4 Comparison matrix for the product factors in con-
text of portability ... 64

4.5 Quality aspects → TQI derived weights.. 65

4.6 Product factors → Portability derived weights 65

5.1 TQI Comparison matrix from practitioner interaction 80

5.2 CWE categories to factor mappings.. 85

6.1 Effort Metrics ... 91

6.2 Quality Assessment Metrics (boolean values) 92

6.3 Design Metrics .. 92

6.4 Subjective Metrics (boolean values).. 92

6.5 Requirement Metrics (boolean values) .. 92

6.6 Test Case Associations .. 93

6.7 TC-01 metric results ... 95

6.8 TC-02 default mechanisms... 97

6.9 TC-02A normalization modification.. 97

6.10 TC-02A Format Smells thresholds results ... 99

6.11 TC-02A metric result .. 99

viii

LIST OF TABLES–CONTINUED

Table Page

6.12 TC-02B utility function modification .. 100

6.13 TC-02B utility function results .. 101

6.14 TC-02B metric result .. 101

6.15 TC-02C factor weighting modification .. 102

6.16 TC-02C factor weighting results ... 102

6.17 TC-02C metric result .. 103

6.18 TC-02D evaluation strategy modification.. 104

6.19 TC-02D measure node result.. 105

6.20 TC-02D metric result .. 105

6.21 TC-03 assessment results ... 107

6.22 TC-03 metric results ... 107

6.23 TC-04 comparison matrix result... 108

6.24 TC-04 metric result... 109

6.25 TC-05 metric results ... 111

6.26 PIQUE output exposure test.. 112

6.27 TC-07 control assessment values .. 115

6.27 TC-07 control assessment values .. 116

6.28 TC-07A node values after introducing flaws 117

6.28 TC-07A node values after introducing flaws 118

6.29 TC-07A metric result .. 118

6.30 TC-07B node values after fixing a flaw ... 119

6.30 TC-07B node values after fixing a flaw ... 120

6.31 TC-07B metric result .. 120

6.32 TC-07C TQI-quality aspect comparison matrix (control) 121

ix

LIST OF TABLES–CONTINUED

Table Page

6.33 TC-07C TQI-quality aspect comparison matrix (mod-
ified environment) ... 122

6.34 TC-07C quality evaluations given different AHP
security preferences ... 122

6.35 Commit histories of subjectively perceived improvement.................. 124

6.36 TC-08 metric result... 124

6.37 Effort Metrics ... 125

6.37 Effort Metrics ... 126

6.38 Quality Assessment Metrics ... 126

6.39 Design Metrics .. 126

6.40 Practitioner Subjectivity Metric ... 127

6.41 Requirement Metrics ... 127

7.1 Q01-01 metrics.. 130

7.2 Q01-02 metrics.. 132

7.3 Q01-03 metric ... 134

7.4 Q01-04 metric ... 137

7.5 PIQUE output exposure test.. 138

7.6 Q01-05 metrics.. 141

7.7 Q02-01 metrics.. 144

7.8 Q02-02 metrics.. 146

7.9 Commit histories of subjectively perceived improve-
ment. S-Quality: Starting Quality. F-Quality:
Finish Quality. .. 147

7.10 Question 02-03 metric ... 147

D.1 C# Benchmark Repository Projects ... 180

E.1 TQI Comparison matrix from practitioner interaction 184

x

LIST OF TABLES–CONTINUED

Table Page

E.2 Product factors → quality aspect matrix in the
context of compatibility... 185

E.3 Product factors → quality aspect matrix in the
context of maintainability .. 185

E.4 Product factors → quality aspect matrix in the
context of performance efficiency.. 185

E.5 Product factors → quality aspect matrix in the
context of portability... 186

E.6 Product factors → quality aspect matrix in the
context of reliability .. 186

E.7 Product factors → quality aspect matrix in the
context of security... 186

E.8 Product factors → quality aspect matrix in the
context of usability.. 187

xi

LIST OF FIGURES

Figure Page

1.1 Quality assessment of Lucy the dog for individual A............................3

1.2 Quality assessment of Lucy the dog for individual B............................3

2.1 ISO/IEC 25010. Source https://iso25000.com 11

2.2 Linearly decreasing utility function... 16

3.1 Quamoco quality assessment approach. Source: [40, p. 110] 27

3.2 Quamoco structural concepts. Source: [40, p. 105] 29

3.3 Quamoco meta model. Source: [41] .. 30

3.4 Qatch generic model instance. Source: [37, p. 363]............................. 36

4.1 PIQUE operation high-level component view 47

4.2 Quality model description: model view ... 53

4.3 A derived quality model. Utility value thresholds
are contrived for simplicity... 53

4.4 PIQUE component diagram... 54

4.5 PIQUE Model Component... 55

4.6 PIQUE Analysis Component.. 56

4.7 PIQUE Calibration Component ... 57

4.8 PIQUE Evaluation Component .. 58

4.9 PIQUE Runner Component ... 59

4.10 Comparison of two utility function strategies. 62

4.11 Model derivation process ... 69

4.12 Model assessment process .. 71

4.13 A model with values representing a product’s assess-
ment. Practical models will often have thousands of
diagnostics.. 72

5.1 C# quality model description factors ... 76

https://iso25000.com

xii

LIST OF FIGURES–CONTINUED

Figure Page

5.2 C# quality model description: measures and diagnostics 77

5.3 High-level view of the factors for a C# security
quality model.. 87

5.4 Path from CWE quality aspect to C# tool-supported
diagnostic. .. 88

H.1 Quamoco meta model. Source: [41] .. 207

xiii

ABSTRACT

As software becomes integrated into most aspects of life, a need to assess and
guarantee the quality of a software product is paramount. Poor software quality
can lead to traffic accidents, failure of life-saving devices, government destabilization,
and economic ruin. To assess software quality, quality researchers design quality
models. A common quality model will decompose quality concepts such as “total
quality”, “maintainability”, and “confidentiality” into a hierarchy that can eventually
be linked to specific lines of code in a software system. However, a problem persists in
the domain of quality modeling: quality assessment through use of quality models is
not finding acceptance by industry practitioners. This thesis reviews the weaknesses
of modern modeling attempts and aims to improve the processes surrounding quality
assessment from the perspective of both researchers and academic practitioners.

The analysis uses the Goal/Question/Metric paradigm. Two closely related
goals are presented that aim to analyze a process of generating, validating, and
operationalizing quality models for the purpose of improvement with respect to cost,
experimentative capability, collaborative opportunity, and acceptability. A system
is designed, PIQUE, that provides functionality to generate experimental quality
models. Test cases and exercises are run on the models generated by PIQUE to
supply metric data used to answer the questions and goals.

The results show that–in the context of a PIQUE-generated quality model
compared to a similar non-PIQUE quality model–improvement can be achieved with
respect to development cost and experimentative capability. Clear improvement
was not found in the context of model operationalization difficulty and output
acceptability. Ultimately, partial achievement of both goals is realized. The work
concludes that the current problems in the domain of quality modeling can be
improved upon, and systems like PIQUE are a valuable approach toward that goal.

1

CHAPTER ONE

INTRODUCTION

Software development processes and design has evolved greatly from the early

years of assembly, FORTRAN, and LISP. As modern applications reach monolithic

sizes with millions of lines of code, hundreds of dependencies, and nuanced design

paradigms, the topic of the software quality begins to emerge. Quality, as it relates

to most artifacts of human creation, can quickly become a philosophical venture.

What makes a software product good? How does one measure the goodness of

a product? Is there a dogmatic, objective measure of software quality or is the very

nature of quality subjective?

Tackling these questions is becoming paramount in the domain of software

engineering where poor software quality can put lives or businesses at risk. Examples

of spectacular failures in space flight attempts with key software oversights as a

primary culprit are reviewed in an assessment of the role of software in aerospace

systems. The Ariane 501 launcher exploded due to errors in the internal reference

system software, the Mars Climate Orbiter exploded due to mishandling of distance

unit data types in the software, and the Titan IV B-32 missions ended in failure due

to “an inadequate software development, testing, and quality assurance process for

the Centaur upper state”. [28]

An oversight in a standardized encryption library caused the Heartbleed bug,

affecting 17.5% of trusted HTTPS websites. Encrypted information behind both

HTTPS and private VPNs were no longer safe and the financial implications were

monumental [44].

2

Software is quickly integrating into all aspects of life: automobiles, city

infrastructure, home automation, banking, education, government, national security,

and the list goes on. One can easily imagine the concerning implications of poor

software quality in many of these domains. How can one go about assuring that a

software product is good? What does “good” mean?

To go about defining quality and integrating its assessment into a development

environment, the use of quality models is a sensible choice. An overview of quality

modeling domain and history is given in chapter 2, but to introduce an intuitive notion

of how some of these models work, imagine two individuals interested in adopting a

dog whom are presented a Havanese1 named Lucy for their consideration.

Individual A has in mind that an ideal dog should be small, good with children,

and fluffy while individual B wants a guard dog with traits of high aggression and

strength. Both individuals are given a basic model as shown in figures 1.1 and 1.2

to help them decide if they should adopt or not. Note that the model values in the

bottom layer of nodes come from measures of the dog itself, but the weights of the

model–shown as values in the edges–come from the subjective quality value opinions

of each individual. Thus, as the model evaluates upwards, the total quality of the

same dog is different depending on the individual.

1.1 Motivation

While many good attempts have been made to assess the quality of a software

product using quality models, the values generated leave a sense of unease and

distrust by development teams [42] [43]. The field of software quality modeling is still

young, leaving the generated quality values often misrepresented, misunderstood, and

1A Havanese is a small, friendly family dog known for their especially soft, silky double coat.

3

Figure 1.1: Quality assessment of Lucy the dog for individual A.

Figure 1.2: Quality assessment of Lucy the dog for individual B.

lacking academic rigor to carry meaning. Furthermore, philosophical, industrial, and

academic concerns arise during use of quality modeling approaches leading to topics

worth addressing.

Philosophically, this thesis argues that the definition of “good” should be made in

the eye of the stakeholder, and it should accommodate frequent redefining as company

priorities and values evolve over time. Dogmatic definitions of absolute quality lead

to non-pragmatic and incorrect assessments.

4

Industrially, the results of quality model assessment should be easy to understand

at all layers. It should not require an in-house quality modeling expert to use and

interpret. It should not be expensive to use for time, resources, or budget. It should

integrate into the development continuous integration pipeline.

Academically, the derivation of a quality model should be as automated as

possible. A platform should be in place to allow researchers to spend their time

evaluating if a model is effective rather than building the model itself. The domain

of modern programming languages and code analysis tools2 are continually changing,

so the platform should facilitate easy addition or removal of tools, their findings,

and language support. Finally, to accommodate communication and collaboration,

quality models should follow a general structure and use common terms.

1.2 Motivation Formalized: GQM

To formalize the purpose of this thesis and provide a road map for the following

chapters, the Goal/Question/Metric paradigm as presented by [6] is used.

Goals Two closely related goals are presented:

G01: Analyze a process of generating, validating, and operationalizing quality

models for the purpose of improvement with respect to effort investment,

experimentation, and collaborative opportunity from the point of view of quality

model researchers in the context of static software system analysis.

G02: Analyze a process of generating and operationalizing quality models for

the purpose of improvement with respect to cost investment and acceptability

2In software quality modeling, these tools are most often static analysis tools. They are discussed
in further detail in chapter 2.2.

5

from the point of view of software development practitioners in the context of

static software system analysis.

The definition of a quality model is evaluated in chapter 2 while key revelations

about identified issues with the current state of quality models are discussed in chapter

3. The goals distinguish between the point of view of a researcher and the point of

view of a development practitioner due to an important pragmatic schism: there is a

difference between a good quality model and a good quality model that practitioners

also trust and want to use.

Questions Regarding goal G01, the following questions are asked:

Q01-01: How much effort does it take to generate a model using default

mechanisms?

Q01-02: How much effort does it take to generate a model using modified

mechanisms?

Q01-03: How much effort does it take to operationalize a model?

Q01-04: Do the models produced facilitate ease of evaluation by researchers?

Q01-05: Are the models produced valid?

For goal G02, similar questions are asked; however, they take the industry’s

perspective:

Q02-01: Is it expensive to tune a model to a company’s needs?

Q02-02: How acceptable is it to integrate quality model assessment into an

external, continuous integration system?

Q02-03: Can quality models be used such that their output values are trusted

by practitioners?

6

Metrics Due to the similar nature of both goals, a variety of metrics can apply to

answering both collections of questions.3

Effort Metrics

M01: Man-hours taken to install PIQUE as a library resource.

M02: Man-hours taken to connect static analysis tools to PIQUE.

M03: Man-hours taken to design a quality model description .json file.

M04: Man-hours taken to prepare a benchmark repository.

M05: Man-hours taken to modify a default normalization function.

M06: Man-hours taken to modify a default utility function.

M07: Man-hours taken to modify a default weighting function.

M08: Man-hours taken to modify a default evaluation function.

M09: Man-hours taken to operationalize a derived quality model.

M10: Time taken to run model derivation (benchmark repo size = 44).

M11: Time taken to run system quality assessment.

M12: Time taken by a practitioner to express subjective quality definitions.

Quality Assessment Metrics

M13: The change in quality assessment score after introducing flaws.

M14: The change in quality assessment score after introducing improvements.

3Some terms used by these metrics are defined in future chapters.

7

M15: The change in quality assessment score after modifying subjective quality

opinion.

Design Metrics

M16: Model output exposure.

M17: Number of external dependencies needed for actualization.

M18: [True | False] Failure of assessment does not interfere with other system

processes

Subjective Metrics

M19: [True | False] The slope of assessed values over time matches practitioner

opinion.

Requirement Metrics

M20: [True | False] The platform is open source.

1.3 Contributions

From a software engineering product point of view, this thesis presents a

platform, PIQUE,4 designed to facilitate a researcher’s ability to quickly generate

experimental quality models that are easy to operationalize. This platform serves

as the catalyst to garner metrics, answer questions, and ultimately achieve the goals

mentioned in section 1.2. The primary contributions are:

� Provision of a supported, open-source platform capable of generating experi-

mental quality models using a language agnostic approach.

4“A Platform for Investigative software Quality Understanding and Evaluation”

8

� Walk-through of generation of an ISO/IEC 25010 based C# quality model from

start to finish.

� Demonstration of using the platform to generate a quality model capable of

adaption to subjective quality opinion.

� Demonstration of using the platform to generate a potential novel, security-

focused quality model.

� Feedback from industry practitioners regarding absolute quality values com-

pared to relative quality values.

� Validation of a C# model generated by the platform through in vivo and in

vitro test cases.

� Operationalization of a model generated by the platform into a real-world

system as a part of a continuous integration pipeline.

� Analysis of the platform’s capabilities with respect to improvement from the

context of quality model researchers.

� Analysis of the platform’s capabilities with respect to improvement from the

context of industry application.

This thesis is organized as follows. First, the fundamental concepts backing

quality assessment and a history of quality modeling attempts are given in chapter

2. Two notable quality assessment attempts, Quamoco and QATCH, are reviewed

in detail in chapter 3. These chapters are necessary, not only to build the required

technical knowledge needed to understand the mechanisms of PIQUE, but also to

understand the elasticity required by PIQUE’s design to facilitate experimental design

in quality modeling.

9

Next, a technical review of the design and use of PIQUE is given in chapter

4. The chapter presents a language-agnostic system that bears the load of all things

related to quality model derivation and operationalization and sets the mechanisms

necessary to achieve the research goals.

Chapter 5 presents a language-specific quality model instantiation of PIQUE.

Specifically, this is an ISO/IEC 25010 based C# quality model with full tool support

for operationalization. Test cases are run on the model to generate data to support

the GQM metrics. This model is used to assess the quality of lab-designed systems

for a variety of test cases which in turn provide data for the GQM metrics. A

second, security-focused, quality model is also presented, but not operationalized.

The security model is niche, complex, and expresses the capability of PIQUE to

support experimental systems, but also shows the need for further tool support before

some models can be operationalized.

Finally, the tests, analysis, and discussion of the goals, questions, and metrics

presented are given in chapters 6 and 7 followed by a review of the threats to validity

and final conclusions in chapters 8 and 9.

10

CHAPTER TWO

BACKGROUND

2.1 Quality Modeling

Quality modeling has a history reaching back to the 1970’s [7], yet it remains

a relatively new area of study in software engineering. Furthermore, the output

from quality model assessment remains distrusted in industry [43]. Given this thesis

will present a quality modeling platform whose processes will be assessed for the

purpose of improvement, an understanding of previous quality modeling attempts–

their successes, failures, and design decisions–becomes important.

Purpose Before expressing how quality modeling works, it is valuable to understand

its common purposes and intended uses. In a publication presenting an operational-

ized product quality model the authors aptly say,

“Software quality models tackle the issues [of bad software economic

impact, failures of software, increased maintenance costs, high resource

consumption, long test cycles, and waiting times for users] by providing

a systematic approach for modeling quality requirements, analyzing and

monitoring quality, and directing quality improvement measures. They

thus allow ensuring quality early in the development process.” [40]

In other words, the purpose of quality modeling can center around pragmatic goals

such as quality improvement, quality assessment, and evaluating the financial state or

implications of the system at hand. Quality improvement and assessment is driven by

having a way to identify the “good” and “bad” parts of a system and monitoring the

addition or removal of these parts over time. A system’s financial state or implications

11

can refer to additional fiscal costs resulting from poor quality in the system. Common

terms used with financial quality evaluation are remediation costs [27] and technical

debt [9] [21] [24].

Domain Quality reveals itself in numerous domains in software engineering. Code

quality, product quality-in-use, and process quality all need their own methods for

quality assessment. This thesis focuses strictly on the domain of static code quality.

Quality Taxonomy in Software Engineering Assigning a hierarchial system

to quality classifications has a long history of attempts as discussed later in this

chapter; however, ISO/IEC JTC 11 [14] likely provides the best modern starting

point for decomposing the high level concepts of quality. The ISO/IEC 25010

model decomposes software product quality in to eight characteristics and 31 sub-

characteristics as shown in Figure 2.1.

Figure 2.1: ISO/IEC 25010. Source https://iso25000.com

Note that the taxonomy of Figure 2.1 remains at an abstract level of quality

and does not offer concrete ways to measure its decompositions. Quality modeling

often looks to extend high level taxonomies presented by standards such as ISO/IEC

1International Organization for Standardization and the International Electrotechnical Commis-
sion Joint Technical Committee.

https://iso25000.com

12

and attach methods of measurement and evaluation. The quality assessment process

therefore has two high-level components: the creation of a quality model and the use

of that quality model for product assessment.

Quality Model Creation

While many unique approaches exist for the design of a quality model and its

instantiation, a common procedure used throughout this thesis takes a top-down

approach as follows:

1. Decide the top node: the quality concept under evaluation; for example, total

software quality, remediation cost, or maintainability.

2. Decompose the top node into a meaningful taxonomy.

3. Once the hierarchy decomposes into concepts low enough to be measured, attach

measurement tools to allow these nodes to contain numerical values from the

product under evaluation.

4. Define how these leaf node values aggregate to the top node evaluation.

Using a Quality Model for Product Assessment

After a model is defined–likely with nodes, weighted edges, and tools for product

measurement–numerical quality values can be obtained by running the quality model

on a software product. This process involves running the tools defined in the quality

model on the product to obtain measurements, using those measurements to aggregate

node evaluations up the quality hierarchy tree, and ultimately calculating a numerical

assessment value of the product’s quality from the model’s root node value.

13

2.2 Measurement

A frequent point of confusion regarding quality assessment is understanding

how the real-word numerical values are obtained for the model to use at its

lowest layer. This component of quality assessment is accomplished through

measurement. Measurements come from one of two types, metrics or findings, and

these measurements are obtained through the use of static analysis tools, dynamic

analysis tools, or hand-entry.

Metrics and Findings

In the context of this thesis, metrics and findings are both numerical values

obtained by running a static analysis tool audit on a software product, but they

carry subtle differences.

Metrics Software metrics are evaluated through mathematical formulas backed

by academic rigor that describe product-state truths. For example, the metric

LoC (lines of code) evaluates to the number of lines of code of the product under

assessment. The metric coupling provides a numeric representation of the degree of

interdependence between software modules using a formula involving data parameters,

control parameters, and number of modules [38]. Metrics are calculated at all levels

of granularity–from single statements, to classes, design patterns [9], and complete

architectures.

Findings Findings, on the other hand, represent faulty or exemplary blocks of code.

Faulty lines of code can refer to code smells [30], program breaking flaws, or any

other negative influence a tool can be designed to detect. The numerical evaluations

of findings are often simply a count of the findings multiplied by a severity level.

14

For example, consider a locked instance finding found 10 times in the product under

assessment, and locked instance is labeled as having a severity level of 1 (low). The

value of this finding would then equal 10, likely additionally normalized by lines of

code. The approach used in this thesis takes a more nuanced and flexible approach

to finding evaluation functions as discussed in chapter 4.

Static Analysis Tools

Static analysis tools are external resources that audit the product under

assessment to retrieve metrics or finding data by parsing byte code or compiled

source code. By definition, static analysis tools do not measure dynamic aspects

such as network throughput.

Some languages, such as Java, have robust static analysis tool support with tens

of thousands of potential metrics or findings to detect. However, as languages become

less common or more proprietary, static analysis tool capabilities drop dramatically.

This can be a major weakness of quality assessment as a language-specific model can

only be as strong as the tools it can utilize, and writing one’s own tools or expanding

the ruleset of an existing tool can be an extremely time-consuming process.

2.3 Benchmark Repositories and Utility Functions

While static analysis tools do assess the product under evaluation and return

numerical values, these metrics values and findings lack meaning as individual values.

Some quality modeling attempts look to bring meaning and context to the goodness or

badness of these measurement values by using a collection of representative projects2

to express the expected range of any given measure.

2This collection is commonly called a benchmark repository

15

Consider a measure, Coupling, which can be directly represented by a metric also

named coupling following the formula given by [38]. The project under assessment

could return a value coupling = 0.70. While it is known that lower values represent

less coupling which is considered good, is coupling = 0.70 a low or high value? In

this example, a benchmark repository is used by obtaining the coupling value from a

large collection of other systems.3 The benchmark repository reveals that the lowest

coupling value found in its products was coupling = 0.72 and the highest value found

was coupling = 0.98.

A utility function representing coupling, such as the linear utility function shown

in Figure 2.2, is then generated using a min value of 0.72 and a max value of 0.98. To

use the function, input the coupling value found from the product under assessment

to the x-axis and return the y-axis value according to the utility function curve

represented by the solid line. For the input value of coupling = 0.70, the utility

function returns a value of 1.0 meaning the product under assessment has very good

coupling.4 If the input value was coupling = 0.85, the returned utility value would

be 0.50, and if coupling = 0.99, the returned utility value would be 0.0, implying the

coupling is as bad as it can be with respect to the values found in the benchmark

repository.

2.4 Quality Control Loop

For a quality model to achieve its purpose in practice, implementation of a

quality control loop should be developed. The quality control loop and quality

improvement paradigm presented by [11] and [12] state that continuous quality

3The benchmark repository size generally ranges between 25 to 100 products, but needs to contain
at least 1.3 million lines of code according to a study by [37].

4In the coupling formula given by [38] the lowest possible coupling–a module with a single input
and output–is 0.67.

16

Figure 2.2: Linearly decreasing utility function

assessment during the development phase can assist in detecting and fixing quality

problems early. The earlier a problem is detected the less expensive it is to fix.

Additionally, consistent quality feedback can help developers recognize their good

and bad implementation habits. In order to accomplish this, as many components as

possible should be automated, and assessment results need to be easily understood.

Continuous Integration

Continuous integration is a development cycle involving code integration with

a central repository. In general cases, new code goes through an automated pipeline

of test suites, quality validation, and automated deployment. Modern solutions for

continuous integration and deployment are becoming widely adopted in industry with

tools such as Microsoft Azure DevOps5, GitLab CI/CD6, and Jenkins7.

Using continuous integration as the technological driver for the quality control

5https://azure.microsoft.com/
6https://gitlab.com/
7https://jenkins.io/

https://azure.microsoft.com/
https://gitlab.com/
https://jenkins.io/

17

loop is a clear solution. This will fulfill the pragmatic element of quality modeling by

providing awareness in changes in quality as the changes happen and driving action

items for the maintenance of quality priorities.

2.5 History of Quality Modeling

A quality model may or may not be a hierarchial decomposition of characteristics

of quality. This section reviews historical and notable quality models covering a wide

range of conceptual designs and paradigms. Two recent quality model approaches,

Quamoco and QATCH, are the primary influences for the work of this thesis and are

described in detail in chapter 3.

Early Contributions

Boehm [7] and Grady [16] present some of the earliest quality model approaches

dating back to the 1970s-1980s. Both present a hierarchial approach using terms

similar to what is seen in modern ISO/IEC decompositions such as maintainability,

reliability, functionality, usability, and supportability. These foundational models

suggest that hierarchial decomposition is an effective and intuitive way to construct

quality models; however, these early attempts do not have enough low-level measure-

ment support to produce meaningful quality values.

Dromey [13] presents a quality model that uses a hierarchy based on structural

concepts of a system (class, function, object) instead of quality concepts (maintain-

ability, reliability, usability). Of particular interest is his direct linking of a metric to

a high-level quality concept by measuring the maintainability of a structural concept

by a maintainability index metric. This begs the question if direct measurement of a

high-level quality concept violates the construct validity of a quality measurement. If

not, then quality models can be constructed with very few layers with their metrics

18

directly representing their quality.

Early ISO/IEC 9126 and 25010 Based Extensions

The software quality taxonomy provided by ISO/IEC from 9126 and onward [14]

became the accepted structural starting point for most quality modeling attempts.

Of particular focus are eight subcharacteristics.

� Functional Suitability

� Performance Efficiency

� Compatibility

� Usability

� Reliability

� Security

� Maintainability

� Portability

The ISO/IEC taxonomy presented represents only the top half of what is needed to

measure quality, thus it is the job of quality modelers to extend the model into parts

that can be meaningfully measured.

In 1996, Van Zeist [39] presents an extension of the ISO 9126 model using a

measurable concept called indicators. A useful measure, average learning time, is

also provided. In 2003, Franch [15] presents a variety of interesting metrics in an

attempt to use quality models to assess the quality of software package selection.

Samoladas [35] presents a useful extension of ISO 9126 in 2008 specifically focused on

open source software evaluation. This paper presents the transformation of numerical

19

quality values into an ordinal scale representation, a method many modern approaches

use as well.

While these models continue to expand the field of research in quality modeling,

a critique lies in their use of metrics for low-level measurements. In light of the

granularity and scope these quality models need to represent, the representation and

strength metrics of their associated low-level model nodes often leaves much to be

doubted.

Modern Notable Contributions

The SQUID project [25] from 1997 is an ISO/IEC 9126 based approach to

quality model definitions. The project takes a holistic approach to quality modeling,

showing the need for a meta model to guide quality model construction. Additionally,

it presents a componentized quality model specifically designed to customize to

individual project needs.

The work of Bansiya and Davis [4] in 2002 continues the early 1995 work of

Dromey [13], but presents a quality model specifically focused on object oriented

systems. The work also presents a significant addition of metrics and tool support.

The SIG maintainability model [17] in 2007 introduces a model that does not use

the full ISO/IEC quality taxonomy at its highest level. Instead, only a maintainability

model is presented. Subcharacteristics for maintainability are compared against five

source code properties: volume, complexity per unit, duplication, unit size, and unit

testing.

The SQUALE model and framework [31] from 2009 is an ISO/IEC 9126 based

quality model with notable focus put on usefulness to practitioners in industry.

SQUALE extends ISO/IEC 9126 through a more granular middle layer using a

concept called practices. Along with providing further metrics for low level evaluation,

20

the framework offers useful tool support and visualization options. The quality model

used, however, does not modularize and does not offer a strong connection from low

quality scores to the low-level code issues responsible.

The similarly named SQALE8 model [27] from 2010 takes a different approach

to quality modeling by linking quality to technical debt values based on remediation

costs. The model is structured in ranked layers using calculated values of testability,

reliability, changeability, efficiency, maintainability, and reusability. A modern pop-

ular framework and continuous integration quality monitoring service, SonarQube,9

uses SQALE as its underlying quality model for assessment.

Potential Uses for Quality Modeling

Given that the concept of quality is a remarkably abstract concept that can

apply to nearly anything, the use of modeling quality concepts can go far beyond

the ISO/IEC based examples presented so far. For example, technical debt [3] [8]

and software architecture quality often go hand-in-hand. An experiment by Izurieta

et al. [23] shows forms of technical debt management occurring across a variety of

software development phases. Given a strong connection between the management

of technical debt, quality of a system, and the need to involve both in a quality

control loop, the quality modeling concepts discussed in this paper could provide the

modeling concepts needed for tangential applications.

An analysis of security vulnerabilities detectable by static analysis tools that

associate with technical debt costs [22] aligns closely with software quality assurance

indicating important application of quality modeling techniques in the security

domain. Architectural quality assessment using measurements and prediction data–

8Software Quality Assessment based on Life cycle Expectations
9https://www.sonarqube.org/

https://www.sonarqube.org/

21

such as those presented in [33]–or introducing empirical measurement data–such as

how the number of developers can impact software quality [32]–also align with quality

assessment using modeling techniques.

2.6 Critiques of Quality Modeling

While the models discussed offer beneficial approaches and helpful contributions

to the domain of quality modeling, all models carry biases and flaws worthy of critique

and concern. One basic critique is the lack of operationalization of many of the models

due to lack of tool support or their implementation existing only for niche academic

purposes. At a high level, critiques fall into four categories: weak measurement,

over-design, output meaning, and practitioner distrust.

Weak measurement One of the more pressing issues with quality model research,

weak measurement refers to the low number of measurements supported by tools,

their lack of relevance, and the errors associated with their measurements [20].

Consider the SIG maintainability model [17]. SIG measures the characteristic

Changeability as a function of two metrics, complexity per unit and duplication,

where complexity per unit is evaluated using a slightly modified cyclomatic complexity

formula and duplication is evaluated as the percentage of all code that occurs more

than once in equal code blocks of at least six lines. The more complexity or duplication

there is, the lower the score is for changeability.

Two questions arise in this context: (1) are there more measures–such as tool-

based findings–that should also be considered when evaluating changeability, and (2)

how much influence should the values of the measures have on the evaluation score

of changeability? These concerns represent a threat to construct validity and become

especially apparent when attempting to use a quality model on a language with little

22

tool support. One quickly finds a situation where there are too few measures to assert

any quality value judgement with confidence.

Over-design Modern modeling attempts quickly fall into an issue of being too

complex. As modelers attempt to decompose high-level ISO/IEC quality concepts

into their subparts, a model can get out of control with too many layers, thousands

of nodes, and tens of thousands of functional connections. Additionally the design

of these models takes an unacceptably long time and lacks automation. As this

complexity builds, human understandability of the model’s mechanisms and the

meaning of its output becomes lost,10 and the model likely becomes over-fit or rife

with design errors.

A middle ground in design complexity exists but is difficult to achieve. As a

model becomes too complex, understandability is lost, but if the model is too minimal,

the granularity to map which measurements affect which quality concepts is lost.

Output meaning What do the numbers mean? When a quality assessment

value–for example, the maintainability node–returns 0.71, what does that actually

represent? Some quality model approaches translate ratio scale values into ordinal

scales such as using a Likert rating system or grade letters F - A. Even more nuanced,

some approaches use concepts like a benchmark repository to tune these ordinal

scales according to a repository of representatively good examples of quality, but

even then how can a stakeholder feel the benchmark repository accurately reflects

their perspective of good and bad quality values. One practitioner’s assessment score

of

maintainability = 0.71 = B+

10Models derived from machine learning heuristics often have this problem due to the black-box
nature of their internals.

23

may reflect a thoroughly satisfying state of the system while that state may be

completely unacceptable for another. These numerical or ordinal values are pointless

without context and hint that a quality value itself is inherently subjective and relative

only to the stakeholder.

An example of the lack of continuity and output meaning is shown in a study

comparing the output values of two popular software quality models, SQALE and

Quamoco, when assessing the same software products [19]. Evaluating the inter-rater

agreement between the two assessment approaches reveals output scores in remarkable

disagreement. The study concludes there is not yet enough consistency between

quality modeling approaches.

Beside the raw numerical meaning, the meaning of quality concepts such as

maintainability or usability can be brought under question. An evaluation of the

use and usefulness of the ISO/IEC 9126 standard is given by [1]. A key conclusion

from the study is that the standard is too ambiguous in high level meaning, and

is incomplete with measurement directives to be appropriate for quality assessment

when software may put lives or businesses at risk.

Practitioner distrust Any combination of the above critiques leads to a failure

in the pragmatic element of quality modeling: trust and beneficial use. Two surveys

conducted with active industry subjects [42] [43] reveal a complete rejection to use

preset quality models in their quality assessment. At a minimum, the models need

to be tuned to the stakeholder’s specific domain and conceptualization of quality;

however, even then there exists a distrust of the values produced by the quality

model.

24

2.7 Conclusions

Quality assessment through use of quality models is still a young field requiring

significantly more research and validation before finding wider adoption in industry.

A key struggle with quality modeling attempts has been effectively bridging the

gap between direct software measures and their impact on abstract quality concepts.

Operationalizing quality assessment is also historically difficult due to the academic

nature of the projects. The tool support for gathering metrics and findings data

leads nearly all experiments to only evaluating Java language projects, and the tools

themselves are often outdated and difficult to connect.

To pave the way forward, a foundational platform for research in quality

modeling is needed that addresses the problems of weak measurement, over-design,

meaning of output, and lack of trust with practitioners. The platform should facilitate

ease in experimental academic use and industrial operationalization through modular

design, simple input and output, easily understood internal mechanisms, awareness

of inherent quality subjectivity, compatibility with continuous integration, and the

ability to interface unknown future tools and languages.

To address academic rigor through a meta model and bridging the measures-

concepts gap, section 3.1 reviews a recent quality modeling approach, Quamoco,

which offers major steps towards these designs. Regarding practitioner trust and

restraining over-design, section 3.2 reviews the QATCH quality modeling approach:

a three-layer fully connected model which also offers a unique approach to injecting

stakeholder subjectivity into the model without requiring major time investment or

expert knowledge of the quality system.

The Quamoco and QATCH contributions are hybridized along with many new

25

contributions into the platform and focus of this thesis, PIQUE,11 in chapter 4.

PIQUE is used to generate experimental models in a relatively effortless manner

to use for test cases and metric data generation.

11Platform for Investigative software Quality Understanding and Evaluation

26

CHAPTER THREE

SUPPORTING WORK

The PIQUE framework presented in this thesis is inspired and supported by the

work of two recent quality model publications, Quamoco [10] [41] [40] and QATCH

[37]. This chapter reviews the design and mechanisms of each approach to build the

necessary technical knowledge for chapter 4.

3.1 Quamoco

The Quamoco project is specifically designed to bridge the gap between software

measurements and high level quality concepts. The authors directly state as their

research objective,

“Our aim was to develop and validate operationalized quality models for

software together with a quality assessment method and tool support to

provide the missing connections between generic descriptions of software

quality characteristics and specific software analysis and measurement

approaches.” [40]

Quamoco also includes a meta model for quality models [41], a generic and extendable

base model, a modularized model approach, an assessment method integrated with

the meta model, and benchmarking data for the base model.

Terms and Definitions

Quamoco has five main structural terms which follow the hierarchy shown in

Figure 3.1.

27

Figure 3.1: Quamoco quality assessment approach. Source: [40, p. 110]

Factor A factor is a high-level term which expresses a property of an entity such as

the “cohesion of classes” or the “portability of the product”. A factor is specialized

into a quality aspect or a product factor.

Quality Aspect A quality aspect is a factor that expresses abstract quality goals

such as the maintainability of the product. The quality decompositions given by

ISO/IEC 25010 in Figure 2.1 are quality aspects.

Product Factor A product factor is a factor that represents the attributes of parts

of the product such as the duplication of a source code part. Product factors at the

28

lowest level of the factor hierarchy must be concrete enough to be measured.

Measure A measure is a concrete definition of how a bottom-level product factor

can be quantified through product-level measurements. A measure must decompose

into something directly obtained by an instrument.

Instrument Instruments are the tools that audit and gather values from the

software product. They are the concrete realization of a bottom-level measure.

Main Concepts

Bridging the Gap To bridge the gap between product measurements and quality

aspects, Quamoco structures a relationship from product factors to quality aspects

called an impact. An impact is a functional relationship that formalizes how the value

of a product factor can translate into the value of a quality aspect. Because product

factors must eventually be concrete enough to represent a direct measurement, and

quality aspects express abstract concepts, this is an intuitive method to aggregate

measures to abstract concepts. A figure of the impact bridge between product factors

and quality aspects is shown in Figure 3.2.

Meta Model A quality meta model is a formal description of the elements and

interactions a quality model can have. The existence of a meta model is useful for

future quality modeling research and industry use of their actualization. It provides

a common language for communication and understanding as different modeling

approaches are attempted. Adherence to a meta model also allows confidence in

the model’s completeness and understandability if the meta model has been shown

to be complete and understandable.

29

Figure 3.2: Quamoco structural concepts. Source: [40, p. 105]

The Quamoco meta model presented in [26] [41] helps with the implementation

of quality models separate from the quality specification and quality evaluation

elements. The UML for the meta model is shown in Figure 3.3 where elements above

the horizontal line represent specification concepts and elements below the line are

evaluation concepts. Empirical validation of the quamoco meta model is given in [26],

showing the meta model as sufficiently general and satisfying in its understandability.

Modularity The final core concept of the Quamoco approach is its modularity. By

designing the model with modularity and inheritance in mind, common factors for

high-level concepts such as object-oriented or GUI can be moved to superclasses while

leaving language-specific implementation details to the child classes. This eliminated

duplication provides a common base of knowledge when considering factors for a given

model and simplifies validation and experimentation on niche models.

30

Figure 3.3: Quamoco meta model. Source: [41]

Mechanisms

Creation of a Quamoco model for use in product assessment, as shown in Figure

3.1, involves three inner mechanisms beyond simply defining a factor hierarchy and

connecting measurements with tools: normalization, use of a benchmark repository

for utility functions, and weighting of factor node incoming edges.1

1PIQUE implements these mechanisms as well with minor modifications, and the platform allows
for the mechanism’s functions to be overridden and modified (chapter 5).

31

Noramlization Quamoco normalizes by first defining a variety of bottom-layer

measures such as Lines of Code and Number of Classes and then introducing a parent

layer of normalized measures whose evaluation is defined by using the measure of

interest and dividing it by the appropriate normalization measure.

Utility Functions Quamoco applies benchmarked utility functions to each measure

directly used for evaluation of a bottom-level product factor. A simple increasing or

decreasing linear function–similar to the utility function explained in section 2.3–is

used on the measure against the benchmark data resulting in a value between [0.0, 0.1].

Factor Edge Weighting Numerical relative importance weighting is applied to

all product factor and quality aspect edges in the quality model hierarchy. Quamoco

assigns weights using human-gathered importance orderings run against the rank-

order centroid method [5]. These weights then evaluate up the factor hierarchy using

weighted summation.

Quality Assessment Process

Quamoco quality assessment follows a method similar to most ISO/IEC

hierarchal attempts using four main steps: measurement, evaluation, aggregation,

and interpretation. These steps follow the right-side application steps shown in Figure

3.1.

Measurement The tools are first run against the product and used as input to the

lowest level measurement quality model nodes. These values are used to start the

evaluation chain up the measurement node hierarchy where normalization and other

model-defined functions occur.

32

Evaluation The measure node values at the top of the measure hierarchy are

transformed by the benchmark utility functions and used as input by the product

factors at the bottom of the factor hierarchy. These product factors evaluate using

weighted sums of their associated measure nodes.

Aggregation Aggregated evaluation of all factors up the factor hierarchy occurs

using the edge weights provided by the model.

Interpretation Finally, the quality aspect ratio scale values need to be translated

into values that are meaningful for human interpretation. The Quamoco approach [40]

suggests mapping the values to an F - A grading scale. Any additional visualization

techniques should occur at this stage.

Experimental Results

The Quamoco team ran validation tests on an operationalized Quamoco quality

model by running experiments on the Quamoco base model against a variety of

Java projects [40]. The research questions focused on whether the assessment results

were valid, whether the model could be used to detect quality changes over time on

a singular project, and if practitioners could find value in the quality assessment

approach. The results were encouraging, and drove the decision for PIQUE to

structure its model designs in a similar manner.

To determine the validity of assessment results, the Quamoco team compared

how their model ranked five Java projects against expert judgement of the same five

projects. The results are shown in table 3.1. Despite one difference in ordering, the

Spearman’s rho correlation of the rank ordering is ρ = 0.9 and a significant positive

correlation is found.

33

Table 3.1: Quamoco base model results versus expert rankings [42]

Product LOC Quamoco Grade Quamoco Rank Expert Rank

Checkstyle 57,213 1.87 1 1

RSSOwl 82,258 3.14 2 3

Log4j 30,676 3.36 3 2

TV-browser 125,874 4.02 4 4

JabRef 96,749 5.47 5 5

The study evaluating trust in the model focused on perceived suitability

and technological acceptance by practitioners in software development. While the

questionnaires and interviews found the quality modeling approach more helpful to

their quality assessment needs than simply using ISO/IEC 25010 definitions, the

results were inconclusive regarding the validity of its output and whether the system

would be useful to adopt. This result is a driving factor in the work of PIQUE, which

prioritizes understandability and uses a different approach to interpretation of results.

Quamoco Conclusions

The work in the Quamoco project is a major stride forward in quality modeling

research and its use in industry. It shows that ISO/IEC standards are a good

starting point to interpret quality, but a model must extend the standard’s definitions.

In order to extend, a bridge is essential to connect measurements with abstract

concepts. Quamoco’s use of product factors impacting quality aspects is a good

approach to creating this bridge. The project also shows that modular design is

important to consider, and a quality meta model is useful for communication of

mutually understood terms.

The project does have a large body of future work and concerns to address. The

34

experiences over the three year development of the base model show that validation of

a model is an intensive and lengthy process due to the empirical and subjective nature

of quality. Futhermore, model designs will have frequent problems and inaccuracies

introduced over their development.

As a Quamoco model grows in size, the Quamoco model editor application

provided with the project becomes too slow or unresponsive. Quamoco models also

have a tendency to be too large and complex as shown by lack of understanding from

practitioners not versed in quality modeling concepts. Designing a large model is also

a long and arduous process. Given that it took the Quamoco team 23 people and 3

years, the authors conclude,

“We are not sure to what extent such effort can be expended in practical

settings.” [40]

The industry interactions also reveals the need for a quality modeling expert to

work with the stakeholder to correctly gather requirements and tune the model to their

needs. Many companies would be unwilling to make such an investment. Instead,

there should be a way to allow practitioners to communicate their quality expectations

and influence the model design without needing domain-specific knowledge of the

model.

Framework Concerns While the Quamoco base model, GUI quality model editor,

and wizard-based quality adaption tools provided by the framework are useful for

guided operationalization, interacting with the framework from a researcher’s point

of view is difficult and restrictive. This drives the motivation to provide a Quamoco

inspired platform that facilitates open source contribution and experimentation in

the domain of quality research. The system discussed in chapter 4 looks to provide

such a platform.

35

3.2 QATCH

QATCH, the Quality Assessment Tool CHain, is a quality modeling project from

2017 by a team of three researchers from the Aristotle University of Thessaloniki.

While the project does not follow a meta model description and lacks the validation

efforts seen in the Quamoco project, QATCH specifically focuses on an automated way

to derive quality models aware and responsive to the subjectivity of the stakeholder.

Additionally, the model approach is designed with simplicity and transparency in

mind. These two contributions warrant the model’s evaluation and understanding.

Terms and Definitions

A generic QATCH model instance is given in Figure 3.4 presenting three main

structural terms:

Characteristic A characteristic is defined as the abstract components of a system.

This matches intuitively with the quality aspects of the Quamoco meta model.

For example, the ISO/IEC 25010 components such as Security, Maintainability, or

Installability are characteristics.

Property QATCH defines a property the same way the SIG maintainability model

does: an inherent representational attribute of an object that can be directly

measured [17]. These measurements can be either metrics or tool-based findings.

A property generally refers to a property of source code such as volume, duplication,

or structuredness.

Measure A QATCH measure follows a similar definition to a Quamoco measure:

a concrete, quantified representation of tool’s audit results.

36

Figure 3.4: Qatch generic model instance. Source: [37, p. 363]

Main Concepts

Transparent, Understandable Model In order for a model to be trusted

and used in industry, the model itself must be easily understood by non-experts.

Understandability brings confidence which brings trust which brings use. The

QATCH team understands this and built their model requirements with the following

rules:

1. The model produced must not be derived from black box methods.2

2. The model must have only three layers.

3. Each property node is quantified by only one measure.

These design decisions are inspired from the same decisions used in [17]. While any

design decision has its strengths and weaknesses, the QATCH authors [37] argue that

2For example, machine learning techniques.

37

the benefit of comprehensibility and ease of extension their model brings outweighs

the loss of granularity brought by large, complex models.

Automated Subjectivity A concern from other quality modeling projects is the

time that must be invested with a stakeholder to tune the model to the client’s

subjective interpretation of quality. The QATCH project addresses this with a two-

fold approach: (1) Let the stakeholder express value judgements of quality concepts

using intuitive terms while not requiring technical knowledge of quality modeling. (2)

Integrate the value judgements into the model derivation process in an automated

fashion.

The analytical hierarchy process (AHP) [34] is a method of using pairwise

comparisons to derive a numeric ordering of importance. In the case of the

QATCH quality model, the objects of comparison are quality concepts such as the

characteristics Security, Maintainability, or Installability of system properties. The

authors argue AHP can be used to elicit the model’s weights because the quality

model is a hierarchy.

Because pairwise comparisons can be expressed with linguistic values–a is not

important compared to b–and it is more intuitive for a non-expert to compare two

values instead of rank-ordering every quality concept, QATCH’s use of AHP is a

unique and valuable approach to eliciting weights to represent subjective opinion.

The authors also present a fuzzy form of AHP that allows the practitioner to input

their feeling of uncertainty for any given pairwise comparison.

Mechanisms

Similar to the Quamoco mechanisms discussed previously, the internals of

QATCH need to address normalization, utility functions, and hierarchy edge

weighting.

38

Normalization QATCH distinguishes its normalization method depending on

whether the measure is of type metric or of type finding.3

As shown in equation 3.1, for any given metric, M , QATCH sums the value of

the metric at each class of the system, mi, times the lines of code of that class, LOCi,

and divides the sum by the total lines of code of the system, TLOC.

M =

∑
i=1miLOCi

TLOC
(3.1)

QATCH normalizes a finding according to the number of occurrences of that

finding weighted by its severities divided by the total lines of code.

Utility Functions Similar to Quamoco, QATCH uses benchmark repository data

to define the utility functions. However, unlike Quamoco, QATCH applies thresholds

with linear interpolation to the utility curve to achieve a more representative curve.4

Furthermore, QATCH takes advantage of its model’s requirement to have only one

measure per property node and evaluates the utility functions at the property level

instead of the measure level.

Hierarchy Edge Weighting QATCH uses the AHP or fuzzy-AHP process to

weight the edges of its characteristic and property hierarchy. During model creation,

the QATCH framework looks for a .xls file of manually-entered AHP values and

returns an accordingly weighted model.

3Metrics and findings are discussed in chapter 2.2.
4PIQUE uses this same approach as its default utility function, and the concept is discussed in

further detail in section 4.2.

39

Quality Assessment Process

Running a QATCH product assessment works similarly to a Quamoco assess-

ment and most other ISO/IEC quality model implementations using a four-step

process of measurement, evaluation, aggregation, and interpretation.

Measurement QATCH assessment calls the static analysis tools to gather mea-

surement data. The data (metrics or findings) are sent to the appropriate measure

nodes where normalization occurs.

Evaluation Using their connected measure node value as input, property nodes

evaluate to the utility function output.

Aggregation These property node values then aggregate up one layer to set the

values of the characteristic nodes using the weighted sums of their edges. The root

node aggregates the same way using the weighted sums of its characteristic children.

Interpretation Finally, the root node ratio scale value is given a one- to five-star

rating where one star is a value [0.0, 0.2) and five stars is a value (0.8, 1.0].

Experimental Results

To assess quality model result validity, the QATCH team ran an experiment

identical to the Quamoco validity experiment discussed previously. The same five

Java projects were evaluated using an operationalized QATCH model, the quality

score rankings of the five projects were compared against Quamoco’s ordering and

the experts’ judgement rankings. The results are shown in table 3.2. The statistical

study of [37] shows a perfect correlation between QATCH’s ranking and the experts’

40

Table 3.2: QATCH model results versus Quamoco and expert rankings [37]

Product QATCH score QATCH Rank Quamoco Rank Expert’s Rank

Checkstyle 0.57201 1 1 1

Log4j 0.47829 2 3 2

RSSOwl 0.47490 3 2 3

TV-browser 0.47466 4 4 4

JabRef 0.45239 5 5 5

ranking, and a significantly positive Spearman’s correlation of r = 0.9 between

QATCH and the Quamoco results.

QATCH Conclusions

The QATCH project offers many ideas and contributions worth integrating in

future quality modeling research. The use of AHP [34] is an especially strong idea that

allows non-technical practitioners to use non-technical language to inject subjectivity

into a quality model without much time or effort. Requiring a model to have only

three layers is a good alternative given that one of the biggest critiques of other

models is practitioner understandability and trust; however, only three layers may be

too restrictive on model effectiveness. More research is needed in this area. The use

of thresholds and linear interpolation to the benchmarked utility functions is also a

valuable way to add more precision without significant loss of understandability.

System Construct and Mechanisms Concerns Concerns do arise regarding

the internal mechanisms and construction of QATCH. Unlike Quamoco, The QATCH

model does not intentionally adhere to a meta model, and it was not designed with

modularity in mind. This necessitates more validation of the project and also causes

41

experimentation to be more difficult due to the lack of modular structure.

While it is possible to extend the model with more properties or tools, many

internal parts of the measurement and evaluation process are directly tied to two Java

tools, CKJM5 and PMD6, and parts of the model derivation process are hard-coded

to array index references. While the project works well for out-of-the-box assessment

and basic experimentation, the design does not facilitate major extensions to the

system such as language support beyond Java.

3.3 Conclusions

Quamoco [40] and QATCH [37] are two modern quality assessment attempts.

They correlate with each other and experts’ opinions on ordering Java projects by

their quality, and they attempt to address the natural subjectivity of evaluating

quality. The analysis of these two approaches and the review of historical quality

modelings (chapter 2) reveals gaps that need addressing.

Quamoco and QATCH show that extending the ISO/IEC standards is likely the

right approach, and one must figure out a way to bridge the gap between low-level

measurements and the abstract concepts of ISO/IEC. While attempting to bridge the

gap, these projects show that building quality models is a burdensome and lengthy

task. The models are difficult to operationalize, difficult to validate, difficult to

extend by other researchers, and quickly become outdated and no longer supported.

Even when a model is operationalized, practitioners tend to not understand their

mechanisms nor trust their output values.

5http://http://gromit.iiar.pwr.wroc.pl/p_inf/ckjm/
6https://https://pmd.github.io/

http://http://gromit.iiar.pwr.wroc.pl/p_inf/ckjm/
https://https://pmd.github.io/

42

What do the Numbers Mean?

Experimentation with Quamoco and QATCH reveals differences in scoring. Both

projects were run on five Java projects: Checkstyle, Log4j, RSSOwl, TV-Browser, and

JabRef. The QATCH quality scores and Quamoco scores on the five projects is shown

in table 3.3.

Table 3.3: QATCH vs Quamoco scoring of the same products [42] [37]

Product QATCH Grade [0, 1] Quamoco Grade [6, 1]

Checkstyle 0.57201 1.87

Log4j 0.47829 3.36

RSSOwl 0.47490 3.14

TV-browser 0.47466 4.02

JabRef 0.45239 5.47

Even when both QA techniques are used on the same system, we see differences

in the range and slopes. Quamoco’s range in scores cause Checkstyle to appear to

have remarkably better quality than JabRed, but QATCH’s score range causes all

five projects to appear approximately equal and mid-range in quality score. Thus,

even if two different quality models value-rank projects with high correlation, there is

a problematic lack of meaning in the numerical values output for any single project.

This is a problem that must be addressed as practitioners often want to see the

underlying numbers a model is producing.

A Platform for Quality Modeling Research

Additional research in quality models is needed before its wide-spread adoption

in industry. The validation and adoption of advanced techniques in quality

assessment–such as the use of quality models–has never been more needed because

43

a failure in quality in software could lead to loss of life, economic ruin, and threats

to national security. This calls to action the need for a platform to assist in quality

modeling research.

The analysis of Quamoco and QATCH serves to guide design concepts for what

a platform intended for quality model research should support and restrict. Is there a

way to reduce the time spent conceptualizing and operationalizing quality models so

more time can be put on validation and industry feedback? Can the platform facilitate

the experimental needs of a researcher by allowing simple extension of mechanisms

such as different normalization techniques, new static analysis tools, other utility

functions, and new node evaluation approaches? Is there a way to bring meaning to

the values output by a model apart from representing it as an ordinal scale? Can the

platform support experimental visualization output techniques?

44

CHAPTER FOUR

PIQUE SYSTEM DESIGN AND TECHNICAL DETAILS

PIQUE, a Platform for Investigative software Quality Understanding and

Evaluation, is a platform that can be used to create an environment for further

software quality assessment research. The platform and an operationalization using

the platform are built to generate the objects needed to run test cases to address the

research questions and goals given in chapter 1.2.

Design goals of PIQUE are listed in table 4.1. These goals come from reviewing

the strengths and weaknesses of the previous modeling approaches presented in

chapters 2 and 3. Through test cases, exercises, and discussions provided in chapters

6 and 7, each of the following design goals has been partially or fully accomplished.

Table 4.1: PIQUE design goals

Design Goal Motivation

DG01 - Benchmarking,

utility functions, and

adaptive edge weighting

supported

Modern modeling research [40] [37] shows that bench-

marking, utility functions, and adaptive edge weighting

are necessary mechanisms to utilize in the derivation of

a quality model.

DG02 - Default model

mechanisms

By providing default classes for model derivation, re-

searchers can quickly derive and operationalize a model

without needing to override and understand every mecha-

nism.

DG03 - Extension or

modification of model

mechanisms

To facilitate experimentation, each component of model

derivation should be overridable.

45

DG04 - Models are easy

to derive

The framework should automate as many aspects of model

derivation as possible. Running derivation should be an

easy to understand process.

DG05 - Derived models

are easy to operational-

ize

The framework should provide a way to operationalize its

models with as few steps and dependencies as possible.

DG06 - Adding, remov-

ing, or modifying tool

support is simple

Analysis tools and programing languages can evolve rapidly

and are the foundational component of quality model as-

sessment. The framework should facilitate straightforward

interfacing with unknown external tools.

DG07 - Input and out-

put is easy to interact

with

A text-based format should be expected for both input and

output to allow the framework to work with any operating

system or visualization tool.

DG08 - Facilitate au-

tomation and continuous

integration

The framework should be designed to facilitate automation

and CI in order to achieve the pragmatic elements of its

intended use. The generated models are more likely to be

used by practitioners if there is little overhead to integrate

assessment into their development cycle.

DG09 - Facilitate

trustable models

Ultimately, the models produced by the framework must be

understandable and trusted by both researches and practi-

tioners. This can be accomplished by limiting complexity

and allowing complete views of all layers of the model.

DG02 and DG03 express an important duality needed in the platform design:

there should be a near out-of-the-box state of the system to help new researchers need

46

as little time as possible to accomplish a “hello world” run of model derivation and

product assessment, but the platform should also allow for complex extension and

modification of its mechanisms to drive research and exploration.

4.1 System Design

The PIQUE system is designed as a collection of library functions and API

features. It is an open-source project written in Java hosted at the Montana State

University Software Engineering Labs (MSUSEL) public GitHub.1 The project uses

Maven2 for dependency management and system building, testing, and packaging. A

verbose README exists in the repository to provide new users or contributors an

easy process toward use of the code base.

PIQUE takes the responsibility of implementing all functionality not directly tied

to language specific tasks while leaving the researcher the requirement of connecting

their language specific tools to the model measures. For clarity, the language agnostic

system of library and API calls will be referred to directly as “PIQUE” while a

language-specific operationalization of PIQUE will be referred to as “PIQUE-EXT”.3

High-level View

PIQUE supports two processes needed for quality control: quality model

derivation and product quality assessment. To communicate a general sense of how

the PIQUE framework is intended to be used, Figure 4.1 shows a high-level view of

the components in the context of a researcher deriving and using a Python-intended

quality model utilizing the platform. The researcher will create a new project, in this

1https://github.com/msusel-pique/msusel-pique
2https://maven.apache.org/
3In the GitHub codebase for this project, the project called PIQUE is the project of library and

API calls while a project named PIQUE-CSHARP uses the functionality provided by PIQUE to
derive and operationalize a model that can assess the quality of C# .NET projects.

https://github.com/msusel-pique/msusel-pique
https://maven.apache.org/

47

case named PIQUE-PYTHON, and implement the ITool interface. Implementing

the interface requires the researcher to define how to run their Python static analysis

tools and define how to interpret the tool’s results as PIQUE class objects. The

Runner interface is then utilized by passing in the researcher’s Python quality model,4

a directory containing the benchmark repository Python projects, and a file with the

hand-entered AHP5 values.

Figure 4.1: PIQUE operation high-level component view

This process outputs a functional quality model capable of assessing software

systems written in Python. The researcher can then use another function in the

Runner library to run quality assessment on a Python system by passing in the derived

quality model and the directory of the system under assessment. For a detailed

example of the process taken to derive and operationalize a PIQUE quality model,

section 5.3 presents a use case for a quality model targeting a C# system.

It is important to recognize from this process how simple model derivation and

assessment is when using PIQUE’s default mechanisms. As long as the researcher

defines (1) how to run the language-specific tools and (2) defines, as .json text

configuration, how tool results connect to measurements, the components of PIQUE

4At this point, the input Python quality model represents the desired factor structure, but does
not have utility functions, edge weights, or node values.

5Analytical Hierarchy Process. Introduced in chapter 3.2.

48

and its Runner library call handle everything else.

Model Terms and Definitions

Because the models output by PIQUE are designed with the concepts offered by

the Quamoco meta model in mind, many of the same terms and definitions are used.

Factor A factor is the abstract term for nodes in the top layers of the quality model.

Following form from Quamoco definitions, the following definitions of TQI, quality

aspect and product factor are all of type factor.

TQI (Total Quality Index) TQI, a type of factor, refers to the the root node of

the model–the quality topic under evaluation. In the context of ISO/IEC 25010 [14],

TQI represents Software Product Quality, but it can represent whatever concept the

researcher desires, such as Security.

Quality Aspect Quality aspects are high-level factors that express abstract quality

goals that cannot be measured directly.

Product Factor Product factors are factor nodes that can decompose into directly

measurable concepts. Similar to the Quamoco definition, a good way to come up with

a product factor is to think about the attributes of the parts of a product. Following

the concepts of QATCH, PIQUE by default fully connects each product factor to

every quality aspect; however, this can be overridden through configuration in the

quality model description file.

Measure Measures are concrete definitions of product factor values. A measure

holds knowledge of its relevant benchmarked utility functions and contains the

evaluation information needed to calculate its value from incoming diagnostics.

49

Diagnostic A new term introduced with PIQUE, a diagnostic is a representation

of the parts needed for a measure to evaluate. A diagnostic must evaluate directly

from the results of its connected tool’s output, so a diagnostic is tool-specific (and

thereby often language-specific) and defines what tool is used to obtain its value.

Consider a measure Path Coverage which is evaluated by dividing the number

of routes executed by the total routes possible. Two child diagnostics of the Path

Coverage measure exist in this scenario: (1) total routes possible and (2) actual

routes executed.

Again, consider a measure Cryptography Vulnerabilities and a static analysis

tool named Security Code Scan. Security Code Scan has the ability to find

two cryptography-related findings, SCS0004 - Certificate Validation Disabled and

SCS0005 - Weak Random Generator. If a researcher defined the Cryptography

Vulnerabilities measure to be evaluated as the sum of findings of SCS0004 and

SCS005, then SCS0004 and SCS0005 are diagnostics connected to the measure.

The use of diagnostics allow the quality model designer to configure a measure

in terms of the behavior of its parts. This is especially useful regarding exploratory

measure definitions coming from static analysis tool findings. Consider a security

example with the Cryptography Vulnerabilities measure used earlier. Say a hypothet-

ical cryptography finding, SCS9999 - Trigger Server Room Explosion, is supported

by a static analysis tool. Regardless of all other cryptography findings, the researcher

realizes an evaluation function at the measure level needs to be defined:

if numFindings(SCS9999) > 0 then

finalValueOf(cryptography_vulnerabilities) = 0.0

else ...

This evaluation function implies that–no matter how good or bad other findings

50

are in support of the cryptography score–if even one finding of SCS9999 occurs,

that is exceptionally bad because that piece of code could cause one’s server room

to explode, which represents a problematic quality concern. Therefore, the value

of the Cryptography Vulnerabilities measure should immediately be zero if even one

SCS9999 finding exists regardless of the impacts from other child diagnostics.

In response to historical quality modeling attempts that handle tool finding

evaluations as simply a count of their findings, the added evaluation possibilities

diagnostics offer provide a valuable way forward to assessing the quality of difficult

concepts such as security.

Finding A finding is the data object representation of a “hit” from its associated

diagnostic and tool. A finding is only instanced after its associated tool has run an

audit on the system under evaluation.

Quality Model Description

PIQUE design follows the metaprogramming recommendation of “Configure,

Don’t Integrate” from Hunt’s The Pragmatic Programmer [18, p. 144]. Because a

primary design goal of the platform is to facilitate experimentation, it is a sensible

choice to leave as much manipulation and specification as text files used as input

instead of requiring modification and recompilation of the code base.

For model derivation, a quality model description, AHP matrices, and the

location of the benchmark repository are expected as input. For project quality

assessment, a derived quality model is expected. This section will describe the text-

based model configuration and its derived output format. AHP matrices and the

benchmark repository are reviewed in the following section about PIQUE default

mechanisms.

51

Table 4.2: PIQUE quality model configuration field descriptions

Node Field Example Values Opt. Default

n/a global config Benchmark strategy yes

factor name Total quality, Porta-

bility

no

parents [null, Security] yes Fully

connected

eval strategy Weighted sum,

Largest child

yes Weighted sum

measure name Path coverage no

parents [Documentation] no

positive True, False no

eval strategy Average,

Zero if exist

yes SUM

norm strategy None, LoC, ClassLoc yes LoC

diagnostics [SCS0005, Diagnos-

tic obj 2, ...]

no

diagnostic name SCS0005 no

description Weak random num-

ber generator

no

toolName Security code scan no

eval strategy Count, Finding value yes Count

A quality model description is a .json text representation of the model to be

52

derived. Table 4.26 shows the quality model description components and an example

.json quality model description file is provided in appendix A.

Because the model is not yet derived, a quality model description does not need

to give values for factor weights or measure thresholds. However, the quality model

description does need to provide all configurations for its measures and diagnostics

as well as optional factor hierarchy connections.

A model is designed through this description by defining the factors, measures,

and diagnostics as .json objects. The model generation engine assumes all factor

layers are fully connected, but a factor node can be defined as strictly child to another

factor node if desired through use of a parents array. At the measure level, each entry

is defined with a description, a positive or negative boolean value, an array of the

measure’s parents, and a collection of all diagnostic objects used to evaluate the

measure.

Quality Model

After running model derivation, PIQUE returns a derived quality model in .json

format, now with edge weights representing subjective value and utility functions

representing expected ranges of measure values. If the quality model description of

Figure 4.2 was run through a model derivation process, it can return with the form

shown in Figure 4.3. The factor weights and utility functions are highlighted in yellow

to show the changes to the model after running derivation.

Components

PIQUE is designed to facilitate model derivation and product quality assessment

using quality models in a language-generic way while supporting default or modifiable

6[Square brackets] represent optional multiple values.

53

Figure 4.2: Quality model description: model view

Figure 4.3: A derived quality model. Utility value thresholds are contrived for
simplicity.

54

inner mechanisms. To achieve this, modular and orthogonal design is key. Through-

out its development, the system evolved into the five components shown in Figure

4.4: Analysis, Calibration, Evaluation, Model, and Runner. This section

provides a brief, technical review of each component.

Figure 4.4: PIQUE component diagram

Model The Model component, shown in Figure 4.5 handles the construction and

use of a quality model. By requiring model configuration and injecting non-default

mechanisms through the configuration file, this component serves as the bridge

between the configuration details and the system abstractions.

The Model component contains the QualityModel class which has a collection of

ModelNode objects, a tree data structure. All model nodes have a value, a collection of

zero or more children, a mapping of each incoming child’s edge weight, an associated

evaluator and normalizer object, and a method defining how the node should evaluate

its value. By default, each node is assigned a default assessment strategy, but each

55

Figure 4.5: PIQUE Model Component

strategy can be overridden in an extending, language-specific PIQUE project and

injection via the quality model description file. For example, a QualityAspect node

will have a DefaultEvaluator evaluator associated with it by default which evaluates

the node’s value to be the weighted sum of its children’s values, but this can be

overridden by creating, for example, a SecurityEvaluator class which evaluates a

quality aspect node’s value according to a niche set of security approaches.

The Model component exposes an IQualityModel interface which can be used

for tasks such as evaluation. BenchmarkData, AnalysisData, and AssessmentStrategy

56

interfaces are associations needed to construct the QualityModel tree object during

model derivation.

Analysis The Analysis component is responsible for static analysis tool processes

such as activating a static analysis tool and interpreting its results. Because static

analysis tool support or definitions can change at any given time, loosely coupled

design of the analysis component is crucial.

The Analysis component is simple, containing one interface named ITool. All

language-specific tool classes must implement the ITool interface which contracts

them to define how they run, how to parse their tool’s result files, and how to

transform their parsed data into a Diagnostic object. Figure 4.6 presents the high-

level view of the PIQUE interface contained by the Analysis component.

Figure 4.6: PIQUE Analysis Component

The analyze(Path) method ac-

tivates the static analysis tool to run

static analysis on a project location

at Path. The return value is the

location of the static analysis results

produced by the tool.

The parseAnalysis() method

is the method responsible for trans-

forming the tool result data into

PIQUE domain objects, specifically Diagnostic objects. The method parses through

each result line in the tool’s output file and creates a new diagnostic object for each

diagnostic supported by the tool, and each diagnostic is filled with a collection of

its diagnostic-specific findings. This collection of diagnostics and composed findings

are used by the Calibration component to derive thresholds and by the Model

57

component to populate the layer of findings specific to the system under evaluation.

Calibration The Calibration component is responsible for the procedures necessary

to derive thresholds and factor edge weights. By separating model functions from

calibration elements, modifying calibration mechanisms becomes a much safer task.

Utility classes such as IBenchmarker and result abstractions such as WeightResult are

found here.

Figure 4.7: PIQUE Calibration Component

Calibration is primarily associated with the Analysis component due to its

dependency on the ITool object functions to receive static analysis data about

the system under evaluation. This data–for example, information about diagnostic

and measure evaluation across a repository of benchmark projects–is used for

benchmarking and edge weighting procedures.

Evaluation Evaluation distinguishes the quality model behavior from the quality

model structure. This component handles the processes related to quality model

assessment such as aggregation, normalization, and use of other evaluation strategies.

These interfaces are intentionally kept separate from the quality model object in order

achieve a separation of concerns and, thus, more effective extensibility.

58

Figure 4.8: PIQUE Evaluation Component

An IEvaluator class represents a first order function that defines how a

model node should evaluate given a collection of other model nodes. The default

factor, measure, and diagnostic evaluators are instanced in PIQUE to provide a

default method of evaluating quality model nodes to achieve a simple ‘out-of-the-

box’ solution to quality model derivation or assessment. This same concept of

default classes applies to the INormalizer and IUtilityFunction interfaces. The

DefaultFactorEvaluator evaluates a factor node as the weighted sum of its children.

The DefaultMeasureEvaluator evaluates a measure node to be the total sum of its

diagnostic children, as long as the diagnostic is not the LinesOfCode diagnostic. The

DefaultDiagnosticEvaluator evaluates a diagnostic node to be the total count of its

child findings.

The INormalizer interface contracts a normalize() function that normalizes

a model node object given a set of other model nodes. For example, the

DefaultNormalizer is defined to apply no normalization by simply returning a model

node’s value. All factors nodes are, by default, given the DefaultNormalizer because

their values likely do not need further normalization. On the other hand, all measure

nodes are, by default, given the LOCNormalizer which is defined to divide the value

of the containing measure node by the lines of code diagnostic, thereby normalizing

59

each measure by the lines of code in the system. This default should be extended

if a model designer wishes to, for example, normalize some measures according to a

class’s lines of code.

The IUtilityFunction interface provides a utilityStrategy() function that

applies a utility function to a model node. By default, all model nodes except measure

nodes contain a DefaultUtility function which simply returns the node’s input value.

Measure nodes, by default, contain a LinearInterpolationUtility function that

applies linear interpolation to the node’s threshold value as described in section 4.2.

Runner The Runner component handles the interfacing, abstractions, and pro-

cedures necessary to allow language-specific extensions of PIQUE to simply use

its deriveModel() and evaluateProject() functionality without worrying about

implementation details as long as the ITool and Config contracts are fulfilled. This

component is important to achieve design goals DG02 - “Default model mechanisms”,

DG04 - “Models are easy to derive”, and DG05 - “Derived models are easy to

operationalize” by removing coupling between PIQUE-EXT systems and the internal

mechanisms and components of PIQUE.

Figure 4.9: PIQUE Runner Component

Consider a language-specific C# extension of PIQUE named PIQUE-CSHARP.

At a minimum, PIQUE-CSHARP will contain one or more classes implementing

the ITool interface for each needed C# static analysis tool. If further modification

60

is desired, PIQUE-CSHARP can also contain classes extending the IEvaluator,

INormalizer, and IUtilityFunction interfaces. Finally, a .json quality model

description file is created which defines the quality model structure and, if desired, the

associated behavior interfaces. These interfaces and a configuration file (containing

information such as the location of the quality model description and the location

of the benchmark repository) are used to obtain a derived C# quality model by

running the deriveModel() method. In similar fashion, the run() method is used to

run product quality assessment by passing it the set of necessary C# ITool objects,

a configuration containing the quality model .json file (generated from the derivation

process), and the path to the product under assessment.

Connecting Tools

A quality model is only as strong as the tools that support it. These tools–static

analysis tools in the scope of this thesis–come from a variety of sources: third-party,

proprietary, language-integrated, etc. Simply getting a static tool to run on a target

project and store the results on disk is often the first hurdle a quality researcher will

find themselves struggling with.

Because PIQUE is designed to be language-agnostic, the framework leaves the

language-specific PIQUE-EXT project responsible for defining how to start up its

tools, run its analysis procedure, and map the results to PIQUE domain objects.

This is accomplished by implementing the ITool interface which requires by contract

defining the analyze() and parseAnalysis() methods.

4.2 Default Mechanisms

As identified through analysis of previous quality modeling attempts, the core

mechanisms needed for quality model derivation and use are normalization functions,

61

utility functions via a benchmark repository, factor edge weighting via subjective

opinion, and aggregate evaluation functions of the model nodes. As shown in section

4.1, PIQUE provides default functionality for these mechanisms that take inspiration

from the Quamoco [40] and QATCH [37] projects.

Normalization Functions Normalization occurs at the measure level before utility

functions are applied to the measure values. Some measures should be normalized,

but not all. In a general intuitive sense, many metrics do not need to be normalized

as they often represent system-scoped values, but most findings should be normalized

due to the size of the system directly influencing the number of findings that occur.

PIQUE requires a tool connection that returns the lines of code (LoC) in the

system under evaluation. Then, by default, every measure is set to be normalized

by LoC. If a measure should not be normalized–such as coupling–or a different

normalization technique should be used, a measure can be configured using the quality

model description configuration.

Utility Functions and the Benchmark Repository As discussed in section 2.3, a

collection of benchmark projects provide the information needed to generate utility

functions at the measure layer. When PIQUE is provided a directory of well-formed

benchmark projects,7 calibration mechanisms provided by the framework complete

the rest of the work needed to apply utility function data to the model’s measure

nodes.

PIQUE’s default benchmarking follows the same approach used in the QATCH

project [37], which uses the threshold formulas provided by [29]. For every measure

7The file structure of each project needs to be structured in such a way that the static analysis
tools used for auditing will run correctly when iterating through a collection of systems. Finding
better solutions than requiring well-formed structure is saved as future work.

62

defined by the quality model description, the benchmark repository is used to derive

three thresholds, t1, t2, t3, representing the minimum, median, and maximum values

respectively of the measure after removing outliers. Specifically, this is defined by

equation 4.1 where xi is the normalized value of measure x for benchmark project i

where i = 1..n, Qp is percentile p, and IRQ is the inter-quartile-range.

t1 = min({x : x ≥ Q25% − 1.5 ∗ IRQ(x1, . . . , xn)})

t2 = median(x1, . . . , xn)

t3 = max({x : x ≤ Q75%(x1, . . . , xn) + 1.5 ∗ IRQ(x1, . . . , xn)})

(4.1)

The QATCH approach for utility functions uses these three bounds to define not

just a minimum and maximum range, but also a middle bound. Linear interpolation

is applied to accomplish a stepwise-linear utility function that is aware of the true

median value. The difference between one-step and two-step linear interpolation

approach As shown in figure 4.10, a one-step utility function (left graph) is simply

a linear connection between worst and best range. A two-step utility function (right

graph) provides more precision by introducing a median target as well. As a default,

PIQUE follows the approach used by QATCH of two-step linear interpolation.

Figure 4.10: Comparison of two utility function strategies.

For example, let the two-step linear interpolation utility function from figure 4.10

63

represent the result from benchmarked thresholds of a measure named Encryption

Smells. During project assessment, if the project’s measure value of Encryption

Smells was 0.05, the utility function of Encryption Smells will transform its value

into measureEval(EncryptionSmells) = 0.50.

Unlike QATCH, PIQUE applies utility functions at the measure level instead of

the product factor8 level. Utility functions can only be applied at the product factor

level if it can be guaranteed that only one layer of product factors exists and each

product factor only has one measure attached to it. Because PIQUE aims to facilitate

experimental model designs, this guarantee cannot be assumed.

Subjective Factor Weighting PIQUE’s default factor weighting follows the AHP

strategy [34] as shown in QATCH [37] to introduce quality subjectivity with one

difference: instead of using numerical ratio values for pairwise comparison, the

linguistic values [“very low”, “somewhat low”, “equal”, “somewhat high”, “very

high”] are used.

First, hand-entered values are obtained from the stakeholder of the product

under evaluation as a collection of files called comparison matrices. The comparison

matrices are a collection of pairwise comparisons at each level of the quality model

factor hierarchy. Assuming the default PIQUE quality model structure is being used,9

comparisons will only occur at the single quality aspect layer and the single product

factor layer.

For example, if the example quality model description of Figure 4.2 is being

used, four comparison matrices will need to be filled. One matrix is for pairwise

comparisons of the quality aspects in the context of total software quality. The other

8Referred to as the properties level by QATCH.
9The structure presented by QATCH: one layer of quality aspects and one fully connected layer

of product factors.

64

Table 4.3: Comparison matrix for the quality aspect layer

TQI Portability Maintainability Security

Portability - very low low

Maintainability - - somewhat high

Security - - -

Table 4.4: Comparison matrix for the product factors in context of portability

Portability Modularity Redundancy Documentation Encryption

Modularity - very high somewhat high very high

Redundancy - - somewhat low equal

Documentation - - - somewhat high

Encryption - - - -

three matrices are for pairwise comparisons of the product factors in the context of

the three quality aspects: (1) the product factors in the context of portability, (2)

the product factors in the context of maintainability, and (3) the product factors

in the context of security. The matrices are diagonal, so diagonal entries (e.g.

Portability:Portability) have implied values of “equal”, and entries across the diagonal

have implied values of their reciprocal (e.g. if Portability:Maintainability is “very

low”, then Maintainability:Portability is “very high”). An example of the quality

aspects matrix in the context of total software quality is shown in table 4.3 and the

first product factors matrix (in the context of portability) is shown in table 4.4.

Using the comparison matrix values of tables 4.3 and 4.4, PIQUE will translate

the linguistic values in to [{very low = 0.1111}, {somewhat low = 0.25}, {equal =

65

Table 4.5: Quality aspects → TQI derived weights

Portability Maintainability Security

TQI 0.0658 0.7171 0.2172

Table 4.6: Product factors → Portability derived weights

Modularity Redundancy Documentation Encryption

Portability 0.6568 0.0625 0.2183 0.0625

1.0}, {somewhat high = 4}, {very high = 9}].10 After running the AHP procedure,

the derived weights for the quality aspect to TQI layer are given in table 4.5 and the

product factors weights in the context of portability are given in table 4.6.

Model Node Evaluation Functions PIQUE provides the utility to override how any

nodes in the quality model evaluates their assessment value, but it is valuable to

provide a default method of node evaluation. These default functions differ depending

which layer of the model is being evaluated.

A diagnostic node’s default evaluation strategy is the sum of its finding values.

For example, in the context of a code smell diagnostic, if the tool associated

with diagnostic SCS0005 found 17 occurrences of SCS0005 in the product under

assessment, diagnostic SCS0005 would evaluate to 17; that is, 17 child Finding object

instances, all with value 1. In the context of a metric, a metric diagnostic Lines of

Code will evaluate to the result of the LoC tool’s finding value, a field whose value

represents the lines of code; that is, 1 Finding object with a value 30,000 if the system

has 30,000 lines of code. Depending how a tool outputs its finding values, there are

10These values come from table 1 of [34, p. 86] for the intensities 1, 4, 9 and their reciprocals.

66

many situations where this default behavior should be overridden.

Measure nodes evaluate by applying their utility function to the normalized value

of the sum of their diagnostics.

valueOf(measure) = utilityFunction(normalize(
∑
i

valueOf(diagnostici)))

(4.2)

If a measure node is evaluated by a function different than the sum of its children–

such as the coupling measure described in section 2.2–the default node evaluation

function will need to be overridden.

All quality model factor nodes (TQI, quality aspects, and product factors)

evaluate by the weighted sums of their children by default. If a bottom level product

factor node has more than one measure child and the incoming measure edges do not

have weights assigned, the evaluation assumes equal weighting.

4.3 Overriding Mechanisms

Modification of the derivation and assessment mechanisms is a key feature that

allows PIQUE to be more than just a “quality assessment on rails” framework. By

providing a way to modify internal mechanisms while still easily using the platform for

quality control activities, PIQUE can act as a true platform for investigative quality

research while removing the large overhead currently restricting the field.

In general, overriding the following mechanisms uses the same approach: in the

researcher’s PIQUE-EXT system, instance a class that implements the interface of

the desired mechanism and update the model configuration if needed. UML for the

classes mentioned in this section is provided in section 4.1.

67

Normalization Functions

Normalization at the measure layer is customizable through two steps. First, in

PIQUE-EXT, a normalizer class that implements the INormalizer interface should be

created. The interface requires an implementation of the normalize() function given

a collection of ModelNode objects as parameters. Second, norm strategy in the quality

model description configuration file should be defined according to the name of the

normalizer class object for the desired node to apply the normalization strategy to.

Utility Functions

A model node’s utility function can be overridden by implementing one or more

IUtilityFunction classes in PIQUE-EXT . Defining the utilityStrategy() method

involves writing a function that modifies the model node’s output in some way given

the model node’s state. Typically this will be applied to measure nodes using the

threshold data that comes from the benchmark repository. The new utility function

class can then be assigned to model node entries in the quality model description

configuration file using the utility function’s full class name as defined in PIQUE-

EXT.11

Model Node Evaluation Functions

All quality model nodes in the framework extend the abstract ModelNode class

which requires an abstract evaluate(IEvaluator) method. Two approaches in node

evaluation strategy are supported. If an entire collection of node types should be

modified in the same way–for example all product factors should be multiplied by

some scalar–the product factor .json object in the quality model description file can

have a child field named eval strategy listed with the IEvaluator’s full class name as

11For example, myproject.pique.ruby.CustomUtility.

68

the value. If a specific node requires evaluate modification, the same approach can

be used, but at the specific node’s .json object entry.

Subjective Factor Weighting

The framework assumes that manually entered subjective quality expressions

of the factor hierarchy are given from an external source (such as .json input).

By default, the DefaultWeighter expects well-formed AHP matrices as described in

section 4.2.

For modification, the syntax of the text-format input does not matter as long as

the modified approach defines how to translate the input into the relevant factor edges

of the quality model. To accomplish this, the IWeighter class can be implemented

in PIQUE-EXT. The framework looks for the WeightResult objects produced by the

IWeighter interface and automatically applies the results to the quality model object.

Similar to benchmarking modification, the new weighter class can be passed to the

Runner module which is automatically detected and used by the framework instead

of the default weighting approach.

Benchmark Methodology

While the framework always expects a benchmark repository, the benchmarking

procedure can be modified. The DefaultBenchmarker class (run by PIQUE during

model derivation) returns an array of the min, median, and max value of each measure

found in the benchmark repository after removing outliers, but this could be modified

to, for example, not remove outliers, give more weight to specific benchmark projects,

or utilize machine learning techniques.

To override, a Benchmarker class should be created in PIQUE-EXT implementing

IBenchmarker. Implementing the benchmark class requires defining a method that

takes as input the path of the benchmark repository and the ITool instances needed

69

to run the static analysis tools on the projects, and it returns a mapping of model

nodes and decimal arrays. The new benchmark class can then be passed in to the

Runner module where PIQUE will automatically detect to use the new strategy.

4.4 Model Derivation Process

Before quality assessment can occur on a product, a quality model is needed.

Model derivation is the process by which a valid model can be generated. This section

assumes the necessary inputs12 are already provided and focuses on the derivation

process itself as implemented in the PIQUE calibration component. Figure 4.11

shows this process in visual form.

Figure 4.11: Model derivation process

Utility Functions First, the function IBenchmarker.deriveThresholds() is called

using the benchmark repository, quality model description configuration file, and

12Quality model description .json file, ITool classes, subjective factor importance descriptions,
and the benchmark repository directory.

70

ITool objects as input. The platform iteratively steps through each project in the

benchmark repository folder, audits the project using the given ITool objects, collects

the tool findings as Diagnostic objects, and uses the diagnostics to evaluate the

measure layer (with normalization applied) for the given project.

If the benchmark repository is empty or no valid files are found in the directory,

the platform alerts the user with an error and exits the derivation process. For

initial testing purposes, a user could provide a benchmark repository consisting of

just the project they intend to assess, given building a benchmark repository can

be a time-consuming process. The collection of all normalized measure nodes across

all benchmark projects is then used to return a collection of Map<String, Double[]>

objects representing the measure names and their associated utility thresholds.

Subjective Weight Elicitation Next, IWeighter.elicitateWeights() is called

using the path to the subjective factor weighting files (by default, .json comparison

matrices) as input. The weighting strategy as defined by elicitateWeights() returns

a collection of WeightResult objects that maps each factor to its incoming edge weight

values.

Model Generation The utility thresholds to each measure node and the weights

for every factor→ factor relationship are applied. The platform finally returns a fully

derived quality model (see Figure 4.3) as both a JVM object and in .json file format.

4.5 Product Assessment Process

Product assessment is an act of quality control accomplished by using a

language-specific quality model on a target product resulting in a model with values

representing each node. Figure 4.12 shows a visual representation of PIQUE’s

71

approach to assessment.

Figure 4.12: Model assessment process

As input, the Runner component expects a derived quality model, the necessary

language-specific ITool objects for static analysis, and the path to the product under

assessment. Next, the ProjectEvaluator::evaluateProject() function activates the

ITool objects resulting in a collection of Finding and Diagnostic objects that are

applied to the quality model. The measure layer of nodes are evaluated using the

defined utility function and normalization strategies as provided by the researcher

(or by default). Finally, the factor layer of nodes (product factors, quality aspects,

and total quality index) are evaluated, by default using aggregation of weighted sums.

The model at this point represents an assessed product with a form similar

to Figure 4.13. A .json representation of the model is output with decimal

values accessible at every node, ready for use by continuous integration and desired

visualization techniques.

72

Figure 4.13: A model with values representing a product’s assessment. Practical
models will often have thousands of diagnostics.

73

CHAPTER FIVE

PIQUE OPERATIONALIZED: NEW MODELS; NEW TOOLS

5.1 Introduction

The purpose of the platform presented in chapter 4 is to create the foundation

necessary to obtain metrics and answer the questions presented by the GQM1 of

section 1.2. However, the platform itself is a collection of language-agnostic API calls

and libraries. To instantiate a quality model and assess actual projects, a language-

specific extension of PIQUE must be created and used for evaluation.

This chapter describes the process necessary to derive a new model and use

it for product assessment in both academic and industrial settings. This involves

describing a new quality model, finding static analysis tools, connecting the tools

using PIQUE API points, building a benchmark repository, filling in comparison

matrices to introduce subjective quality opinion, and running the main derivation

method using PIQUE. The derived model can then be used to assess quality of real

systems in a specific programming language.

Two models are constructed in this chapter. This first is a fully operationalized

ISO/IEC 25010 based [14] total quality model runnable on C# systems. The second

is an experimental security model based on the hierarchies presented by ISO/IEC

25010 and MITRE’s Common Weakness Enumeration2 (CWE), also intended for C#

systems. The total quality model instantiation is used to generate metrics for the in

vivo and in vitro test cases of chapter 6.

1Goal/Question/Metric paradigm.
2https://cwe.mitre.org/

https://cwe.mitre.org/

74

5.2 Deriving and Using a C# Quality Model

The total quality model derived and used in this chapter addresses C# systems:

specifically C# systems on .NET Standard 2.0. The reason for this choice in language

support is three-fold.

(1) Nearly all historic quality modeling attempts have targeted Java. This is

primarily due to the robust and open-source tool support available to use in Java

systems. Of the quality modeling approaches presented in chapters 2 and 3, one

attempt provided C# operationalization [40]. However, the operationalization used

only one static analysis tool providing 146 rules combined with a small benchmark

repository of 23 systems. As a result, the authors rejected their C# operation

for empirical validation. Additionally, C# systems can be notably unfriendly to

researchers due to .NET integration with Visual Studio and lack of open-source

third party involvement. Thus, in order to answer GQM questions relating to the

improvement of experimentation capability and time investment relating to quality

model processes, designing a C# quality model is a ripe domain to run test cases.

(2) For in vivo validation, exercises are run with systems from two companies in

industry. The two systems are written in .NET, thus, design of C# quality assessment

is the sensible and necessary language to target.

(3) In United States government agencies and contractors, .NET is frequently

used as the framework of choice due to Microsoft’s security features and product

integration with government agreements. Because funding for research in the domain

of software analysis is often driven by Department of Defense support, the ability to

apply research products to pre-existing government or contractor systems is valuable.

75

A C# Quality Model Description

The first step when deriving a new model is writing a quality model description.

Discussed with technical details in section 4.1, the quality model description is a .json

text file outlining the desired model node names, the factor hierarchy, the measure

layer, and the diagnostics provided by tools necessary to evaluate the measures. The

model description used in this chapter uses the ISO/IEC 25010 hierarchy [14] while

maintaining one layer of quality aspects, one layer of product factors, and a single

measure for each product factor as recommended by [37].

Factors The factor hierarchy described by the quality model description is depicted

in Figure 5.1. The approach used to architect this model is to build the factor

hierarchy first and then use a bottom-up approach by evaluating the available tools,

their diagnostics, and how those diagnostics can connect to measures.

A design choice is made to construct the model using only measures of findings,

no metrics.3 This design decision expresses the opportunity of using PIQUE to create

experimental models. The quality models reviewed in chapters 2 and 3 primarily use

metrics at the bottom layer of their hierarchies. Instead, this model provides insights

into whether a model that evaluates using only data from findings still produces valid

results.

Of particular interest is the selection of product factors shown in Figure 5.1. A

product factor is defined as factor nodes that can decompose into directly measurable

concepts that represent the attributes of the part of the product (section 4.1). Due

to the generality of a product factor’s definition, how should one decide how many

product factors to include?

A lesson learned while building this model is that a model is only as strong

3Apart from the metrics needed for normalization such as LoC.

76

Figure 5.1: C# quality model description factors

as the tools that support it. While a menagerie of product factor nodes could be

contrived in one’s head, introducing every possible product factor into the model

is pointless if there is no reasonable way to measure it given the available tools.

Instead, the approach given here uses a bottom-up approach by using assessment of

77

the various product factors the tool diagnostics could represent to drive the design of

the measure layer of nodes and the bottom-level product factors. Ten categories of

low-level measurable concepts result from this assessment with definitions shown in

appendix G.

Figure 5.2: C# quality model description: measures and diagnostics

Measures and Diagnostics Figure 5.2 shows the bottom half of the model

represented by the C# quality model description file. Because the experimental

approach of this model is using only findings of static analysis tools, and each finding

78

provided by the tools represents a negative element in the system, every measure

is labeled as a smell. Thus, the heuristic represented by this quality model is that

all product factors start with a perfect value of 1.0, but finding problematic code–

expressed as code smells–subtracts from the perfect values. This is how product

factors can be measured by the existence or non-existence of smells which are

categorized as a collection of diagnostics.

Integrating Static Analysis Tools

The selection and integration of static analysis tools and quality model design at

the measure and diagnostic layer go hand-in-hand, so the two steps typically happen

simultaneously. To integrate, a new project designed for C# analysis is made, PIQUE-

CSHARP, which uses PIQUE as a dependency.

For this project, a third party tool named Roslynator4 is used which provides

command line interface utilities to run static analysis on .NET systems. Along

with the hundreds of diagnostics provided by default with Roslynator, the tool

Security Code Scan5 is added for additional support of security-focused findings

and the Microsoft.VisualStudio.Threading xplat library6 is added for detection of

asynchronous execution code smells. Roslynator allows all of these tools to run

simultaneously through its command line interface. A technical document showing

the specific steps taken to integrate Roslynator, Security Code Scan, and VS-

THREADING is provided in appendix C.

To connect the Roslynator CLI to PIQUE, a class in made in the PIQUE-

CSHARP system named Roslynator which implements the pique.analysis.ITool

interface. After implementing the required methods, there is now an ITool class that

4https://github.com/JosefPihrt/Roslynator
5https://security-code-scan.github.io
6https://github.com/Microsoft/vs-threading

https://github.com/JosefPihrt/Roslynator
https://security-code-scan.github.io
https://github.com/Microsoft/vs-threading

79

knows how to run Roslynator analysis on a C# system and interpret the results into

Diagnostic JVM objects.

Building a Benchmark Repository

The benchmark repository is a collection of open source C# systems used to

calibrate the measure utility functions. Details on these systems, including their

GitHub URL, lines of code, logical lines of code, and comment lines are given in

appendix D.

The repository used in this operationalization was personally constructed for

PIQUE-CSHARP, contains 45 C# systems, and represents a cumulative 3.4 million

lines of code. These systems were gathered by searching https://github.com,

filtering by the C# language, and sorting by most stars. In order to analyze using the

static analysis tools discussed previously, the C# systems are verified to compile using

.NET Framework 4.6.x. Finally, minor cleaning of the projects occurred by ensuring

the static analysis tools were able to find the main entry point7 and irrelevant side

code is removed.

Filling in Comparison Matrices

The approach for utility function derivation used in this operationalization of

PIQUE follows the analytical hierarchy process approach presented by QATCH [37];

however, PIQUE features the ability to enter linguistic values instead of numeric ratio

values. Given there is one layer of seven quality aspects, and one layer of product

factors, eight comparison matrix files–one for the total quality node and seven for the

project factors–in .csv format are created and ready for hand entry.

To introduce industry subjectivity, a local company filled in the AHP values

7A .sln file at the project root directory level.

https://github.com

80

of the quality aspect → TQI layer according to the aspects of software quality they

subjectively valued. The filled in matrix8 for the top layer of the factor hierarchy is

shown in table 5.1. The full collection of comparison matrices are given in appendix

E.

Table 5.1: TQI Comparison matrix from practitioner interaction

TQI Comp. Maint. Perf. Port. Rel. Sec. Use.

Comp. - SL SL SL VL VH EQ

Maint. - - EQ SH SL VH SH

Perf. - - - SH SL VH EQ

Port. - - - - VL VH EQ

Rel. - - - - - VH SH

Sec. - - - - - - VL

Use. - - - - - - -

Running Derivation and Assessment

Model Derivation With a quality model description filled in, static analysis tools

connected as ITool classes, and comparison matrices and the benchmark repository

prepared as input, a model can now be derived. Within PIQUE-CSHARP, the

platform method pique.runnable.QualityModelDriver.deriveModel() is called. This

returns a derived C# quality model–now with edge weights and utility functions–in

.json format. Tables of the derived weights can be found in appendix F with the full

quality model, including utility thresholds, provided in appendix G.

8VL: very low. SL: somewhat low. EQ: equal. SH: somewhat high. VH: very high

81

Project Quality Assessment The final step of quality model operationalization

is assessment. Passing in the the same ITool classes used in model derivation

as arguments, the .json derived quality model, and the path to the C# system

under assessment, the platform method pique.runnable.Evaluator.runAssessment()

is called. The method returns a .json file representing the assessment results. The

result file follows the structure of the quality model file used as input, but the quality

model now has findings instanced at the bottom layer and numerical evaluation values

for all other nodes.

It is these assessment result files along with metrics produced during quality

model design phases that are used to drive the exercises shown in chapter 6 to validate

the system.

5.3 A C# Security Model

Improvement of quality model experimental opportunity is a component of goal

G01 from section 1.2. To present a case in support of the experimental opportunity

PIQUE provides, this section shows how the platform can be used to design a security

quality model for C#. Security, in the context of static quality analysis, is one

subcomponent described by ISO/IEC 25010. Of the historical models reviewed in

chapters 2 and 3, no model specifically focuses on security, and those that do include

security as a quality aspect node–for example, QATCH [37] and Quamoco [40]–

calculate their security node values through relatively weak approaches.

QATCH evaluates security through the weighted sums of 11 factors–Coupling,

Redundancy, Bad Function, Structure, Assignment, Resource Handling, Cohesion,

Comprehensibility, Complexity, Messaging, and Encapsulation–of which only En-

capsulation and Resource Handling have significant weighting (0.3382 and 0.1811

respectively). The primary influence on the security score, Encapsulation, is simply

82

the value of the encapsulation property of the system. Security is a complex concept,

so evaluating its quality primarily off of a single property is likely unsatisfying to a

practitioner.

Quamoco’s object-oriented base models refine security using six factors: In-

terface Permission Consistency, Runtime Environment Independency, Untrusted

Data Sanitization, Definition and Usage Consistency Regarding Scope, Runtime

Environment Independence, and Encapsulation Strength.

Of these six factors, Interface Permission Consistency has 1 measure, Runtime

Environment Independency has 2 measures, Untrusted Data Sanitization has 7

measures, Definition and Usage Consistency Regarding Scope has 1 measure, Runtime

Environment Independence has 1 measure, and Encapsulation Strength has 16

measures. In similar fashion to QATCH, six product factors with a few associated

measures is not enough granularity to represent the security domain in a satisfying

way.9

This lack of granularity drives the motivation to present a security-focused

quality model. Demand for security quality assessment is increasing significantly

by both private and government entities due to the impacts security flaws can have

on elections, national security, public trust, stocks, and lawsuits.

During work on this section, it was realized that there is not enough non-

proprietary C# static analysis tools capable of identifying security vulnerabilities to

operationalize a satisfying C# security quality model. Instead, this section constructs

the quality aspects and product factors of a security quality model according to

PIQUE constructs, but leaves as future work the implementation of other layers

necessary to actualize the model. The purpose of this section is to present the

9To the credit of the Quamoco team, the intent of the base model provided is for further extension
rather than presenting a fully realized model; however, a Quamoco model with security additions
was not available.

83

initial work needed to construct a full security quality model, assist future research

in recognizing the amount of work necessary to operationalize such a model, and help

guide strategies and priorities to approach the challenge.

Model Overview

The security model presented in this section is constructed using three primary

concepts. (1) Security is the top node of the quality model. (2) The quality aspects

come from the ISO/IEC 25010 definition of security quality. (3) The low-level quality

aspects and product factors come from MITRE’s community developed Common

Weakness Enumeration (CWE).

Common Weakness Enumeration The Common Weakness Enumeration [36] is

a categorization and structuring of software weaknesses and vulnerabilities. It is a

community driven project, sponsored by the United States National Cybersecurity

FFRDC, which gives notable effort toward static analysis tool support. The CWE has

encouraging potential for exploratory security quality assessment opportunity by also

linking to the Common Vulnerabilities and Exposures10 (CVE) catalog, a collection of

publicly known information-security vulnerabilities and exposures. The CVE has an

associated open industry standard for security vulnerability severity assessment called

the Common Vulnerability Scoring System (CVSS). The standardizations, community

support, and interconnection of CWE, CVE, and CVSS makes the CWE a prime

structure to mirror for a security quality model.

The CWE is large, boasting over 600 categories and over 1000 specific

weaknesses. To categorize and organize such a large collection, the CWE offers

different views of the weaknesses–for example, from the view of web applications,

10https://cve.mitre.org/

https://cve.mitre.org/

84

hardware design, software development, and architectural concepts. Given the goals

of this thesis focus on the view of static software analysis, the CWE architectural

concepts view (CWE-1008) and the CWE research concepts view (CWE-1000) are

most relevant. The architectural view is chosen to guide the initial quality aspects

under the ISO/IEC 25010 quality aspects, then the natural hierarchy the associated

architectural concepts and research concepts weaknesses formed by the CWE are used

to build the product factor tree.

Model Design

Quality Aspects The model is designed from a top-down approach. Security is set

as the root node. Next, the ISO/IEC 25010 [14] security sub-characteristics11 are used

to construct the top layer of quality aspects. The next layer of quality aspects uses the

12 categories of the CWE architectural concepts: Auditability, Actor Authentication,

Actor Authorization, Cross Cuttability, Data Encryption, Actor Identification, Access

Limiting, Exposure Limiting, Computer Locking, User Session Management, Input

Validation, and Message Integrity Verification.12 In the quality model design, the

nodes for the layers presented so far are labeled as quality aspects due to their

expression of abstract quality goals that cannot be measured directly.

For the next layer of factors, the CWE architectural concepts category children

are introduced. The CWE at this level defines entries as one of four types: a pillar

node, a class node, a base node, and a variant node.

A pillar node is defined as, “The highest-level weakness that cannot be made

any more abstract. Pillars are the top-level entries in the Research Concepts View

(CWE-1000) and represent an abstract theme for all class/base/variant weaknesses

11Confidentiality, Integrity, Non-repudiation, Authenticity, and Accountability
12These names are slightly modified from how they appear in the CWE to have an action-verb

semantic.

85

related to it. A pillar is different from a category as a pillar is still technically a

type of weakness that describes a mistake, while a category represents a common

characteristic used to group related things.”

A class node is, “A weakness that is described in a very abstract fashion, typically

independent of any specific language or technology. More specific than a Pillar

Weakness, but more general than a Base Weakness. Class level weaknesses typically

describe issues in terms of one or two of the following dimensions: behavior, property,

and resource.”

A base node is defined as, “A weakness that is described in an abstract fashion,

but with sufficient details to infer specific methods for detection and prevention. More

general than a Variant weakness, but more specific than a Class weakness.”

Finally, a variant node is, “A weakness that is linked to a certain type of

product, typically involving a specific language or technology, more specific than

a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5

of the following dimensions: behavior, property, technology, language, and resource”.

Table 5.2: CWE categories to factor mappings

CWE Category Factor Type

Pillar High-level product factor

Class High-level product factor

Base Low-level or leaf product factor

Variant Low-level or leaf product factor

In general, nodes of type pillar, and class cannot be measured directly, so they fit

naturally as high-level, non-leaf node product factors that decompose into their CWE

base and variant children. Nodes of type base and variant generally have some way

86

to be directly detected or measured, thus they naturally fit as bottom layer product

factor nodes.

The connection of ISO/IEC 25010 quality aspects to CWE product factors

completes the factor hierarchy. Security is the root node. The five ISO/IEC security

subcharacteristics are the next layer of quality aspects, and the 12 CWE architectural

concepts are chosen to be the final layer of quality aspects. In total, this represents

18 quality aspect factor nodes.

Product Factors The product factors are a massive hierarchy that mirror the child

CWEs of each architectural concept node as provided by the Common Weakness

Enumeration,13 but CWEs that cannot be detected by C# static analysis tools are

removed.14 Some of the product factor hierarchies have deep sub-trees up to eight

layers deep, such as child nodes of the Actor Authorization or Input Validation quality

aspects. This mirroring of hierarchies is chosen due to the benefit of CWE structure

having strong community agreement on representing a sensible decomposition of

security concepts.

Figure 5.3 presents a high-level view of the quality aspect and product factor

design of the security quality model. In total, there are 18 quality aspects and 984

product factors. Of the product factors, 85 are pillar or class types, and 899 are

base or variant types. Because nearly all base or variant type CWEs can be directly

measured by C# static analysis tools, nearly 899 diagnostics with real static analysis

tool support must be available in order for this model to be operationalized.

13https://cwe.mitre.org/data/definitions/1008.html
14Some CWEs are language specific such as Java-focused CWE-382: “J2EE Bad Practices: Use

of System.exit()”.

https://cwe.mitre.org/data/definitions/1008.html

87

Figure 5.3: High-level view of the factors for a C# security quality model.

Examples Figure 5.4 presents an example of quality aspect Input Validation’s

decomposition into diagnostic SCS0002 - SQL Injection (LINQ). SCS0002 is a C#

diagnostic supported by the tool Security Code Scan15 which triggers when code

similar to listing 1 is found in a system.

Figures 5.3 and 5.4 are presented to give an intuitive notion of how large a

fully supported security model can be. The presented Input Validation quality aspect

node of Figure 5.4 is 1 of 12 CWE architectural concept nodes. In the case of Input

Validation, its product factor tree contains 170 child nodes with approximately16

15https://security-code-scan.github.io/
16Not all base or variant nodes are leaf nodes.

88

Figure 5.4: Path from CWE quality aspect to C# tool-supported diagnostic.

1 db.ExecuteQuery(@"SELECT name FROM dbo.Users WHERE UserId =

2 " + inputId + " AND group = 5");

3 var query = "SELECT name FROM dbo.Users WHERE UserId =

4 " + userId + " AND group = 5";

5 var id = context.ExecuteQuery<IEnumerable<string>>(query)

6 .SingleOrDefault();

Listing 1: Security Code Scan SCS0002

89

167 product factor leaf nodes with associated measures requiring C# specific static

analysis tool support. The path in Figure 5.4 from quality aspect Input Validation

to diagnostic SCS0002 - SQL Injection (LINQ) gives a sense of what the 100s of

subtrees may look like.

Regarding weighting, the AHP process used in section 5.2 is infeasible due to

the deep and wide design of this quality model: the pairwise comparisons would

likely take months to enter. The topic of the best weighting strategy to use for a

model such as this is outside of the scope of this work, but the componentized design

of PIQUE supports whatever approach is used through use of the factor weighting

interface calls discussed in section 4.2. A potential approach could be to use AHP17

for the quality aspect layer edge weights and reactively set the CWE product factor

edges in accordance with vulnerability threat levels from live-feed resources such as

the Common Vulnerability Enumeration.18 This area of dynamic weighting has good

potential for machine learning applications as well.

5.4 Conclusion

Two PIQUE models are presented in this chapter: A small, but fully opera-

tionalized C# total quality model and a large, conceptual C# security model. Both

models exemplify how the concepts and constructs of PIQUE can facilitate notably

different model designs and strategies. The application of PIQUE model design into

security quality assessment is of particular interest due to the lack of research in the

area and demand by civilian and government entities. By presenting the full process

of operationalizing a simple model and presenting a complex security model design,

the initial pieces are in place for further research.

17Analytical Hierarchy Process. Discussed in section 4.2.
18https://cve.mitre.org/

https://cve.mitre.org/

90

CHAPTER SIX

TEST CASES

6.1 Introduction

This chapter presents a collection of test cases used to generate data to verify

the capabilities of PIQUE and help answer the questions presented in section 1.2.

These exercises utilize the platform described in chapter 4 and the operationalized

C# model generated by PIQUE described in chapter 5. The metric data resulting

from these test cases are used to drive the discussions and analysis of chapter 7. As

a reminder, the goals, questions, and metrics are as follows:

G01: Analyze a process of generating, validating, and operationalizing quality mod-

els for the purpose of improvement with respect to effort investment, experimentation,

and collaborative opportunity from the point of view of quality model researchers in

the context of static software system analysis.

Q01-01: How much effort does it take to generate a model using default

mechanisms?

Q01-02: How much effort does it take to generate a model using modified

mechanisms?

Q01-03: How much effort does it take to operationalize a model?

Q01-04: Do the models produced facilitate ease of evaluation by researchers?

Q01-05: Are the models produced valid?

91

G02: Analyze a process of generating and operationalizing quality models for the

purpose of improvement with respect to cost investment and acceptability from the

point of view of software development practitioners in the context of static software

system analysis.

Q02-01: Is it expensive to tune a model to a company’s needs?

Q02-02: How difficult is it to integrate quality model assessment into an

external, continuous integration system?

Q02-03: Can quality models be used such that their output values are trusted

by practitioners?

Table 6.1: Effort Metrics

M01: Man-hours taken to install PIQUE as a library resource.

M02: Man-hours taken to connect static analysis tools to PIQUE.

M03: Man-hours taken to design a quality model description .json file.

M04: Man-hours taken to prepare a benchmark repository.

M05: Man-hours taken to modify a default normalization function.

M06: Man-hours taken to modify a default utility function.

M07: Man-hours taken to modify a default weighting function.

M08: Man-hours taken to modify a default evaluation function.

M09: Man-hours taken to operationalize a derived quality model.

M10: Time taken to run model derivation (benchmark repo size = 44).

M11: Time taken to run system quality assessment.

M12: Time taken by a practitioner to express subjective quality definitions.

92

Table 6.2: Quality Assessment Metrics (boolean values)

M13: The change in quality assessment score decreases after introducing flaws.

M14: The change in quality assessment score increases after introducing improve-

ments.

M15: The change in quality assessment score reflects modified subjective quality

opinion changes.

Table 6.3: Design Metrics

M16: Model output exposure.

M17: Number of external dependencies needed for actualization.

M18: [True | False] Failure of assessment does not interfere with other system

processes

Table 6.4: Subjective Metrics (boolean values)

M19: The slope of assessed values over time matches practitioner opinion.

Table 6.5: Requirement Metrics (boolean values)

M20: The platform is open source.

6.2 Test Designs

The test cases fall in to one of three general categories: model construc-

tion/implementation effort, model understandability, and model assessment result

validity. Model construction and implementation tests involve tracking effort data

for the time and resources needed to design a model from scratch and run its

93

operationalized assessment on real software products. Model understandability

tests involve generating data about the output files of assessment results to verify

assessment component exposure and if the data expressed in the output files are easily

understood. Model assessment result validity tests use in vitro and in vivo exercises

to assert that a quality model’s values do represent negative or positive additions to

the software system. Table 6.6 presents the test cases discussed in this chapter, which

category they fall into, and which questions and metrics they are associated with.

Table 6.6: Test Case Associations

Test Case Category Assoc. questions Evaluated Metrics

TC-01 Construction/implementation

effort

Q01-01 M01-M04, M10

TC-02 Construction/implementation

effort

Q01-02 M05-M08

TC-03 Construction/implementation

effort

Q01-03 M09, M11

TC-04 Construction/implementation

effort

Q02-01 M12

TC-05 Construction/implementation

effort

Q02-02 M17, M18

TC-06 Model understandability Q01-04 M16

TC-07 Assessment result validity Q01-05 M13-M15

TC-08 Assessment result validity Q02-03 M19

94

6.3 Test Motivations

The tests preformed in this chapter are exercises which verify the functionality

of PIQUE instances. While formal experimentation would produce much stronger

data regarding the analysis of quality model process improvements, test cases are

used because the quality models presented in chapter 2 function too differently from

each other and PIQUE to be able to compare with acceptable internal and external

validity in the context of the stated goals. For example, many models do not feature

derivation, cannot be operationalized, or are no longer supported and cannot be

experimented upon. Instead, to analyze a process of generating, validating, and

operationalizing quality models for the purpose of improvement with respect to effort

investment, experimentation, and collaborative opportunity, metric data comes from

tests run on PIQUE quality model instances. A simple interpretation algorithm is

then used to evaluate the success or failure of the goals for the given PIQUE instance.

This approach leads to a fault in external validity because the metrics are tied

to a single PIQUE model design instance; however, given the rarity of platforms like

PIQUE and the need for groundwork in its domain, this fault is considered acceptable;

that is, the conclusions drawn from the test case results do not look to make claims of

generalization, but rather look to show that improvement is achieved in the focused

contexts of the goals stated at the beginning of this chapter, and that the platform

has valuable offerings to further research in the domain of quality modeling.

6.4 Model Construction and Implementation Effort Tests

TC-01: Derive a C# Model Using Default Mechanisms

Motivation Test case 01 is an exercise in model derivation effort when using the

default mechanisms provided by PIQUE. The test data is used to help evaluate the

95

components of goal G01 regarding the process of generating a quality model with

respect to effort investment. The GQM question relevant to this test case is Q01-01,

quantified using metrics M01-M04 and M10.

Given that many quality model approaches do not feature custom derivation,

this test verifies that PIQUE supports derivation within a reasonable bound of effort.

The test also provides a baseline for the additional effort needed to derive a model

with modified mechanisms.

Test Design and Results The test is performed by installing PIQUE as a library

resource, connecting third party C# static analysis tools, writing a C# quality model

design file, preparing a a benchmark repository of 44 C# open source projects,

and running the derivation process. The Roslynator tools, ISO/IEC 25010 model

description, and benchmark repository from section 5.2 are used. Throughout the

process, the effort taken to accomplish each task are recorded as metrics shown in

table 6.7 with effort data rounded up to the nearest whole man-hour or man-hour-day.

Table 6.7: TC-01 metric results

Metric Description Value

M01 Man-hours taken to install PIQUE as a library resource < 1 hr.

M02 Man-hours taken to connect static analysis tools to

PIQUE

∼ 40 hr.

M03 Man-hours taken to design a quality model description

.json file

∼ 40 hr.

M04 Man-hours taken to prepare a benchmark repository ∼ 16 hr.

M10 Time taken to run model derivation (benchmark repo

size = 44)

1 hour

96

TC-02: Derive a C# Model Using Modified Mechanisms

Motivation Test case 02 is an exercise in model derivation effort when modifying

the mechanisms provided by PIQUE. Given no other quality modeling platform

presented in background chapters 2 and 3 allow modification of the model’s internal

mechanisms, the motivation of this test is to verify PIQUE does feature modification

capabilities that work correctly and provide effort metrics. The resulting data is

used to help evaluate the components of goal G01 regarding the process of generating

a quality model with respect to effort investment and experimentation. The GQM

question relevant to this test case is Q01-02, quantified using metrics M05-M08.

Test Design This test case contains a sub-test for each modifiable functional

mechanism: normalization, utility function, weighting function, and the evaluation

function. To verify a modified mechanism functions correctly, a control C# model

is derived using no modified mechanisms. Each sub-test derives another C# model

with components identical to the control model except for the modified mechanism.

The two models are then compared: if their data is the same apart from the fields the

modified mechanism should affect, the test passes and effort metrics are recorded.

The sub-tests and control model use the ISO/IEC 25010 model description from

section 5.2, a benchmark repository containing the alphabetical first five projects from

appendix D, and the comparison matrices of appendix E. The default mechanisms

are shown in table 6.8.

TC-02A: Modified Normalizer

Design Sub-test 02A modifies the default normalizer provided by PIQUE as

italicized in table 6.9. The underlying idea behind the test is to create a new

normalizer class in a language-specific PIQUE project and link the new normalizer

97

Table 6.8: TC-02 default mechanisms

Mechanism Affected Node(s) Strategy

normalization measure nodes lines of code

utility function measure nodes 3-threshold linear interpolation

weighting function factor nodes AHP

evaluation function factor nodes weighted sums

measure nodes count of findings

to one measure node while all other nodes use the default normalization strategy. If

the resulting derived model displays different, non-normalized thresholds for only the

modified measure node compared to the control model, a valid modification of the

normalization mechanism has been achieved and effort metric M05 can be recorded.

Table 6.9: TC-02A normalization modification

Mechanism Affected Node(s) Strategy

normalization all measure nodes except

one

lines of code

normalization Format Smells measure

node

do not normalize

utility function measure nodes 3-threshold linear interpola-

tion

weighting function factor nodes AHP

evaluation function factor nodes weighted sums

measure nodes count of findings

To conduct this sub-test, a new class is made in PIQUE-CSHARP named

98

NoNormalizer which implements the INormalizer interface. By implementing the

INormalizer class, the normalize() function must be defined in NoNormalizer. The

strategy chosen here, as suggested by the class name, is to simply return the measure’s

in-value. This causes an effect of no normalization occurring only in nodes defined to

use the “no normalizer” strategy.

To connect the strategy to a specific measure node, the quality model design

.json file is modified. In the JSON measure object Format Smells, the following field

is added.

Format Smells: {

normalizer:

pique.csharp.evaluation.NoNormalizer ,

...

}

The sub-test passes if the new threshold values for the Format Smells measure

node are the minimum, mean, and maximum number of diagnostic findings found in

the benchmark repository (these values are not normalized by lines of code).

Results Table 6.10 shows the comparison of the threshold results for the measure

Format Smells after model derivation. Specifically, the values represent the minimum,

mean, and maximum number of static analysis tool findings of the diagnostics

connected to Format Smells across the five benchmark projects. The threshold values

for all other measures remained the same between the two models. The effort metric

is recorded in table 6.11.

TC-02B: Modified Utility Function

99

Table 6.10: TC-02A Format Smells thresholds results

Control Model No Normalizer Strategy Sub-test Passed?

t1 = 0.00107901 t1 = 36.0 X

t2 = 0.04586979 t2 = 5176.0 X

t3 = 0.08338711 t3 = 11398.0 X

Table 6.11: TC-02A metric result

Metric Description Value

M05 Man-hours taken to modify a default normalization function 1 hour

Design Sub-test 02B modifies the strategy used during the benchmarking phase

that generates utility functions as shown in table 6.12 in italics. By default,

PIQUE uses the benchmark repository to collect measure values across every

benchmark project, removes outliers, and calculates three thresholds for each measure

representing the min, median, and max values seen. Linear interpolation is then

applied to the thresholds to output a benchmarked utility value of a given measure.

The modified slope utility function used in this test will find the median measure

values and return 1.0 if a measure is above or equal to the median and 0.0 if it is

below. If the threshold.json file output by PIQUE has only one threshold and if the

measure evaluation values represent the new expected binary output, the sub-test is

successful and metric M06 can be recorded.

To construct the test, a new class is made in PIQUE-CSHARP named

LinearUtility implementing the IUtilityFunction interface. LinearUtility is then

written to extract the median values of the measures of all nodes across all benchmark

projects (after normalization but before utility functions are applied). LinearUtility

100

Table 6.12: TC-02B utility function modification

Mechanism Affected Node(s) Strategy

normalization measure nodes lines of code

utility function measure nodes binary over-under median

weighting function factor nodes AHP

evaluation function factor nodes weighted sums

measure nodes count of findings

also defines its utilityStrategy() method to return 1.0 if its input is above the

measure’s threshold, and 0.0 otherwise. To alert PIQUE of the new class, the global

config field in the quality model design file is updated to configure the change in

benchmarking strategy:

{

name: CSharp ISO25k Quality Model ,

global_config: {

utility_strategy: LinearUtility

},

...

}

Finally, the quality model is used to assess the same system as assessed by the

control model. The results–a few examples shown in table 6.13–match the prediction:

all measure values are flattened to either zero or one depending if their assessed values

were below or above the benchmarked mean. All other non-dependent quality model

values stayed the same. The effort metric is recorded in table 6.14

101

Table 6.13: TC-02B utility function results

Measure Control Model Binary Utility Sub-test Passed?

Format Smells t1 = 0.0010 X

t2 = 0.4586 t1 = 0.4586 X

t3 = 0.8338 X

value = 0.2740 value = 0.0 X

Funct. Syn. Smells t1 = 9.6 ∗ 10−4 X

t2 = 0.0013 t1 = 0.0013 X

t3 = 0.0014 X

value = 0.9520 value = 1.0 X

Table 6.14: TC-02B metric result

Metric Description Value

M06 Man-hours taken to modify a default utility function 1 hour

TC-02C: Factor Weighting Modification

Design Sub-test 02C modifies the weighting strategy used during model derivation.

The default function uses the analytical hierarchy process with linguistic values as

described in chapter 4.2. The modification strategy will put equal weighting across

each node’s children for every factor node in the hierarchy as represented by italics in

table 6.15. A successful modification is easy to verify: if, for each factor, the derived

weights of the factor equals wi = 1
|children| , the sub-test passes and metric M07 is

recorded.

The test is designed by creating a new class in PIQUE-CSHARP named

EqualWeighter which implements the IWeighter interface. EqualWeighter then

102

Table 6.15: TC-02C factor weighting modification

Mechanism Affected Node(s) Strategy

normalization measure nodes lines of code

utility function measure nodes 3-threshold linear interpolation

weighting function factor nodes all children equal

evaluation function factor nodes weighted sums

measure nodes count of findings

overrides the elicitateWeights() interface method instructing PIQUE to set the

weights of every factor to the average value of the number of the factor’s incoming

children.

Results The results, as shown in table 6.16, verify the expected difference in factor

weighting between the two models. All other independent values stay the same. The

effort metric is recorded in table 6.17

Table 6.16: TC-02C factor weighting results

Control Exp. Weights EqualWeighter Weights Sub-test Passed?

Compatibility = 0.0537 Compatibility = 0.1428 X

Maintainability = 0.1822 Maintainability = 0.1428 X

Perf. Efficiency = 0.151 Perf. Efficiency = 0.1428 X

Portability = 0.0816 Portability = 0.1428 X

Reliability = 0.4327 Reliability = 0.1428 X

Security = 0.0156 Security = 0.1428 X

Usability = 0.0831 Usability = 0.1428 X

103

Table 6.17: TC-02C metric result

Metric Description Value

M07 Man-hours taken to modify a default weighting function 1 hour

TC-02D: Modified Evaluation Function

Design Sub-test 02D modifies the evaluation function used by the quality model

during product assessment. By default, all factor nodes evaluate using the weighted

sums of their child node values, and measure nodes evaluate using a count of its

relevant findings (after applying normalization and utility functions).

This sub-test case simulates a potential use of QATCH in future research.

Consider the topic of quality assessment in the domain of security. A critical software

vulnerability has just been announced in a news letter that attackers will likely target

on a practitioner’s system. The vulnerability is detectable by static analysis tools.

The practitioner states the potential effects of this flaw existing on their system is so

dangerous that the quality assessment system needs to score any measure node aware

of the vulnerability finding to 0.0 if the vulnerability is detected.

This sub-test simulates that Diagnostic node RCS1206 is the static analysis

diagnostic relevant to the critical vulnerability. As italicized in table 6.18, this sub-test

changes the evaluation function of measure nodes with critical diagnostic RCS1206

as a child to evaluate to 0 if one or more findings of RCS1206 occurs during product

assessment.

The sub-test is written by creating a new class in PIQUE-CSHARP named

SecurityEvaluator which implements the IEvaluator interface. SecurityEvaluator

is then linked to every measure node in the quality model design file. The pseudocode

in the SecurityEvaluator.evalStrategy() method is as follows:

104

Table 6.18: TC-02D evaluation strategy modification

Mechanism Affected Node(s) Strategy

normalization measure nodes lines of code

utility function measure nodes 3-threshold linear interpolation

weighting function factor nodes AHP

evaluation function factor nodes weighted sums

measure nodes 0 if critical diagnostic found

if numFindings(RCS1206) > 0:

set this.measure.evaluation to 0.0

else:

run DefaultEvaluator.evalStrategy ()

Product assessment is performed on a system named FASTER1–an open source

C# system with 62,000 lines of code–which is known to have at least one finding of

RCS1206. The RCS1206 diagnostic is connected strictly to the Functional Syntax

Smells measure; thus, the sub-test passes if the Functional Syntax Smells measure’s

node value has a non-zero value when using the default evaluation strategy and has

a value of 0.0 using the modified evaluation strategy. All other independent node

values must stay the same.

Results Table 6.19 shows the difference in evaluation when one model is given

instruction to use the unique SecurityEvaluator evaluation strategy. A previously

high scoring measure now evaluates to 0.0 strictly because of a single finding while the

1https://github.com/microsoft/FASTER

https://github.com/microsoft/FASTER

105

other independent model values had matching values. The effort metric is recorded

in table 6.20.

Table 6.19: TC-02D measure node result

Measure Default Evaluation Modified Evaluation Sub-test Passed?

Fun. Syntax “value”: 0.9520 “value”: 0.0 X

Table 6.20: TC-02D metric result

Metric Description Value

M08 Man-hours taken to modify a default evaluation function 1 hour

TC-03: Operationalize a C# Model

Motivation Test case 03 is a validation exercise targeting quality model opera-

tionalization effort. It is necessary to verify that PIQUE-derived quality models can

be operationalized, and data regarding effort to operationalize is needed. This test

case addresses GQM question Q01-03 by producing metrics M09 and M11.

Test Design and Results To verify operationalization success, this test runs

PIQUE quality assessment on a C# project and verifies the assessment output scores

are correct given known, detectable findings in the product under assessment. The

ISO/IEC 25010 C# quality model derived from section 5.2 is used as the assessment

model, and a custom C# solution is set as the product under assessment. The

product under assessment has 58 total lines of code, contains one .cs class, and is

constructed to contain exactly one finding detectable by the quality model as shown

in the following code snippet.

106

{

...

var rnd = new Random ();

byte[] buffer = new byte [16];

rnd.NextBytes(buffer);

return BitConverter.ToString(buffer);

...

}

This block of code triggers the SCS0005 diagnostic from the Security Code

Scan tool.2 In the quality model, diagnostic SCS0005 is a child of only the measure

Encryption Smells, and Encryption Smells is a child of only the product factor

Security. Given SCS0005 should be the only detected finding after assessment and

all findings has negative impact on the quality score, the test is designed to pass if

the following assertions are met:

� The Encryption measure’s quality score is 0.0.

� The Encryption measure contains exactly one finding named SCS0005.

� The Security product factor’s quality score is less than 1.0.

� All other product factor’s have a quality score of 1.0.

If the test passes, effort metrics M09 and M11 are recorded.

Assessment is run using the packaged form of PIQUE-CSHARP3 (chapter 5) with

the quality model location and system under assessment directory as arguments. The

2https://security-code-scan.github.io
3PIQUE-CSHARP packages and deploys as a runnable .jar file.

https://security-code-scan.github.io

107

assessment output file is used to run test assertions as shown in table 6.21 with effort

metrics provided in table 6.22.

Table 6.21: TC-03 assessment results

Model Node Output JSON Data Test Passed?

Encryption Measure positive impact: false X

parents: [Encryption] X

findings: [SCS0005 @line 13] X

evaluation: 0.0 X

Security Product Factor evaluation: 0.0 X

All Other Product Factors evaluation: 1.0 X

Table 6.22: TC-03 metric results

Metric Description Value

M09: Man-hours taken to operationalize a derived quality

model.

1 hour

M11: Time taken to run system quality assessment. < 1 hour

TC-04: Practitioner Interaction Effort

Motivation Thus far, tests and validations have been performed from the perspec-

tive of the researcher, but in order to address goal G02, effort exercises need to be

performed from the practitioner’s perspective. Test case 04 utilizes a joint effort

with a local company to produce data regarding effort required to express subjective

quality opinion usable by PIQUE model derivation operations. The gathered data

helps answer question Q02-01 through use of metric M12.

108

Test Design and Results The test involves interactions with a local company in

which the basic PIQUE quality model concepts are explained, then a practitioner

fills in an AHP comparison matrix.4 The quality model used is the ISO/IEC 25010

C# quality model design from chapter 5, and the AHP matrix used represents the

importance ratings from the quality aspect to total quality index layer.

The resulting comparison matrix as entered by the practitioner is given in table

6.23 where the cell values are linguistic comparators of the importance of the row

entry compared to the column entry. The acronyms represent {VL: very low. SL:

somewhat low. EQ: equal. SH: somewhat high. VH: very high}. The effort metric

M12, recorded after a successful table entry by the practitioner, is shown in table

6.24. Note that expended effort for other AHP matrices can vary greatly depending

on the context and environment. This threat to validity is addressed further in the

discussions of chapter 7.

Table 6.23: TC-04 comparison matrix result

TQI Comp. Maint. Perf. Port. Rel. Sec. Use.

Comp. - SL SL SL VL VH EQ

Maint. - - EQ SH SL VH SH

Perf. - - - SH SL VH EQ

Port. - - - - VL VH EQ

Rel. - - - - - VH SH

Sec. - - - - - - VL

Use. - - - - - - -

4AHP matrices are discussed in section 4.2.

109

Table 6.24: TC-04 metric result

Metric Description Value

M12 Time by one practitioner to enter subjective quality

definitions

2 hours

TC-05: External System Integration

Motivation An aspect of goal G02 is the process of quality model operationaliza-

tion from the point of view of software development practitioners with the associated

question Q02-02, How difficult is it to integrate quality model assessment into an

external, continuous integration system? This is a valuable question to address due

to the importance of a quality assessment approach being compatible and usable by

other users. The metrics chosen to quantify Q02-02 are M17 and M18.

Metric M17, Number of external dependencies needed for actualization, is used

as a way to represent the compatibility of the assessment engine when considering

different operating systems and unknown environments. The GQM interpretation

algorithm used in section 7.2 states that goal G02 has failed if the operationalization

process requires any more than one specific external dependency: the Java Runtime

Environment.

The boolean metric M18, Failure of assessment does not interfere with other

system processes, is chosen to address a crucial aspect of usability and acceptability

of quality assessment engines expressed by practitioners: quality assessment should

not interfere with normal software development processes already in place. Given

the persisting distrust of software quality processes in practice [43], it is vital

these processes do not cause problems with the system under assessment. Quality

assessment–a vital component of software engineering processes–will likely not find

110

acceptance in practice if there is concern its adoption will cause additional costs and

concerns.

Description This test runs an exercise deploying a language-specific operational-

ization of PIQUE into the environment of a local company’s software development

life cycle. After successful deployment and product quality assessment, the number of

external dependencies required and obstruction of the normal development life cycle

are evaluated.

To deploy PIQUE-CSHARP, the system is packaged as a Java .jar file. The

JAR’s manifest defines a main class, Assessment which takes a .properties file as

input and uses the PIQUE Runner component to activate quality assessment on a

target system. The .properties file defines all necessary configurations such as the

location of the system under evaluation, the quality model file to use, and where to

place assessment result files. All necessary external static analysis tools are packaged

with the .jar file as a resource.

The industrial partner interacting with this exercise uses GitLab5 for their

development. To integrate PIQUE-CSHARP quality assessment, a simple, one-line,

PowerShell script build step within their continuous integration (CI) pipeline process

is added as follows:

java -jar piqueCSharpAssessment.jar config.properties

Two cases are checked in order for the test to pass:

� Quality assessment is successfully run as part of the CI pipeline and a quality

assessment output file is generated with expected values.

5https://gitlab.com/

https://gitlab.com/

111

� Quality assessment fails, but the other CI pipeline processes complete without

errors.

Assessment is run twice: PIQUE-CSHARP normal assessment, and PIQUE-

CSHARP assessment with a bug intentionally introduced causing the assessment

process to fail with errors. If the tests pass, metric values are recorded in table 6.25.

Results Given that packaged Java applications are designed to run on any operating

system, the only necessary dependency needed was Java (version 8+). Because

assessment is run as as single pipeline step whose results no other process depends

on, the CI pipeline was configured to continue its standard processes regardless of the

success or failure of the quality assessment step.

Table 6.25: TC-05 metric results

Metric Description Value

M17 Number of external dependencies needed for actualization 1

M18 [True | False] Failure of assessment does not interfere with

other system processes

True

6.5 Model Understandability Tests

TC-06: Investigate Model Output Accessability

Motivation Test case 06 addresses G01’s goal of improvement of quality model

processes with respect to effort investment as stated by question Q01-04: Do the

models produced facilitate ease of evaluation by researchers? The output file generated

by a quality model’s processes is the most accessible artifact used by researchers for

process evaluation. By comparing the amount of information a researcher may want

112

to see to what is actually exposed, metric data can be obtained to quantify effort

investment concepts.

Test Design and Results To evaluate the accessability of model process in-

formation, a metric is introduced, exposure, defined to be the ratio of the total

number of model-related information used during runtime compared to the amount

of information exposed by the output file. Specifically, this information is the internal

mechanisms, objects, and primitive values used by the quality engine during model

derivation or product quality assessment.

The test case is run by deriving a model and running quality assessment on a

project while using the debugger to record the mechanisms, objects, and evaluations

relevant to quality processes at each step of operation. These values are compared to

the information presented by the derivation and assessment output files. The data

is shown in table 6.26 and discussion of the exposure ratio interpretation is given in

chapter 7.

The model is derived using the ISO/IEC C# quality model description used in

section 5.2, the Roslynator tools described in appendix C, the benchmark repository

of appendix D, and the comparison matrices of appendix E. The product under

assessment is a custom C# solution with one class, 58 lines of code, and an injected

finding detectable by Security Code Scan with diagnostic name SCS0005.

Table 6.26: PIQUE output exposure test

Internal Mechanisms, Objects, Values Exposed?

Static analysis tool objects

Static analysis tool names X

Benchmarking strategy name X

Benchmarking strategy logic

113

Benchmarking output data X

Weighting strategy name X

Weighting strategy logic

Weighting output data X

Quality model X

Model node name X

Model node final value X

Model node evaluation strategy name X

Model node evaluation strategy logic

TQI node X

TQI incoming weights X

Quality Aspect nodes X

Quality Aspect incoming weights X

Product Factor nodes X

Product Factor incoming weights X

Measure nodes X

Measure node +/− impact X

Measure node normalizer X

Measure node incoming Diagnostics X

Measure node utility function thresholds X

Measure node value before normalization

Measure node value before utility function

Diagnostic nodes X

Diagnostic associated tool name X

Diagnostic incoming Findings X

Finding nodes X

114

Finding file path X

Finding line number X

Finding character number X

Finding numerical value X

Finding additional info (e.g. severity) X

Normalizer object

Benchmarker object

Evaluator object

Project X

Project name X

Project lines of code X

Project path X

Project’s quality model X

The resulting ratio is M16 = exposure = exposed
total

= 35
43

= 0.81

6.6 Model Assessment Result Validity Tests

TC-07: Introduce In Vitro Product Changes

Motivation and Design In order to analyze the process of validating and

operationalizing quality models, a platform has been presented that can facilitate

comparisons of quality modeling approaches, but the platform must be tested for

accuracy in quality assessment. Question Q01-05, are the models produced valid,

is addressed using three in vitro exercises: (1) validate that flaws introduced to a

system cause a negative change in quality; (2) validate that fixes introduced to a

system cause a positive change in quality; and (3) validate that a subjective change

in quality priorities are accurately reflected by the system. These three exercises are

115

separated into three sub-tests: TC-07A, TC-07B, and TC-07C which generate data

values for metrics M13, M14, and M15 respectively.

Control Values The control assessment provides an environment and assessment

values as a base line of comparison for the results of TC-07A through TC-07C. The

model for assessment is derived using the ISO/IEC C# quality model description used

in section 5.2, the Roslynator tools described in appendix C, the benchmark repository

of appendix D, and the comparison matrices of appendix E. All default mechanisms

are used: 3-threshold linear interpolation utility function, AHP for subjective factor

weighting, and normalization by lines of code.

The C# project under assessment is hand-tailored for sake of in vitro testing.

One unique diagnostic finding is injected for the measures Format Smells, and

Resource Handling Smells. Filler lines of code are added or removed to keep the

lines of code the same across each sub-test. In total, the hand-tailored C# solution

has 114 lines of code, one class, and a method for each injected finding.

The model node values resulting from this assessment are shown in table 6.27.6

Note that the quality scores of the measures with findings will be low for this project

due to flaws injected in to a project with very few lines of code: when normalized by

lines of code, even one finding will likely bring a measure value below the minimum

benchmarked threshold.

Table 6.27: TC-07 control assessment values

Node Type Node Name Value

TQI Total Quality 0.8691

Quality Aspect Perf. efficiency 0.7771

- Portability 0.7808

6For brevity, incoming edge weight values are not included, but can be found in appendix F.1.

116

Table 6.27: TC-07 control assessment values

Node Type Node Name Value

- Maintainability 0.9392

- Compatibility 0.8411

- Reliability 0.8778

- Security 0.8856

- Usability 0.9399

Product Factor Func. Syntax 1.0

- Format 0.8196

- Resource Handling 0.0895

- DT Integrity 1.0

- Documentation 1.0

- IO Handling 1.0

- Exception Handling 1.0

- Encryption 1.0

- Structure 1.0

Measure EH Smells 1.0

- FS Smells 1.0

- Encryption Smells 1.0

- Doc. Smells 1.0

- Format Smells 0.8196

- DTI Smells 1.0

- RH Smells 0.0895

- IOH Smells 1.0

- Structure Smells 1.0

117

TC-07A: Inject Flaws Sub-test TC-07A evaluates whether a model generated by

PIQUE correctly responds to the introduction of poor quality lines of code. Using the

environment of the control assessment, one additional code smell is injected in the C#

project associated to the following measures: Exception Handling Smells, Encryption

Smells, Documentation Smells, DTI Smells, and Structure Smells. The test records

the change in node values given the introduction of flaws as shown in table 6.28.

Given the quality aspect to product factor layer is fully connected, the test

expects all quality aspects values to decrease. Each product factor has exactly one

child–a measure sharing the same name–so the test expects only the product factors

and measures associated with Exception Handling, Encryption, Documentation, DTI,

and Structure to decrease in value. All other values should stay the same. The

resulting metric data from this test is given in table 6.29.

Table 6.28: TC-07A node values after introducing flaws

Node Type Node Name Control Value Value After

TQI Total Quality 0.8691 0.2742

Quality Aspect Perf. efficiency 0.7771 0.3082

- Portability 0.7808 0.3739

- Maintainability 0.9392 0.3627

- Compatibility 0.8411 0.2834

- Reliability 0.8778 0.1795

- Security 0.8856 0.3247

- Usability 0.9399 0.3989

Product Factor Func. Syntax 1.0 1.0

- Format 0.8196 0.8196

- Resource Handling 0.0895 0.0895

118

Table 6.28: TC-07A node values after introducing flaws

Node Type Node Name Control Value Value After

- DT Integrity 1.0 0.0

- Documentation 1.0 0.0

- IO Handling 1.0 1.0

- Exception Handling 1.0 0.0

- Encryption 1.0 0.0

- Structure 1.0 0.0

Measure EH Smells 1.0 0.0

- FS Smells 1.0 1.0

- Encryption Smells 1.0 0.0

- Doc. Smells 1.0 0.0

- Format Smells 0.8196 0.8196

- DTI Smells 1.0 0.0

- RH Smells 0.0895 0.0895

- IOH Smells 1.0 1.0

- Structure Smells 1.0 0.0

Table 6.29: TC-07A metric result

Metric Description Value

M13: The change in quality assessment score decreases after

introducing flaws.

True

TC-07B: Inject Fixes Sub-test TC-07B evaluates whether a model generated by

PIQUE correctly responds to the introduction of quality fixes in a software system.

119

Given the environment of the control assessment, the code smell relevant to the

Resource Handling measure is fixed in the C# project. The test records the change

in node values given these quality improvements as shown in table 6.30.

Given the quality aspect to product factor layer is fully connected, the test

expects all quality aspects values to increase. Each product factor has exactly one

child–a measure sharing the same name–so the test expects only the product factor

and measure associated with Resource Handling value to increase. All other values

should stay the same. Table 6.31 shows the resulting metric data.

Table 6.30: TC-07B node values after fixing a flaw

Node Type Node Name Control Value Value After

TQI Total Quality 0.8691 0.9893

Quality Aspect Perf. efficiency 0.7771 0.9963

- Portability 0.7808 0.9948

- Maintainability 0.9392 0.9684

- Compatibility 0.8411 0.9960

- Reliability 0.8778 0.9978

- Security 0.8856 0.9966

- Usability 0.9399 0.9683

Product Factor Func. Syntax 1.0 1.0

- Format 0.8196 0.8196

- Resource Handling 0.0895 1.0

- DT Integrity 1.0 1.0

- Documentation 1.0 1.0

- IO Handling 1.0 1.0

- Exception Handling 1.0 1.0

120

Table 6.30: TC-07B node values after fixing a flaw

Node Type Node Name Control Value Value After

- Encryption 1.0 1.0

- Structure 1.0 1.0

Measure EH Smells 1.0 1.0

- FS Smells 1.0 1.0

- Encryption Smells 1.0 1.0

- Doc. Smells 1.0 1.0

- Format Smells 0.8196 0.8196

- DTI Smells 1.0 1.0

- RH Smells 0.0895 1.0

- IOH Smells 1.0 1.0

- Structure Smells 1.0 1.0

Table 6.31: TC-07B metric result

Metric Description Value

M14: The change in quality assessment score increases after intro-

ducing improvements.

True

TC-07C: Modify Subjectivity Given that subjective quality awareness is a vital part

of the quality model derivation process, the validity of its mechanism used in PIQUE

should be evaluated. By default, PIQUE uses the analytical hierarchy process in the

form of handwritten comparison matrices to introduce subjectivity to the model’s

factor edges in an automated fashion.

121

Sub-test TC-07C generates data regarding the difference in quality model output

scores when changing the comparison matrix configurations at the quality aspect level.

The control comparison matrix shown in table 6.32 values security above all other

quality factors while the rest are set as neutral priority with each other. To test

the opposite preference, the matrix shown in table 6.33 modifies security as least

meaningful in the context of total software quality while the other quality aspects are

valued equally with each other.7

Table 6.32: TC-07C TQI-quality aspect comparison matrix (control)

TQI Comp. Maint. Perf. Port. Rel. Sec. Use. Derived Weights

Comp. - EQ EQ EQ EQ VL EQ 0.0667

Maint. - - EQ EQ EQ VL EQ 0.0667

Perf. - - - EQ EQ VL EQ 0.0667

Port. - - - - EQ VL EQ 0.0667

Rel. - - - - - VL EQ 0.0667

Sec. - - - - - - VH 0.6

Use. - - - - - - - 0.0667

Next, a system under assessment is designed to have strictly one unique

Encryption Smells finding. An encryption finding is used because the measure,

Encryption Smells measures the Encryption product factor which has the highest

weighted impact on the Security quality aspect according to the quality model used

for this sub-test.

Given the quality aspect weights of tables 6.32 and 6.33, the test expects the

7The derived weights come from running the model derivation process on a small benchmark
repository using the alphabetical first five systems from appendix D, but otherwise the same
environment as the TC-07 control model is used.

122

Table 6.33: TC-07C TQI-quality aspect comparison matrix (modified environment)

TQI Comp. Maint. Perf. Port. Rel. Sec. Use. Derived Weights

Comp. - EQ EQ EQ EQ VH EQ 0.1636

Maint. - - EQ EQ EQ VH EQ 0.1636

Perf. - - - EQ EQ VH EQ 0.1636

Port. - - - - EQ VH EQ 0.1636

Rel. - - - - - VH EQ 0.1636

Sec. - - - - - - VL 0.0182

Use. - - - - - - - 0.1636

Table 6.34: TC-07C quality evaluations given different AHP security preferences

Node Name Control Value Value After

Total Quality Index 0.8231 0.9731

Perf. efficiency 0.9734 0.9734

Portability 0.9739 0.9739

Maintainability 0.9875 0.9875

Compatibility 0.9756 0.9756

Reliability 0.9884 0.9884

Security 0.7196 0.7196

Usability 0.9689 0.9689

injected finding to cause the TQI score of the modified test to be much higher than

the TQI score of the control test. The values of the quality aspects (performance

efficiency, portability, maintainability, etc.) are expected to not change because the

difference in derived weights only applies to the weighted sum evaluation of the Total

123

Quality Index node value. The evaluated factor node values are given in table 6.34

with table 6.36 showing the metric data recorded.

TC-08: Quality Output Trustability

Motivation As expressed by goal G02 and question Q02-03, the final, industry-

focused test case relates to the trustability of the quality values output after

assessment on an industry partner’s software system. The perspective taken in

this thesis is that quality values alone are meaningless. A quality value only has

meaning when given context. Specifically, this context is the change in quality

assessment values relative to their past values. Given the output values from quality

model assessments still remain distrusted by practitioners [43], an exercise showing

a PIQUE-built model has capability to provide meaningful, trustable, or relatable

values is an encouraging step forward.

Test Design and Results Due to the subjective nature of trust, this exercise

uses interaction with a local, industry partner. The test compares PIQUE quality

assessment results against practitioner opinion regarding the change in quality scores

over a series of product changes.

The model for assessment is derived using the ISO/IEC C# quality model

description used in section 5.2, the Roslynator tools described in appendix C, the

benchmark repository of appendix D, and the comparison matrices of appendix E.8 All

default mechanisms are used: 3-threshold linear interpolation utility function, AHP

for subjective factor weighting, and normalization by lines of code. After deriving the

model, the PIQUE assessment engine is packaged as a .jar file and introduced to the

industry partner’s source code management system.

8The comparison matrix at the TQI to quality aspect level represents the subjective quality
opinions of the industry partner of this test.

124

Quality assessment is run over a collection of historical product changes. These

histories, shown in table 6.35, are selected by the practitioner with the intention that

each history, subjectively, represents notable positive changes in quality. Detailed

date and commit information is not provided to maintain anonymity. The right

columns of table 6.35 show the PIQUE score of the start commit, the finish commit,

and whether PIQUE also output a positive change in quality score.

Table 6.35: Commit histories of subjectively perceived improvement

Start Finish # Commits S-Quality F-Quality Pos. slope?

Oct. 22 Dec. 04 157 0.4335 0.4102

Jan. 21 Feb. 10 171 0.4087 0.4186 X

Jan. 30 Apr. 15 608 0.4082 0.3840

Mar. 25 Mar. 27 26 0.3826 0.3836 X

Table 6.36: TC-08 metric result

Metric Description Value

M19: [True | False] The slope of assessed values over time matches

practitioner opinion.

False

The relevant metric to this test, M19, evaluates to true if all commit history

exercises have the same slope as the practitioner’s opinion. Given the histories of

October 22-December 04 and January 30-April 15 did not return a desired positive

slope of quality change, M19 evaluates to false in the context of this test case.

Practitioner opinion of quality change versus objective quality change may not always

align, so the results of this test case deserve further discussion, given in section 7.2.

125

6.7 Summary of Results

The test cases of this chapter utilize PIQUE to generate data for use in evaluating

the GQM components described in chapter 1.2. The metrics are summarized in

the following table and used to drive the discussion of chapter 7. Chapter 7 uses

improvement algorithms parameterized by the metrics of this chapter to assess the

success or failure of the given GQM goals.

Table 6.37: Effort Metrics

Metric Description Value

M01 Man-hours taken to install PIQUE as a library resource. < 1 hour

M02 Man-hours taken to connect static analysis tools to PIQUE. 1 week

M03 Man-hours taken to design a quality model description .json

file

1 week

M04 Man-hours taken to prepare a benchmark repository (n =

44).

2 days

M05 Man-hours taken to modify a default normalization func-

tion.

1 hour

M06 Man-hours taken to modify a default utility function. 1 hour

M07 Man-hours taken to modify a default weighting function. 1 hour

M08 Man-hours taken to modify a default evaluation function. 1 hour

M09 Man-hours taken to operationalize a derived quality model. 1 hour

M10 Time taken to run model derivation (benchmark repo size

= 44).

1 hour

M11 Time taken to run system quality assessment. < 1 hour

126

Table 6.37: Effort Metrics

Metric Description Value

M12 Time taken by a practitioner to enter subjective quality

definitions.

2 hours

Table 6.38: Quality Assessment Metrics

Metric Description Value

M13 The change in quality assessment score decreases after

introducing flaws.

True

M14 The change in quality assessment score increases after

introducing improvements.

True

M15 The change in quality assessment score after modifying

subjective quality opinion reflects the new prioritization.

True

Table 6.39: Design Metrics

Metric Description Value

M16 Model output exposure. 0.81

M17 Number of external dependencies needed for actualization. 1

M18 [True | False] Failure of assessment does not interfere with

other system processes

True

127

Table 6.40: Practitioner Subjectivity Metric

Metric Description Value

M19 [True | False] The slope of assessed values over time matches

practitioner opinion.

False

Table 6.41: Requirement Metrics

Metric Description Value

M20 [True | False] The platform is open source. True

128

CHAPTER SEVEN

DISCUSSION

Two closely related goals are presented in the opening chapter related to

analyzing the process of generating and using quality models from the perspective

of researchers and industry. To evaluate these processes, a platform for quality model

generation and operationalization is presented in chapter 4 and actualized for the

C# language in chapter 5. These structures are used to run a variety of exercises in

chapter 6 to validate the system and generate metric data. The produced metrics are

now reviewed in the context of the goals and questions originally asked along with a

general discussion of the systems presented in this thesis.

This chapter uses the GQM approach to drive discussion due to the lack of

comparability of the models presented in this thesis (chapters 2, 3, and 4) when

considering effort investment, cost investment, experimentation capabilities, and

collaborative opportunity. Given that operationalized quality modeling approaches

are software products, the GQM approach provides a way to make comparisons using

metrics and interpretation algorithms as described by Basili [6].

The interpretation algorithms used to evaluate improvement in this section

are rudimentary and apply only to the model instance that generated the metrics;

however, achieving goals of improvement for quality modeling processes–even with

weak metrics–is valuable given the young state of research in the domain.

7.1 Goal 01: The Research Perspective

Using the goal/question/metric (GQM) paradigm of [6], goal one states,

“Analyze a process of generating, validating, and operationalizing quality

129

models for the purpose of improvement with respect to effort investment,

experimentation, and collaborative opportunity from the point of view

of quality model researchers in the context of static software system

analysis.”

The following sections answer the questions relevant to goal G01 using simple

interpretation algorithms. Finally, the results obtained for G01 are discussed using

the evaluations of questions Q01-01 through Q01-04.

Model Generation Effort

Question Q01-01, how much effort does it take to generate a model using default

mechanisms, is asked to analyze the process of model generation with respect to

effort investment. Given this question is asked from the point of view of quality

model researchers, the question is targeting the scenario of researchers desiring to

generate a novel model that does not have satisfying supporting work in place to

assist its construction. The relevant metric results from the test cases are M01-M04

and M10 as shown in table 7.1.

Q01-01 Interpretation Algorithm Improvement regarding model generation is

interpreted in context of the Quamoco project due to their similarities in underlying

mechanisms and model designs. The Quamoco project [42] involved a team size of

over twenty researchers using an iterative development process that took over a year

to complete an acceptable model. Given Quamoco is a recent, novel quality modeling

attempt that tries to solve many of the same problems PIQUE considers, it can

function as a base line of effort investment from which to improve upon.

Directly comparing the effort involved in novel model creation using PIQUE

versus the experiences of the QUAMOCO team is a threat to internal and external

130

Table 7.1: Q01-01 metrics

Metric Description Value

M01 Man-hours taken to install PIQUE as a library resource. < 1 hour

M02 Man-hours taken to connect static analysis tools to

PIQUE.

1 week

M03 Man-hours taken to design a quality model description

.json file.

1 week

M04 Man-hours taken to prepare a benchmark repository. 2 days

M10 Time taken to run model derivation (benchmark repo

size = 44).

1 hour

validity because the processes and rigor used in each approach vary greatly, so the

interpretation algorithm provides a weak assessment of improvement, but it is still

valuable considering the quality improvement paradigm of [6]. The improvement

algorithm of listing 7.1 compares the sum of effort metrics M01-M04 and M10 to an

effort window of 12 months. Twelve months or less of effort is chosen due to the effort

of over one year realized by the Quamoco project.

Listing 7.1: Q01-01 interpretation algorithm

1 target = 12 months

2 repeat until best possible target achieved

3 if (M01 + M02 + M03 + M04 + M10)

4 < target then

5 method better than history

6 target = M01 + M02 + M03 + M04 + M10

7 >= target then

8 M_x = max(M01 , M02 , M03 , M04 , M10)

131

9 reduce effort necessary for M_x

Q01-01 Discussion From the metrics generated by test case TC-01 using PIQUE,

M01 +M02 +M03 +M04 +M10 < 3 weeks resulting in a method better than the

target history. Given the test case involved operationalizing a new model in C# with

new tools and approaches, the tasks of identifying and connecting C# static analysis

to a hand-made model description was the most time consuming task. The strength

of utilizing PIQUE for new quality model derivations is its capability to automate

the other processes necessary to operationalize a quality model. By only needing to

define the language-specific or novel components involved in model derivation such

as the C# tools and the model structure through either text-based entries or simple

interface implementations, a notable effort-saving advantage is seen through use of

PIQUE.

Model Generation Effort (Modified Mechanisms)

Question Q01-02, how much effort does it take to generate a model using modified

mechanisms, is also asked to analyze the process of model generation with respect

to effort investment; however, going beyond the scenario of question Q01-01, this

question targets the point of view of quality model experimentation. For example,

consider the scenario of an existing QATCH quality model, but a researcher desires to

re-derive the model after modifying some of the internal mechanisms for experimental

pursuits. The relevant metrics are ones that quantify the effort needed to modify the

internal mechanisms: metrics M05 through M08 shown in table 7.2.

Q01-02 Interpretation Algorithm Improvement regarding modification of in-

ternal mechanisms is interpreted in the context of the features presented by the

132

Table 7.2: Q01-02 metrics

Metric Description Value

M05 Man-hours taken to modify a default normalization

function.

1 hour

M06 Man-hours taken to modify a default utility function. 1 hour

M07 Man-hours taken to modify a default weighting func-

tion.

1 hour

M08 Man-hours taken to modify a default evaluation func-

tion.

1 hour

other quality models and frameworks presented in chapters 2 and 3. None of the

reviewed approaches directly support mechanism modification. For the open source

projects, one could modify the source code to alter an intended mechanism such as

replacing linear threshold calculations with a more complex curve. However, given

the reviewed approaches are designed to function as-is, such changes will often lead

to a time consuming implementation introducing bugs and compilation errors.

Thus, the algorithm to express improvement is rudimentary: if any internal

mechanism features modifiability in a modular manner non-destructive to the original

mechanism implementation achievable in a finite amount of time, improvement is

achieved. The pseudocode for this algorithm is given in listing 7.2.

Listing 7.2: Q01-02 interpretation algorithm

1 target = infinity

2 repeat until best possible target achieved

3 if (M05 || M06 || M07 || M08)

4 < target then

133

5 method better than history

6 target = min(M05 , M06 , M07 , M08)

7 > target then

8 M_x = max(M05 , M06 , M07 , M08)

9 reduce effort necessary for M_x

Q01-02 Discussion From the metrics generated by TC-02 using PIQUE, M05 ∨

M06∨M07∨M08 ≤ 1 hour � target resulting in a method better than the history.

The comparison of features in historical models studied to the features of PIQUE is

a notable threat to construct validity because the reviewed models were not created

with the intention of acting as a platform for model design experimentation; rather,

they present a single, concrete, operationalized model whose internal mechanisms are

not intended to be modified.

Given this disparity of comparing apples to oranges, the improvement algorithm

could also be presented as “Is internal mechanism modification now featured and

does it work correctly?” Since this question targets the existence of a feature

that previously did not exist, the mere presence of the feature is an improvement.

Regardless of the algorithm’s phrasing, improvement is realized.

Metrics M05 through M08 refer to distinctly four internal mechanisms: nor-

malization functions, utility functions, weighting functions, and evaluation functions.

These mechanisms were chosen after identifying the extent of mechanisms used in

historical quality modeling efforts. However, different, unique, unknown mechanisms

will reveal themselves as research continues in the domain of quality modeling that

cannot currently be represented as metrics. The need to plan for unknown potential

has been addressed through the modular design of PIQUE as discussed in section 4.1.

While contribution to the source code of PIQUE would be required, development to

134

extend the system in this context is straightforward, requiring simple class additions

to the Calibration or Evaluation components.

Model Operationalization Effort

Question Q01-03, how much effort does it take to operationalize a model, is asked

to analyze the process of model operationalization with respect to effort investment.

The question is asked from the point of view of anyone attempting to operationalize

a quality model, whether for academic or industrial pursuits. A standard use case

which attempts to answer this question is the integration of a packaged quality model

into an external code base for the sake of outputting quality assessment values. The

relevant metric from the test cases is M09, shown in table 7.3.

Table 7.3: Q01-03 metric

Metric Description Value

M09 Man-hours taken to operationalize a derived quality model 1 hour

Q01-03 Interpretation Algorithm Improvement regarding model operational-

ization is interpreted in the context of the modern quality models reviewed in sections

2.5 and 3 that are still supported. Modern, supported models are used for comparison

in order to compare the operationalization of PIQUE models to other modeling

attempts that are also still able to be operationalized on modern computers and

languages.

Of these modern, supported models, Quamoco and SQALE1 are notable

successful examples in terms of operationalization. Although Quamoco has not seen

updates in over five years to its GitHub repository, its Java-based intuitive GUI and

1as supported by SonarQube

135

operationalization wizard facilitates successful quality assessment using an ‘out-of-

the-box’ Java quality model in under an hour. SQALE, through its integration with

SonarQube, presents a streamlined, web-based experience that simply requires a user

to point at the root directory of their project causing all other configurations to work

behind the scenes if using their out-of-the-box quality model. Basic quality assessment

through SonarQube’s SQALE quality model can be achieved in mere minutes.

The interpretation algorithm of listing 7.3 considers of the experiences provided

by Quamoco and SQALE in the context of improvement. Both frameworks offered

better graphical usability, but improvement in this context will only be considered in

terms of time-based effort. Given that SQALE presents quality assessment achievable

in under 10 minutes, this value will be used as the initial target for improvement.

Listing 7.3: Q01-03 interpretation algorithm

1 target = 10 minutes

2 repeat until best possible target achieved

3 if M09

4 < target then

5 method better than history

6 target = M09

7 >= target then

8 reduce effort necessary for M09

Q01-03 Discussion The value of M09 shown in table 7.3 and the time realized to

operationalize Quamoco and SQALE represent a threat to external validity because

their values come from the experiences of this thesis’ author’s attempts. Given

this author’s extreme familiarity with operationalizing PIQUE models and general

familiarity with running quality assessment using quality models similar to SQALE

136

and Quamoco, there is inherent bias behind the metric values so generalization of

results is not possible. This threat is somewhat mitigated due to the fact that

M09 > target, thus the PIQUE method did not show a value better than the history.

The bias of PIQUE familiarity could cause the value of M09 to be lower than the

general case, but since the metric was still not better than the history, the result can

be interpreted as a sign that improvement regarding model operationalization was

not achieved even with the bias of familiarity.

Question Q01-03 targets the nature of usability and accessability of a quality

model’s assessment. Historically, other quality model frameworks have put notable

effort on user experience, so failing to achieve improvement in the context of Q01-

03 was expected. Despite this lack of improvement, PIQUE still offers important

steps forward in the domain of quality modeling. SonarQube, for example, is

proprietary, so although it deploys easily it lacks modification and experimentation

support. Furthermore, most of the academic quality modeling frameworks are no

longer supported and have dependency and source control issues. Thus, a platform

that provides common ground for deployment strategies along with modern support

is a valuable contribution.

Model Evaluation Exposure

Question Q01-04, do the models produced facilitate ease of evaluation by

researchers, is asked to analyze the process of model generation with respect to

experimental opportunity. The question is asked from the point of view of a quality

researcher who has run quality assessment and desires to use the quality assessment

output to understand more about the state of the system under evaluation. For

example, in the most rudimentary form of quality assessment output, a researcher

may learn that the total quality state of the system changed from 0.87 to 0.76. A

137

quality model output that provides more opportunity for experimental evaluation

would additionally provide the values of each quality model factor node beyond just

the total quality index. A quality model that provides even further opportunity for

evaluation would not provide just the quality values of each quality node, but also

show the values of every weighted edge, the field values of relevant internal objects,

and metadata about the system under evaluation.

Q01-04 Interpretation Algorithm The perspective taken in this thesis regarding

improvement of experimental opportunity is that more information output by model

assessment suggests better experimental opportunity. Of the models reviewed in

chapters 2 and 3, proprietary quality assessment frameworks simply returned either

the total quality index value or the quality values of the quality aspect nodes

such as total quality and maintainability. Of the remaining models reviewed that

were still supported and able to be operationalized, Quamoco showed an exemplary

performance in its output by providing a .xml file of every edge and node value. This

output, however, is a massive .xml file, difficult to interpret, and was not designed

to facilitate experimental evaluation in its raw form. At best, the other supported

models reviewed did not output more than their node values and edge weights.

Table 7.4: Q01-04 metric

Metric Description Value

M17 Model output exposure. 0.81

The relevant metric M17, as shown in table 7.4, represents a ratio of the total

possible data fields an assessment output file could represent compared to the data

fields actually output by the assessment. In the context of a PIQUE-generated quality

138

model, table 7.5 shows the total possible fields that could be represented resulting

from the test case of section 6.5.

Table 7.5: PIQUE output exposure test

Row Internal Mechanisms, Objects, Values Exposed?

1 Static analysis tool objects

2 Static analysis tool names X

3 Benchmarking strategy name X

4 Benchmarking strategy logic

5 Benchmarking output data X

6 Weighting strategy name X

7 Weighting strategy logic

8 Weighting output data X

9 Quality model X

10 Model node name X

11 Model node final value X

12 Model node evaluation strategy name X

13 Model node evaluation strategy logic

14 TQI node X

15 TQI incoming weights X

16 Quality Aspect nodes X

17 Quality Aspect incoming weights X

18 Product Factor nodes X

19 Product Factor incoming weights X

20 Measure nodes X

21 Measure node +/− impact X

139

22 Measure node normalizer X

23 Measure node incoming Diagnostics X

24 Measure node utility function thresholds X

25 Measure node value before normalization

26 Measure node value before utility function

27 Diagnostic nodes X

28 Diagnostic associated tool name X

29 Diagnostic incoming Findings X

30 Finding nodes X

31 Finding file path X

32 Finding line number X

33 Finding character number X

34 Finding numerical value X

35 Finding additional info (e.g. severity) X

36 Normalizer object

37 Benchmarker object

38 Evaluator object

39 Project X

40 Project name X

41 Project lines of code X

42 Project path X

43 Project’s quality model X

The interpretation algorithm of listing 7.4 returns improvement of experimental

opportunity if the input quality model produces assessment results with more

information than just the model and node names, node values, and edge weights.

140

Of the rows in table 7.5, 14 rows relate to model and node names, node values,

and edge weights. Thus, initial improvement is realized if M16 > 14
43

. Of the rows

contributing to the numerator value, 14 of them must be from the rows relating to

model and node names, node values, and edge weights in order to meet the same type

of exposure represented by the model frameworks used in comparison. The resulting

ratio of M16 from testing is M16 = exposure = exposed
total

= 35
43

= 0.81.

Listing 7.4: Q01-04 interpretation algorithm

1 target = 14/43

2 repeat until best possible target achieved

3 if rows 10-11, 14-21, 27, 29-30, and 24

4 are not exposed then

5 increase exposure of assessment output

6 if M16

7 > target then

8 method better than history

9 target = M16

10 <= target then

11 increase exposure of assessment output

Q01-04 Discussion Because PIQUE exposes node values, edge weight values,

and much more, the interpretation algorithm shows improvement is achieved.

Unlike the other model frameworks reviewed, PIQUE is designed with an easily

consumable output file in mind. Proprietary approaches conceal most model values

and approaches like Quamoco generate a confusing .xml file while PIQUE outputs

tidy .json files, exposing just key-value pairs of data that would be beneficial to

experimentative assessment.

141

There is a line between not enough information, and too much, so a perfect

exposure value may not be 1.0 (43 fields exposed out of 43). In fact, in the context of

table 7.5, exposing data for objects such as the static analysis tools or a normalizer

object may not be desired given their fields are mostly relevant to internal Java object

construction designs.

Model Validity

Question Q01-05, are the models produced valid, is asked to analyze the process

of quality model validation. A requirement for any goal relating to a quality model

is that the model itself be valid: the quality assessment scores decrease when poor

quality is introduced, and the scores increase when improvement is introduced. To

assess validity, in vitro tests using PIQUE-generated models are run2 resulting in the

metric data of table 7.6

Table 7.6: Q01-05 metrics

Metric Description Value

M13 The change in quality assessment score decreases after

introducing flaws

True

M14 The change in quality assessment score increases after intro-

ducing improvements

True

M15 The change in quality assessment score after modifying

subjective quality opinion reflects the new prioritization

True

Given the necessity for the models produced by PIQUE to be valid in order to

be used to analyze quality model processes, a satisfying evaluation of the boolean

2Section 6.6.

142

Q01-05 metrics is,

M13 ∧M14 ∧M15 = True

Filling in these values using table 7.6 reveals a the model under test, as generated by

PIQUE, is valid. The boolean equation must evaluate to true before considering the

other metrics and questions in support of the GQM goals. PIQUE-produced models

must work on a fundamental level as a base line of improvement and validity.

Goal 01 Conclusions

Ultimately, did improvement with respect to effort investment, experimentation,

and collaborative opportunity from the point of view of quality model researchers

regarding the process of generating, validating, and operationalizing quality models

occur?

Using PIQUE, the primary blockers for researchers are identifying static analysis

tools for their language of choice, learning how to run their analysis, and collecting a

satisfying collection of benchmark repositories. However, these blockers are inevitable

given the platform is language agnostic and there is no way to support all unknown,

future tools and languages. Apart from these blockers, a new researcher does not need

to learn and implement difficult derivation mechanisms nor invest time into defining a

derivation or assessment runnable process since the platform provides these necessary

elements by default.

As a practitioner becomes more familiar with the domain of quality modeling, the

platform provides interfaces to introduce exploratory ideas without needing to modify

the rest of the system. This can be accomplished in a matter of hours. Additionally,

PIQUE and its current actualized extensions such as PIQUE-CSHARP exist as open

source projects with modern dependency and deployment management capabilities.

143

Of the exercises run to generate metrics relevant to the questions of goal

G01, the PIQUE-generated model did not show improvement with regards to

operationalization effort; however, given the evidence of improvement regarding model

generation effort, model mechanism modification effort, experimental opportunity,

and validity of evaluation, the goal is considered achieved.

7.2 Goal 02: The Industry Perspective

Using the goal/question/metric (GQM) of [6], goal two states,

“Analyze a process of generating and operationalizing quality models

for the purpose of improvement with respect to cost investment and

acceptability from the point of view of software development practitioners

in the context of static software system analysis.”

The following sections answer the questions relevant to goal G02 using simple

interpretation algorithms. Finally, the the results obtained for G02 are discussed

using the evaluations of questions Q02-01 through Q02-03.

Model Tuning Expense

Question Q02-01, is it expensive to tune a model to a company’s need, is asked to

analyze the process of model generation with respect to the cost of time investment.

A scenario relating to this question is that of an industry practitioner working with

a quality modeling expert to tune a model to their subjective needs.

Quality models need to represent the inherent subjectivity of a stakeholder’s

views to correctly value the aspects of quality that matter to their needs. To

accomplish this, PIQUE supports a linguistic method of enacting the analytical

hierarchy process to be used as input to the automated model derivation process.

144

An exercise to record the time-cost necessary for a practitioner to understand the

basic quality concepts and record their subjective declarations was carried out.3 The

exercise was used to produce a value for metric M12 as shown in table 7.7.

Table 7.7: Q02-01 metrics

Metric Description Value

M12 Time taken by a practitioner to express subjective quality

definitions.

2 hours

Q02-01 Interpretation Algorithm Because no data is available to compare

metric M12 values to other quality modeling efforts using methods similar to AHP,

a practitioner from an industry partner was interviewed regarding his opinion of the

largest value M12 could be before the efforts were no longer worth the time-cost. A

value of M12 ≤ 4 hours was given. This value is used as the basis for improvement

of the interpretation algorithm of listing 7.5. The algorithm states that improvement

is first accomplished if the AHP takes less than four hours.

Listing 7.5: Q02-01 interpretation algorithm

1 target = 4 hours

2 repeat until best possible target achieved

3 if M12

4 >= target then

5 lower AHP process time

6 < target then

7 method better than history

8 target = M12

3Section 6.4.

145

Discussion Metric M12 is less than the target, so improvement is realized; however,

the model used was relatively small and only the quality aspect to total quality

index matrix was filled in, so M12 comes from a relatively simple case. In more

complex scenarios involving multiple layers of pairwise comparisons, the value of

M12 will grow exponentially. This scenario will likely occur for a security model, so

other weighting algorithms should be considered; fortunately, PIQUE is designed to

support such modification. Additionally, given the basis of improvement value comes

from interviewing a single practitioner, the output of the improvement algorithm

contains a threat to external validity; however, the conclusions of this chapter do not

attempt to claim statistical significance, but rather provide data for metrics to answer

questions relating to goals of improvement.

Assessment Integration Acceptability

Question Q02-02, how acceptable is it to integrate quality model assessment

into an external, continuous integration system, is asked to analyze the process of

model operationalization with respect to acceptability from the context of industry

practitioners.

An exercise is conducted that deploys an operationalized PIQUE-CSHARP

quality assessment engine into an industry partner’s software continuous integration

system.4 After discussion, it was concluded that the main concerns of integration of

an assessment engine into a pre-existing environment are the number of additional

dependencies that would need to be installed and whether the process would interfere

with the normal development continuous integration pipeline. These acceptability

4Section 6.4.

146

concepts are represented as metrics M17 and M18 as shown in table 7.8

Table 7.8: Q02-02 metrics

Metric Description Value

M17 Number of external dependencies needed for actualization 1

M18 [True | False] Failure of assessment does not interfere with

other system processes

True

Regarding the practitioner’s interpretation of acceptable values, no additional

dependencies (apart from the .jar assessment engine itself) was expressed as preferred.

It was strongly worded that assessment can also not interfere with other CI

pipeline processes. Regarding historical academic quality modeling efforts, only

one system was found that specifically integrated in to a practitioner’s continuous

integration [19], and the fewest external dependencies possible from an operating

system independent perspective is one. So, improvement is achieved if, given an

assessment engine deployed into a continuous integration environment, the number of

external dependencies equals one and the assessment process does not interfere with

native processes.

(|M17| ≤ 1) ∧ (M18 = True)

The tests producing M17 and M18 satisfy the equation.

Trust in Assessment Values

Question Q02-03, can quality models be used such that their output values

are trusted by practitioners, is asked to analyze the process of quality model

operationalization with respect to output acceptability. To evaluate this, an exercise is

147

run that integrates PIQUE-CSHARP into an industry partner’s software development

life cycle.5 The partner is asked to provide sequences of commit histories where it

was believed moments of quality improvement occurred. The quality engine then runs

assessment of the first and last commits of each given historical sequence. If there

is a perfect matching of the practitioner’s opinion of quality increase and the quality

assessment results of quality increase, metric M19 is marked as true. The commit

histories, assessment values, and M19 results are given in tables 7.9 and 7.10.

Table 7.9: Commit histories of subjectively perceived improvement. S-Quality:
Starting Quality. F-Quality: Finish Quality.

Start Finish # Commits S-Quality F-Quality Pos. slope?

Oct. 22 Dec. 04 157 0.4335 0.4102

Jan. 21 Feb. 10 171 0.4087 0.4186 X

Jan. 30 Apr. 15 608 0.4082 0.3840

Mar. 25 Mar. 27 26 0.3826 0.3836 X

Table 7.10: Question 02-03 metric

Metric Description Value

M19: [True | False] The slope of assessed values over time matches

practitioner opinion.

False

Discussion The results of table 7.9 can be interpreted in more than one way. One

can assume the industry practitioner’s opinion that objective quality did increase

5Section 6.6.

148

during the given commit history. If this is the case, it suggests the C# PIQUE

quality model was not sensitive enough to refactors and quality improvements.

One could also interpret the results from the perspective that, although

improvements were introduced, more cases of poor quality were also introduced. This

scenario could explain why the shorter histories of improvement (January 21-February

10 and March 25-March 27) had positive improvement realized from both practitioner

opinion and quality assessment output, but phases of longer commit histories (October

22-December 04 and January 30-April 15) were in conflict. This rationale is sensible:

apart from major refactoring efforts, as a system grows larger it will likely lower in

quality because there are more areas for poor quality findings.

A final interpretation could be that the practitioner’s opinion of quality

improvement was incorrect. Evaluating the true change in quality would require

intense evaluation from industry experts, a task outside the scope of this work.

In summary, the test cases associated with answering question Q02-03 are

performed to give an initial intuition if a PIQUE-derived quality model can output

values aligned with subjective opinion of quality changes. While the results of quality

changes over short periods of time are encouraging, the evidence thus far remains

inconclusive.

Goal 02 Conclusions

Although these results represent early evaluations, they reveal a partial achieve-

ment of goal 02. The default mechanisms of PIQUE for tuning a model to a company’s

need (as inspired by QATCH [37]) shows effective improvement regarding stakeholder

cost compared to other approaches, mostly because other approaches do not feature

a way for stakeholders to express subjectivity without requirement of expertise in

quality modeling. Of approaches that do feature subjective injection, their method

149

of expression uses numeric values rather than the linguistic values used by PIQUE.

In the context of the test cases, success is realized regarding the acceptability

of model assessment into external, continuous integration systems. This success is

positive evidence toward the achievement of goal 02, most notably with respect to

practitioner acceptability and trustability. In conversations with practitioners, there

was much interest and agreement expressed regarding viewing quality as a “delta-Q”

that is only applicable to a single system’s changes over time. If quality is asserted

as an isolated value without context, practitioners expressed distrust and uncertainty

regarding the meaning of the value. On the other hand, the expression of quality

changing compared to the value it was perviously evaluated to was intuitive and

trustable. In order to accommodate persistent quality assessments as a software

product evolves, integration of the assessment engine into a CI environment is

necessary.

The exercise relating to question Q02-03 shows that, in the case of the PIQUE-

derived ISO 25010 C# model of appendix G, quality assessment results over commit

histories will sometimes agree with a practitioner’s opinion of quality changes, but

some times the assessment results will not agree. This result can still support the

improvements desired by goal 02 by expressing agreement with practitioners in simple

cases, and opens a channel of communication regarding what is occurring to the

product’s quality in more complex cases.

Research of model output trust and verification is difficult, requiring more

investigation. PIQUE is designed to facilitate such research and can provide

a platform to further progress in this field towards a goal of more widespread

practitioner acceptance.

150

CHAPTER EIGHT

THREATS TO VALIDITY

Wohlin et al. [45] categories of threats to validity in software research. In-

ternal threats to validity refer to undesired relationships, and the extent to which

independent variables cause effects on a dependent variable. External threats to

validity apply to the degree that findings of the study can be generalized to other

environments. Construct threats to validity refer to how representative the study’s

measures represent their intended real-world constructs.

Given that the result data comes from test cases (chapter 6) rather than

statistically driven experimentation, there exists a persistent threat to validity across

all results. This concern is mitigated due to the purpose of this thesis to provide

the groundwork necessary for future experimentation; that is, the results do not

make statistical claims but instead are presenting evidence regarding the nature of

improvement. As it stands, the quality models compared at a high level are too

different to have a level of acceptable internal, external, and conclusion validity. In

the future, models generated by PIQUE will have acceptable levels of comparability.

Providing this opportunity is a primary contribution of this thesis.

8.1 Internal Validity

All presented interpretation algorithms that compare a PIQUE model to a

historical model from chapter 2 or 3 (such as QATCH or Quamoco) bring a threat to

internal validity because the two models compared are so different that the metrics

used for improvement cannot be considered dependent variables. For any presented

improvement algorithm in chapter 7, there are likely numerous other unaccounted for

151

reasons why improvement was achieved or not achieved. This concern is mitigated

by the recognition that models, in the current state of the quality modeling research

domain, are not comparable, so the exercises of this thesis make weak assertions of

improvement while providing a way forward to make valid comparisons in the future

using the platform PIQUE.

The effort metrics used also bring concerns. As efforts, such as time, were

being generated, the researcher under study was also the researcher who designed the

system. Thus, bias and misrepresentation of expected effort likely occurred. This

is mitigated somewhat due to the nature of addressing improvement with regard to

effort. Even if the effort results are biased to under-represent, the difference is still on

the scale of hours or days versus months or years. Given the interpretation approach

used for the assessments, it is thus not possible to assert any causal inferences from

the data.

8.2 External Validity

The result of the metric regarding model output trust, M19, and effort metric

M12 of practitioner time taken to fill in subjective quality definitions represent threats

to external validity. Before running the relevant test cases, a significant amount of

time had already been spent with the industry partner. During those times, many

conversations were had regarding quality modeling, so the practitioner was primed

with a priori knowledge before providing effort and opinion results.

Any test case that used the PIQUE-CSHARP control model has an inherent

threat to external validity. The results can only apply to similar model designs using

the same language, the same static analysis tools, a similar benchmark repository,

and similar mechanisms. For any interpretation algorithm expressing improvement,

improvement can only be claimed for the specific model generated by PIQUE versus

152

the specific other modeling approach used in comparison. Clearly, generalization of

the results cannot be claimed. Instead, the test cases and discussions look to present

examples that PIQUE is capable of producing improved quality models in contrast

to similar, other recent quality modeling attempts. Finally, the industry practitioner

feedback regarding trust and acceptability can not generalize outside the domain of

the industry partner interacted with.

8.3 Construct Validity

Regarding the ISO/IEC C# quality model derived by PIQUE, a design choice

is made to measure all product factors with a single “FactorName Smells” measure.

These measures are designed by searching all available diagnostics provided by the

static analysis tools used that represent problematic code and connecting it to the

appropriate product factor “smell” measure. Thus, the measurement of low level

factor concepts is accomplished strictly through a count-based representation of

possible problems. This can lead to concerns such as under-representation of a given

measure due to lack of tool support or a misclassification of a diagnostic to its correct

measure. This is mitigated somewhat through use of a benchmark repository, but

the measurements used in the quality models during the tests may still not represent

their intended construct well. The main affect of this threat is on the trustability of

the model. Other test cases are not as dependent on the validity of the measurement

constructs used.

The body of measures used as a whole is also a threat. Given it is not determined

how many measures (or few) are needed to quantify their associated product factors

and the representative strength of the measure is not addressed, this threat to

construct validity impacts the representative meaning of the factor nodes. Evaluating

the change in factor quality values rather than the meaning of a singular value can

153

mitigate this threat.

Finally, the effort metrics used also carry construct validity concerns. The values

of man-hours in the test cases come from the tests being carried out by one participant;

however, man-hours does not function as a linear scalar thus it may not generalize to

represent effort when larger number of participants are involved.

154

CHAPTER NINE

CONCLUSION

This thesis presents a platform intended to facilitate the processes of software

quality modeling: the derivation of new models using new approaches, the validation

of the model’s output, and the operationalization of the model into real-world systems.

To evaluate the capabilities of such a platform, test cases are run on the models and

operations produced by the platform pertaining to academic and industrial goals.

The first goal is to analyze the processes involved in generating, validating, and

operationalizing quality models for the purpose of improvement with respect to effort

investment, experimentation, and collaborative opportunity from the point of view of

quality model researchers in the context of static software system analysis. The second

goal analyzes the same processes but from the point of view of software development

practitioners regarding feasibility and acceptability.

The platform used to generate the quality models under evaluation, PIQUE, is

designed to handle the language-agnostic aspects of quality modeling and assessment

while leaving the necessary language-specific components under the responsibility of

the quality modeler. The platform provides a default state of quality assessment

mechanisms, but all involved mechanisms are extensible through a collection of

libraries and interfaces.

To address the research goals, PIQUE is used to generate an ISO/IEC 25010

based quality model operationalized for C# .NET systems. The results provide good

evidence that the platform can offer major improvements to quality operations by

reducing the overhead needed to design and derive quality models, experiment with

new design mechanisms, operationalize into new languages and systems, and validate

155

results.

A PIQUE-generated model is introduced to an industrial system where the

capability to inject subjective quality opinions in an automated fashion is investigated.

While the approach was found to be low-cost and easy to deploy in foreign develop-

ment environments, there still remains general hesitation about the representative

strength of quality model assessed values–a pervasive problem in quality modeling

history.

Finally, a security-focused model is designed using the constructs offered by

PIQUE to demonstrate capability to derive niche and experimental models. The

model uses the ISO/IEC 25010 decomposition of security along with a security-

focused architectural hierarchy provided by MITRE’s Common Weakness Enumera-

tion (CWE). The exercise of making a C# security-focused quality model revealed

there is currently not enough open source tool support to gather an acceptably

sized base of potential findings in order for the ISO/IEC/CWE security assessment

to evaluate with meaningful information. This reveals a need for further research

and development in security-focused static analysis tools across a wider breadth of

programming languages.

While many of questions relating to the goal/question/metric paradigm used in

this thesis are met, there is much more research and validation needed, and PIQUE is

designed to support further quality modeling research. Specifically, quality assessment

and understanding in the domain of security is in high need of further academic

research and solutions. The tools used in the test cases of this thesis are strictly

static analysis tools, but dynamic assessment can also be introduced. Finally, given

each component in the platform’s model derivation and quality assessment engines is

designed with modularity and extensibility in mind, mechanism experimentation on

components such as evaluation strategies, utility function approaches, and new ways

156

of injecting subjective quality awareness can and should be enacted.

157

REFERENCES CITED

158

[1] H. Al-Kilidar, K. Cox, and B. Kitchenham. The use and usefulness of the iso/iec
9126 quality standard. In 2005 International Symposium on Empirical Software
Engineering, 2005., pages 7–pp. IEEE, 2005.

[2] T. Alves, J. Correia, and J. Visser. Benchmark-based aggregation of metrics to
ratings. Proc. IWSM/Mensura, pages 20–29, 2011.

[3] P. Avgeriou, P. Kruchten, I. Ozkaya, and C. Seaman. Managing technical debt in
software engineering (dagstuhl seminar 16162). In Dagstuhl Reports, volume 6.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.

[4] J. Bansiya and C. Davis. A hierarchical model for object-oriented design quality
assessment. IEEE Trans. Software Eng., 28:4–17, 2002.

[5] F. H. Barron and B. E. Barrett. Decision quality using ranked attribute weights.
Management science, 42(11):1515–1523, 1996.

[6] V. R. Basili. Software modeling and measurement: the goal/question/metric
paradigm. Technical report, 1992.

[7] B. Boehm. Characteristics of software quality. TRW series of software technology.
North-Holland Pub. Co., 1978.

[8] W. Cunningham. The wycash portfolio management system. ACM SIGPLAN
OOPS Messenger, 4(2):29–30, 1992.

[9] M. R. Dale and C. Izurieta. Impacts of design pattern decay on system quality.
In Proceedings of the 8th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, pages 1–4, 2014.

[10] F. Deissenboeck, L. Heinemann, M. Herrmannsdoerfer, K. Lochmann, and
S. Wagner. The quamoco tool chain for quality modeling and assessment. In 2011
33rd International Conference on Software Engineering (ICSE), pages 1007–
1009. IEEE, 2011.

[11] F. Deissenboeck, E. Juergens, B. Hummel, S. Wagner, B. M. y. Parareda, and
M. Pizka. Tool support for continuous quality control. IEEE Software, 25(5):60–
67, 2008.

[12] F. Deissenboeck, E. Juergens, K. Lochmann, and S. Wagner. Software quality
models: Purposes, usage scenarios and requirements. pages 9–14, Vancouver,
BC, 2009. ICSE Workshop on Software Quality, IEEE.

[13] R. G. Dromey. A model for software product quality. IEEE Transactions on
Software Engineering, 21(2):146–162, 2 1995.

159

[14] I. O. for Standardization/International Electrotechnical Commission et al.
Iso/iec 25010—systems and software engineering—systems and software quality
requirements and evaluation (square)—system and software quality models.
Authors, Switzerland, 2011.

[15] X. Franch and J. Carvallo. Using quality models in software package selection.
Software, IEEE, 20:34–41, 02 2003.

[16] R. B. Grady and D. L. Caswell. Software metrics: establishing a company-wide
program. Prentice-Hall, Inc., 1987.

[17] I. Heitlager, T. Kuipers, and J. Visser. A practical model for measuring
maintainability. In 6th international conference on the quality of information
and communications technology (QUATIC 2007), pages 30–39. IEEE, 2007.

[18] A. Hunt, D. Thomas, and W. Cunningham. The Pragmatic Programmer: From
Journeyman to Master. Addison-Wesley Professional, 2000.

[19] C. Izurieta, I. Griffith, and C. Huvaere. An industry perspective to comparing the
sqale and quamoco software quality models. In 2017 ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement (ESEM), pages
287–296. IEEE, 2017.

[20] C. Izurieta, I. Griffith, D. Reimanis, and R. Luhr. On the uncertainty of technical
debt measurements. In 2013 International Conference on Information Science
and Applications (ICISA), pages 1–4. IEEE, 2013.

[21] C. Izurieta, I. Ozkaya, C. B. Seaman, P. Kruchten, R. L. Nord, W. Snipes, and
P. Avgeriou. Perspectives on managing technical debt: A transition point and
roadmap from dagstuhl. In QuASoQ/TDA APSEC, pages 84–87, 2016.

[22] C. Izurieta and M. Prouty. Leveraging secdevops to tackle the technical debt
associated with cybersecurity attack tactics. In 2019 IEEE/ACM International
Conference on Technical Debt (TechDebt), pages 33–37. IEEE, 2019.

[23] C. Izurieta, G. Rojas, and I. Griffith. Preemptive management of model driven
technical debt for improving software quality. In 2015 11th International ACM
SIGSOFT Conference on Quality of Software Architectures (QoSA), pages 31–36.
IEEE, 2015.

[24] C. Izurieta, A. Vetrò, N. Zazworka, Y. Cai, C. Seaman, and F. Shull. Organizing
the technical debt landscape. In 2012 Third International Workshop on
Managing Technical Debt (MTD), pages 23–26. IEEE, 2012.

[25] B. Kitchenhamm, S. G. Linkman, A. Pasquini, and V. Nanni. The squid approach
to defining a quality model. Software Quality Journal, 6:211–233, 1997.

160

[26] M. Kläs, C. Lampasona, S. Nunnenmacher, S. Wagner, M. Herrmannsdörfer, and
K. Lochmann. How to evaluate meta-models for software quality. In Proceedings
of the 20th International Workshop on Software Measurement (IWSM2010),
2010.

[27] J.-L. Letouzey and T. Coq. The sqale analysis model: An analysis model
compliant with the representation condition for assessing the quality of software
source code. In 2010 Second International Conference on Advances in System
Testing and Validation Lifecycle, pages 43–48. IEEE, 2010.

[28] N. Leveson. The role of software in spacecraft accidents. AIAA Journal of
Spacecraft and Rockets, 2004.

[29] K. Lochmann. A benchmarking-inspired approach to determine threshold values
for metrics. ACM SIGSOFT Software Engineering Notes, 37(6):1–8, 2012.

[30] M. Mantyla, J. Vanhanen, and C. Lassenius. A taxonomy and an initial
empirical study of bad smells in code. In International Conference on Software
Maintenance, 2003. ICSM 2003. Proceedings., pages 381–384. IEEE, 2003.

[31] K. Mordal-Manet, F. Balmas, S. Denier, S. Ducasse, H. Wertz, J. Laval,
F. Bellingard, and P. Vaillergues. The squale model—a practice-based industrial
quality model. In 2009 IEEE International Conference on Software Maintenance,
pages 531–534. IEEE, 2009.

[32] B. Norick, J. Krohn, E. Howard, B. Welna, and C. Izurieta. Effects of the
number of developers on code quality in open source software: a case study.
In Proceedings of the 2010 ACM-IEEE International Symposium on Empirical
Software Engineering and Measurement, pages 1–1, 2010.

[33] D. Reimanis, C. Izurieta, R. Luhr, L. Xiao, Y. Cai, and G. Rudy. A
replication case study to measure the architectural quality of a commercial
system. In Proceedings of the 8th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement, pages 1–8, 2014.

[34] T. L. Saaty. Decision making with the analytic hierarchy process. International
journal of services sciences, 1(1):83–98, 2008.

[35] I. Samoladas, G. Gousios, D. Spinellis, and I. Stamelos. The sqo-oss quality
model: Measurement based open source software evaluation. In B. Russo,
E. Damiani, S. Hissam, B. Lundell, and G. Succi, editors, Open Source
Development, Communities and Quality, pages 237–248, Boston, MA, 2008.
Springer US.

[36] J. C. Santos, K. Tarrit, and M. Mirakhorli. A catalog of security architecture
weaknesses. In 2017 IEEE International Conference on Software Architecture
Workshops (ICSAW), pages 220–223. IEEE, 2017.

161

[37] M. Siavvas, K. Chatzidimitriou, and A. Symeonidis. Qatch - an adaptive
framework for software product quality assessment. Expert Systems With
Applications, 86:350–366, 2017.

[38] W. P. Stevens, G. J. Myers, and L. L. Constantine. Structured design. IBM
systems journal, 13(2):115–139, 1974.

[39] R. Van Zeist and P. Hendriks. Specifying software quality with the extended iso
model. Software Quality Journal, 5:273–284, 1996.

[40] S. Wagner, A. Goeb, L. Heinemann, M. Kläs, C. Lampasona, K. Lochmann,
A. Mayr, R. Plösch, A. Seidl, J. Streit, et al. Operationalised product quality
models and assessment: The quamoco approach. Information and Software
Technology, 62:101–123, 2015.

[41] S. Wagner, K. Lochmann, S. Winter, F. Deissenboeck, E. Juergens, M. Her-
rmannsdoerfer, L. Heinemann, M. Kläs, J. Heidrich, R. Ploesch, A. Göeb, and
C. Koerner. The quamoco quality meta-model, technical report. Technical
Report TUM-I1281, Technische Universität, München, 2012.

[42] S. Wagner, K. Lochmann, S. Winter, A. Göeb, and M. Kläs. Quality models in
practice: A preliminary analysis. In ESEM 2009, 2009.

[43] S. Wagner, K. Lochmann, S. Winter, A. Göeb, M. Kläs, and S. Nunnenmacher.
Software quality in practice. survey results. Technical Report Technical Report
TUM-I129, Technische Universität München, 2012.

[44] C. Williams. Anatomy of openssl’s heartbleed: Just four bytes trigger horror
bug. https://www.theregister.co.uk/2014/04/09/heartbleed_explained,
Apr 2014. Accessed on 2020-02-20.

[45] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén.
Experimentation in software engineering. Springer Science & Business Media,
2012.

https://www.theregister.co.uk/2014/04/09/heartbleed_explained

162

APPENDICES

163

APPENDIX A

C# QUALITY MODEL DESCRIPTION

164

1 {

2 "name": "CSharp ISO25k Quality Model",

3 "additionalData": {},

4 "factors": {

5 "tqi": {

6 "Total Software Quality": {

7 "description": "The total quality value representing the entire

system"↪→

8 }

9 },

10 "quality_aspects": {

11 "Compatibility": {

12 "description": "Degree to which a product, system or component can

exchange information with other products, systems or

components, and/or perform its required functions while sharing

the same hardware or software environment"

↪→

↪→

↪→

13 },

14 "Maintainability": {

15 "description": "This characteristic represents the degree of

effectiveness and efficiency with which a product or system can

be modified to improve it, correct it or adapt it to changes in

environment, and in requirements"

↪→

↪→

↪→

16 },

17 "Performance Efficiency": {

18 "description": "This characteristic represents the performance

relative to the amount of resources used under stated

conditions"

↪→

↪→

19 },

20 "Portability": {

21 "description": "Degree of effectiveness and efficiency with which a

system, product or component can be transferred from one

hardware, software or other operational or usage environment to

another"

↪→

↪→

↪→

22 },

23 "Reliability": {

24 "description": "Degree to which a system, product or component

performs specified functions under specified conditions for a

specified period of time"

↪→

↪→

25 },

26 "Security": {

27 "description": "Degree to which a product or system protects

information and data so that persons or other products or

systems have the degree of data access appropriate to their

types and levels of authorization"

↪→

↪→

↪→

28 },

165

29 "Usability": {

30 "description": "Degree to which a product or system can be used by

specified users to achieve specified goals with effectiveness,

efficiency and satisfaction in a specified context of use"

↪→

↪→

31 }

32 },

33 "product_factors": {

34 "Data Type Integrity": {

35 "description": "A representation of how well each object adheres

to CSharp object oriented typing expectations"↪→

36 },

37 "Documentation": {

38 "description": "Information about the source code intended to

assist human understanding"↪→

39 },

40 "Encryption": {

41 "description": "The concealment of code elements such that external

entities are unable to decipher its information"↪→

42 },

43 "Exception Handling": {

44 "description": "Goodness of approach in handling exceptions in a

compliant and productive way"↪→

45 },

46 "Functional Syntax": {

47 "description": "The operators, syntactic decision, object

selection, etc., that determine how a functional act is

defined. This is disjoint from the Format property by having

potential impact on more than just human-readability"

↪→

↪→

↪→

48 },

49 "Format": {

50 "description": "Code formatting. This involves how the code is

written as it appears to a human reader. Common synonyms

include Style, Simplification, Readability, Convention,

Verbosity, Naming"

↪→

↪→

↪→

51 },

52 "IO Handling": {

53 "description": "Management of the data going into and out of a

source component. Can relate to data sanitization, filtering,

rejection, querying, database queries and storage, etc"

↪→

↪→

54 },

55 "Resource Handling": {

56 "description": "Management of resources: often related to locking

of instances and file IO"↪→

57 },

58 "Structure": {

166

59 "description": "The organization of classes, files, and methods.

Includes object oriented concepts such as inheritance"↪→

60 }

61 }

62 },

63 "measures": {

64 "DTI Smells": {

65 "description": "Code smells related to data type integrity",

66 "positive": false,

67 "parents": [

68 "Data Type Integrity"

69],

70 "diagnostics": [

71 {

72 "name": "loc",

73 "description": "Normalizer diagnostic lines of code",

74 "eval_strategy": "pique.evaluation.LOCDiagnosticEvaluator",

75 "toolName": "RoslynatorLoc"

76 },

77 {

78 "name": "RCS1008",

79 "description": "Use explicit type instead of 'var' (when the type

is not obvious)",↪→

80 "toolName": "Roslynator"

81 },

82 {

83 "name": "RCS1009",

84 "description": "Use explicit type instead of 'var' (foreach

variable)",↪→

85 "toolName": "Roslynator"

86 },

87 // ...

88 {

89 "name": "RCS1234",

90 "description": "Duplicate enum value",

91 "toolName": "Roslynator"

92 }

93]

94 },

95 "Documentation Smells": {

96 "description": "Code smells related to documentation",

97 "positive": false,

98 "parents": [

99 "Documentation"

100],

167

101 "diagnostics": [

102 {

103 "name": "loc",

104 "description": "Normalizer diagnostic lines of code",

105 "eval_strategy": "pique.evaluation.LOCDiagnosticEvaluator",

106 "toolName": "RoslynatorLoc"

107 },

108 {

109 "name": "RCS1138",

110 "description": "Add summary to documentation comment",

111 "toolName": "Roslynator"

112 },

113 {

114 "name": "RCS1139",

115 "description": "Add summary element to documentation comment",

116 "toolName": "Roslynator"

117 },

118 // ...

119 {

120 "name": "RCS1232",

121 "description": "Order elements in documentation comment",

122 "toolName": "Roslynator"

123 }

124]

125 },

126 "Encryption Smells": {

127 "description": "Code smells related to Encryption",

128 "positive": false,

129 "parents": [

130 "Encryption"

131],

132 "diagnostics": [

133 {

134 "name": "loc",

135 "description": "Normalizer diagnostic lines of code",

136 "eval_strategy": "pique.evaluation.LOCDiagnosticEvaluator",

137 "toolName": "RoslynatorLoc"

138 },

139 {

140 "name": "SCS0005",

141 "description": "Weak Random Number Generator",

142 "toolName": "Roslynator"

143 },

144 {

145 "name": "SCS0006",

168

146 "description": "Weak hashing function",

147 "toolName": "Roslynator"

148 },

149 // ...

150 {

151 "name": "SCS0034",

152 "description": "Password RequiredLength Not Set",

153 "toolName": "Roslynator"

154 }

155]

156 },

157 "Exception Handling Smells": {

158 "description": "Code smells related to exception handling",

159 "positive": false,

160 "parents": [

161 "Exception Handling"

162],

163 "diagnostics": [

164 {

165 "name": "loc",

166 "description": "Normalizer diagnostic lines of code",

167 "eval_strategy": "pique.evaluation.LOCDiagnosticEvaluator",

168 "toolName": "RoslynatorLoc"

169 },

170 {

171 "name": "RCS1044",

172 "description": "Remove original exception from throw statement",

173 "toolName": "Roslynator"

174 },

175 {

176 "name": "RCS1075",

177 "description": "Avoid empty catch clause that catches

System.Exception",↪→

178 "toolName": "Roslynator"

179 },

180 // ...

181 {

182 "name": "RCS1236",

183 "description": "Use exception filter",

184 "toolName": "Roslynator"

185 }

186]

187 },

188 "Functional Syntax Smells": {

189 "description": "Code smells related to functional syntax",

169

190 "positive": false,

191 "parents": [

192 "Functional Syntax"

193],

194 "diagnostics": [

195 {

196 "name": "loc",

197 "description": "Normalizer diagnostic lines of code",

198 "eval_strategy": "pique.evaluation.LOCDiagnosticEvaluator",

199 "toolName": "RoslynatorLoc"

200 },

201 {

202 "name": "RCS1048",

203 "description": "Use lambda expression instead of anonymous

method",↪→

204 "toolName": "Roslynator"

205 },

206 {

207 "name": "RCS1061",

208 "description": "Merge if statement with nested if statement",

209 "toolName": "Roslynator"

210 },

211 // ...

212 {

213 "name": "RCS1236",

214 "description": "Use exception filter",

215 "toolName": "Roslynator"

216 }

217]

218 },

219 "Format Smells": {

220 "description": "Code smells related to format",

221 "positive": false,

222 "parents": [

223 "Format"

224],

225 "diagnostics": [

226 {

227 "name": "loc",

228 "description": "Normalizer diagnostic lines of code",

229 "eval_strategy": "pique.evaluation.LOCDiagnosticEvaluator",

230 "toolName": "RoslynatorLoc"

231 },

232 {

233 "name": "RCS1001",

170

234 "description": "Add braces (when expression spans over multiple

lines)",↪→

235 "toolName": "Roslynator"

236 },

237 {

238 "name": "RCS1002",

239 "description": "Remove braces",

240 "toolName": "Roslynator"

241 },

242 // ...

243 {

244 "name": "RCS1215",

245 "description": "Expression is always equal to true/false",

246 "toolName": "Roslynator"

247 }

248]

249 },

250 "IO Handling Smells": {

251 "description": "Code smells related to IO handling",

252 "positive": false,

253 "parents": [

254 "IO Handling"

255],

256 "diagnostics": [

257 {

258 "name": "loc",

259 "description": "Normalizer diagnostic lines of code",

260 "eval_strategy": "pique.evaluation.LOCDiagnosticEvaluator",

261 "toolName": "RoslynatorLoc"

262 },

263 {

264 "name": "SCS0001",

265 "description": "Command Injection",

266 "toolName": "Roslynator"

267 },

268 {

269 "name": "SCS0002",

270 "description": "SQL Injection (LINQ)",

271 "toolName": "Roslynator"

272 },

273 // ...

274 {

275 "name": "SCS0036",

276 "description": "SQL Injection (EnterpriseLibrary.Data)",

277 "toolName": "Roslynator"

171

278 }

279]

280 },

281 "Resource Handling Smells": {

282 "description": "Code smells related to resource handling",

283 "positive": false,

284 "parents": [

285 "Resource Handling"

286],

287 "diagnostics": [

288 {

289 "name": "loc",

290 "description": "Normalizer diagnostic lines of code",

291 "eval_strategy": "pique.evaluation.LOCDiagnosticEvaluator",

292 "toolName": "RoslynatorLoc"

293 },

294 {

295 "name": "RCS1059",

296 "description": "Avoid locking on publicly accessible instance",

297 "toolName": "Roslynator"

298 },

299 {

300 "name": "RCS1090",

301 "description": "Call 'ConfigureAwait(false)'",

302 "toolName": "Roslynator"

303 },

304 // ...

305 {

306 "name": "VSTHRD200",

307 "description": "Use Async naming convention",

308 "toolName": "Roslynator"

309 }

310]

311 },

312 "Structure Smells": {

313 "description": "Code smells related to structure",

314 "positive": false,

315 "parents": [

316 "Structure"

317],

318 "diagnostics": [

319 {

320 "name": "loc",

321 "description": "Normalizer diagnostic lines of code",

322 "eval_strategy": "pique.evaluation.LOCDiagnosticEvaluator",

172

323 "toolName": "RoslynatorLoc"

324 },

325 {

326 "name": "RCS1060",

327 "description": "Declare each type in separate file",

328 "toolName": "Roslynator"

329 },

330 {

331 "name": "RCS1085",

332 "description": "Use auto-implemented property",

333 "toolName": "Roslynator"

334 },

335 // ...

336 {

337 "name": "RCS1241",

338 "description": "Implement non-generic counterpart",

339 "toolName": "Roslynator"

340 }

341]

342 }

343 }

344 }

173

APPENDIX B

C# OPERATIONALIZED MODEL: PRODUCT FACTOR DESCRIPTIONS

174

This appendix given the descriptions to the product factors described in section
5.2. These definitions match the “description” field of the quality model description
file described in the operationalized model of chapter 5.

Data Type Integrity A representation of how well each object adheres to C#
object oriented typing expectations.

Documentation Information about the source code intended to assist human
understanding.

Encryption The concealment of code elements such that external entities are
unable to decipher its information.

Exception Handling Goodness of approach in handling exceptions in a compliant
and productive way.

Functional Semantics The meaning and intended output of functional acts. For
example, dividing all items in a list by two versus multiplying all items by two have
different functional semantics.

Functional Syntax The operators, syntactic decision, object selection, etc., that
determine how a functional act is defined. This is disjoint from the ’Format’ property
by having potential impact on more than just human-readability.

Format Code formatting. This involves how the code is written as it appears to
a human reader. Common synonyms include ’Style’, ’Simplification’, ’Readability’,
’Convention’, ’Verbosity’, ’Naming’.

Input/Output Handling Management of the data going into and out of a source
component. Can relate to data sanitization, filtering, rejection, querying, database
queries and storage, etc.

Resource Handling Management of resources: often related to locking of in-
stances and file I/O.

Structure The organization of classes, files, and methods. Includes object oriented
concepts such as inheritance.

175

APPENDIX C

PIQUE TOOL INTEGRATION TECHNICAL DOCUMENT

176

This guide walks through the steps necessary to add a third-party C# static
analysis tool.

1. Find a desired static analysis tool.

(a) Browse https://endler.dev/awesome-static-analysis/ for an appro-
priate tool.

(b) Find tool’s NuGet page (https://www.nuget.org/packages/Microsoft.
VisualStudio.Threading.Analyzers).

(c) Manually get the .dll’s for the tool.

i. .\nuget.exe install <Package.Name>.

ii. Grab .dll files inside new Package.Name directory sibling to nuget.exe
location.

(d) Test: Manually run the tool on cooked project.

i. Put .dll’s in Roslynator’s bin directory

ii. Run Roslynator analysis with following cmd commands: (be sure to
cook analysis project to get findings)

A. SET exe=“C:\path\to\Roslynator.exe”

B. SET assembly=“C:\path\to\Roslynator\folder”

C. SET msbuild=“C:\path\to\MSBuild\Current\Bin”

D. SET output=“C:\anything\roslyn.xml”

E. SET target=“C:\path\to\project.sln”

F. %exe% analyze –analyzer-assemblies=%assembly%
–msbuild-path=%msbuild% –output=%output% %target%

2. Add tool as PIQUE project resource.

(a) Add tool to the PIQUE language specific extension project’s resources
folder

i. msusel-pique-csharp/src/main/resources/Roslynator/bin/**

3. Override analyzer interface methods.

(a) Create class that extends the ITool interface

i. public class MyAnalyzer implements ITool

(b) Override the analyze() method; define how to run the tool, return the path
to the tool run’s output file. See code listing 2.

(c) Override the parseAnalysis() method; define how to transform the tool’s
output file findings into Diagnostic objects

https://endler.dev/awesome-static-analysis/
https://www.nuget.org/packages/Microsoft.VisualStudio.Threading.Analyzers
https://www.nuget.org/packages/Microsoft.VisualStudio.Threading.Analyzers

177

i. See pique-csharp::RoslynatorAnalyzer.parseAnalysis(Path path) for
an example. Notable relevant parts are showing in listing 3:

4. Add desired diagnostics (rule findings) to your quality model description under
the desired measure(s). For example, in iso25k csharp qm description.qm, see
listing 4 and 5 for a before and after.

5. Run model derivation (on benchmark repository) to update model with
awareness of the new tool and findings.

1 pb = new ProcessBuilder("cmd.exe", "/c", myAnalyzerExe, commandString,

assemblyDir, msBuildPath, outputPath, target)↪→

2 BufferedReader stdInput = new BufferedReader(new

InputStreamReader(p.getInputStream()));↪→

3 while ((line = stdInput.readLine()) != null) {

4 System.out.println("roslynator: " + line);

5 }

6 p.waitFor();

7 return outputPath;

Listing 2: Analyze method override.

1 Map<String, Diagnostic> diagnostics = new HashMap<>();

2 XPathExpression expr = xpath.compile("//Diagnostics/Diagnostic");

3 String diagnosticId = ((DeferredElementImpl)

diagnosticElement).getAttributeNode("Id").getValue();↪→

4 // attach findings

Listing 3: Parse method override.

178

1 "measure": {

2 "name": "Resource Handling Findings",

3 "description": "Description.",

4 "diagnostics": [

5 {

6 "name": "RCS1059",

7 "description": "Avoid locking on publicly accessible

8 instance",

9 "toolName": "Roslynator"

10 },

11 ...

Listing 4: iso25k csharp qm description, before

1 "measure": {

2 "name": "Resource Handling Findings",

3 "description": "Description.",

4 "diagnostics": [

5 {

6 "name": "VSTHRD001",

7 "description": "Avoid legacy thread switching methods",

8 "toolName": "Roslynator"

9 },

10 ...

11 {

12 "name": "RCS1059",

13 "description": "Avoid locking on publicly accessible

14 instance",

15 "toolName": "Roslynator"

16 },

17 ...

Listing 5: iso25k csharp qm description, after

179

APPENDIX D

C# BENCHMARK REPOSITORY INFORMATION

180

The following projects are used as the benchmark repository for the C#
operationalization of PIQUE as described in chapter 5. In total, the projects represent
? lines of code and ? logical lines of code.

Table D.1: C# Benchmark Repository Projects

Project LoC Empty
lines

Comment
lines

Pre-proc.
lines

Total
lines

ArchiSteamFarm 33,364 11,807 5,335 268 50,774
aspnetboilerplate 108,836 23,775 19,461 327 152,399
AutoMapper 91,428 17,239 3,235 16 111,919
Avalonia 248,486 49,287 38,383 514 336,670
BenchmarkDotNet 64,498 12,390 5,756 291 82,935
CefSharp 19,192 5,118 14,756 30 39,096
choco 37,695 6,713 7,943 77 52,428
CodeHub 433 62 9 0 504
Electron.NET 7,455 1,918 4,033 0 13,406
Entitas-CSharp 14,673 3,923 419 12 19,027
eShopOnContainers 26,109 4,863 742 0 31,714
example-voting-app 652 109 1 0 762
FASTER 41,827 8,678 10,817 467 61,789
FluentTerminal 18,265 3,818 523 148 22,754
FluentValidation 44,343 11,305 13,869 1,068 70,585
graphql-dotnet 41,998 7,003 2,198 7 51,206
Hangfire 148,574 33,780 36,739 1,457 220,550
Humanizer 97,977 12,712 8,740 80 119,509
iotedge 141,812 25,111 9,310 45 176,278
jellyfin 144,467 33,135 28,944 894 207,440
Live-Charts 40,686 10,082 21,809 683 73,260
machinelearning 286,150 53,319 66,858 1,111 407,438
MahApps.Metro 141,065 25,776 26,958 525 194,324
mRemoteNG 48,073 7,513 2,600 630 58,816
msbuild 791,934 153,239 261,471 13,937 1,220,581
NLog 282,992 51,527 215,403 7,411 557,333
Ocelot 44,923 6,614 489 10 52,036
Ombi 36,168 4,910 4,417 122 45,617
OpenRA 127,159 30,137 15,236 2,642 175,174
Opserver 38,507 5,559 3,778 46 47,890
Polly 182,463 51,811 41,344 2,941 278,559
PushSharp 3,448 1,085 450 16 4,999
ql 20,607 4,300 3,750 40 28,697
QuickLook 6,794 1,564 2,152 44 10,554

181

refit 25,775 6,587 1,639 101 34,102
RestSharp 29,629 8,181 7,782 244 45,836
ScreenToGif 48,303 14,863 10,267 1,936 75,369
server 35,928 4,906 968 4 41,806
ServiceStack 286,151 55,926 37,132 2,597 381,806
ShareX 79,845 17,237 16,587 1,998 115,667
SparkleShare 10,497 4,086 1,272 28 15,883
StackExchange.Redis 115,629 20,398 27,099 739 163,865
workflow-core 20,661 3,749 684 28 25,122
Wox 12,157 1,747 769 132 14,805

Project URLs

ArchiSteamFarm: https://github.com/JustArchiNET/ArchiSteamFarm

aspnet-boilerplate: https://github.com/aspnetboilerplate/aspnetboilerplate

AutoMapper: https://github.com/AutoMapper/AutoMapper

Avalonia: https://github.com/AvaloniaUI/Avalonia

BenchmarkDotNet: https://github.com/dotnet/BenchmarkDotNet

CefSharp: https://github.com/cefsharp/CefSharp

choco: https://github.com/chocolatey/choco

CodeHub: https://github.com/CodeHubApp/CodeHub

Electron.NET: https://github.com/ElectronNET/Electron.NET

Entitas-CSharp: https://github.com/sschmid/Entitas-CSharp

eShopOnContainers: https://github.com/dotnet-architecture/eShopOnContainers

example-voting-app: https://github.com/dockersamples/example-voting-app

FASTER: https://github.com/microsoft/FASTER

FluentTerminal: https://github.com/felixse/FluentTerminal

FluentValidation: https://github.com/JeremySkinner/FluentValidation

graphql-dotnet: https://github.com/graphql-dotnet/graphql-dotnet

Hangfire: https://github.com/HangfireIO/Hangfire

https://github.com/JustArchiNET/ArchiSteamFarm
https://github.com/aspnetboilerplate/aspnetboilerplate
https://github.com/AutoMapper/AutoMapper
https://github.com/AvaloniaUI/Avalonia
https://github.com/dotnet/BenchmarkDotNet
https://github.com/cefsharp/CefSharp
https://github.com/chocolatey/choco
https://github.com/CodeHubApp/CodeHub
https://github.com/ElectronNET/Electron.NET
https://github.com/sschmid/Entitas-CSharp
https://github.com/dotnet-architecture/eShopOnContainers
https://github.com/dockersamples/example-voting-app
https://github.com/microsoft/FASTER
https://github.com/felixse/FluentTerminal
https://github.com/JeremySkinner/FluentValidation
https://github.com/graphql-dotnet/graphql-dotnet
https://github.com/HangfireIO/Hangfire

182

Humanizer: https://github.com/Humanizr/Humanizer

iotedge: https://github.com/Azure/iotedge

jellyfin: https://github.com/jellyfin/jellyfin

Live-Charts: https://github.com/Live-Charts/Live-Charts

machinelearning: https://github.com/dotnet/machinelearning

MahApps.Metro: https://github.com/MahApps/MahApps.Metro

mRemoteNG: https://github.com/mRemoteNG/mRemoteNG

msbuild: https://github.com/microsoft/msbuild

NLog: https://github.com/NLog/NLog

Ocelot: https://github.com/ThreeMammals/Ocelot

Ombi: https://github.com/tidusjar/Ombi

OpenRA: https://github.com/OpenRA/OpenRA

Opserver: https://github.com/opserver/Opserver

Polly: https://github.com/App-vNext/Polly

PushSharp: https://github.com/Redth/PushSharp

ql: https://github.com/Semmle/ql

QuickLook: https://github.com/QL-Win/QuickLook

refit: https://github.com/reactiveui/refit

RestSharp: https://github.com/restsharp/RestSharp

ScreenToGif: https://github.com/NickeManarin/ScreenToGif

server: https://github.com/bitwarden/server

ServiceStack: https://github.com/ServiceStack/ServiceStack

ShareX: https://github.com/ShareX/ShareX

SparkleShare: https://github.com/hbons/SparkleShare

StackExchange.Redis: https://github.com/StackExchange/StackExchange.Redis

workflow-core: https://github.com/danielgerlag/workflow-core

Wox: https://github.com/Wox-launcher/Wox

https://github.com/Humanizr/Humanizer
https://github.com/Azure/iotedge
https://github.com/jellyfin/jellyfin
https://github.com/Live-Charts/Live-Charts
https://github.com/dotnet/machinelearning
https://github.com/MahApps/MahApps.Metro
https://github.com/mRemoteNG/mRemoteNG
https://github.com/microsoft/msbuild
https://github.com/NLog/NLog
https://github.com/ThreeMammals/Ocelot
https://github.com/tidusjar/Ombi
https://github.com/OpenRA/OpenRA
https://github.com/opserver/Opserver
https://github.com/App-vNext/Polly
https://github.com/Redth/PushSharp
https://github.com/Semmle/ql
https://github.com/QL-Win/QuickLook
https://github.com/reactiveui/refit
https://github.com/restsharp/RestSharp
https://github.com/NickeManarin/ScreenToGif
https://github.com/bitwarden/server
https://github.com/ServiceStack/ServiceStack
https://github.com/ShareX/ShareX
https://github.com/hbons/SparkleShare
https://github.com/StackExchange/StackExchange.Redis
https://github.com/danielgerlag/workflow-core
https://github.com/Wox-launcher/Wox

183

APPENDIX E

C# OPERATIONALIZED MODEL: COMPARISON MATRICES

184

This appendix contains the comparison matrix tables used for factor weight
derivation of the operationalized C# discussed in chapter 5. The cell values represent
VL: very low. SL: somewhat low. EQ: equal. SH: somewhat high. VH: very high.

E.1 Quality Aspect to TQI layer

Table E.1: TQI Comparison matrix from practitioner interaction

TQI Comp. Maint. Perf. Port. Rel. Sec. Use.
Comp. - SL SL SL VL VH EQ
Maint. - - EQ SH SL VH SH
Perf. - - - SH SL VH EQ
Port. - - - - VL VH EQ
Rel. - - - - - VH SH
Sec. - - - - - - VL
Use. - - - - - - -

E.2 Product Factors to Quality Aspects layer

The product factor name abbreviations in the following tables are as follows:

DTI: Data Type Integrity

DOC: Documentation

ENC: Encryption

EXH: Exception Handling

FMT: Format

FNS: Functional Syntax

IOH: Input/Output Handling

RSH: Resource Handling

STR: Structure

185

Table E.2: Product factors → quality aspect matrix in the context of compatibility

Comp. DTI DOC ENC EXH FMT FNS IOH RSH STR
DTI - SH VH EQ VH EQ SL EQ VH
DOC - - EQ VL SH SL SL VL EQ
ENC - - - VL EQ EQ VL VL EQ
EXH - - - - VH VH SH SH VH
FMT - - - - - EQ VL VL EQ
FNS - - - - - - SL SL EQ
IOH - - - - - - - EQ VH
RSH - - - - - - - - VH
STR - - - - - - - - -

Table E.3: Product factors→ quality aspect matrix in the context of maintainability

Maint. DTI DOC ENC EXH FMT FNS IOH RSH STR
DTI - EQ VH EQ EQ EQ SH SH EQ
DOC - - VH SH EQ EQ SH VH EQ
ENC - - - VL VL VL VL VL VL
EXH - - - - SL SL SH SH SL
FMT - - - - - EQ SH VH EQ
FNS - - - - - - SH VH EQ
IOH - - - - - - - EQ SL
RSH - - - - - - - - VL
STR - - - - - - - - -

Table E.4: Product factors → quality aspect matrix in the context of performance
efficiency

Perf. DTI DOC ENC EXH FMT FNS IOH RSH STR
DTI - VH SH SL VH VH SL SL SH
DOC - - SL VL EQ EQ VL VL VL
ENC - - - VL EQ EQ VL VL SL
EXH - - - - VH SH EQ EQ VH
FMT - - - - - EQ VL VL SL
FNS - - - - - - SL SL SL
IOH - - - - - - - EQ VH
RSH - - - - - - - - VH
STR - - - - - - - - -

186

Table E.5: Product factors → quality aspect matrix in the context of portability

Port. DTI DOC ENC EXH FMT FNS IOH RSH STR
DTI - SL SH SL EQ EQ VL SL EQ
DOC - - SH SL SH EQ SL SL SH
ENC - - - VL EQ SL VL SL EQ
EXH - - - - SH SH EQ EQ SH
FMT - - - - - SL VL VL EQ
FNS - - - - - - VL VL EQ
IOH - - - - - - - EQ SH
RSH - - - - - - - - SH
STR - - - - - - - - -

Table E.6: Product factors → quality aspect matrix in the context of reliability

Rel. DTI DOC ENC EXH FMT FNS IOH RSH STR
DTI - VH VH SL VH SH SL SL VH
DOC - - VH VL VH EQ VL VL VH
ENC - - - VL EQ SL VL VL SL
EXH - - - - VH SH EQ EQ VH
FMT - - - - - SL VL VL SL
FNS - - - - - - SL SL SL
IOH - - - - - - - EQ VL
RSH - - - - - - - - VL
STR - - - - - - - - -

Table E.7: Product factors → quality aspect matrix in the context of security

Sec. DTI DOC ENC EXH FMT FNS IOH RSH STR
DTI - VH SL EQ VH VH SL EQ VH
DOC - - VL VL EQ EQ VL VL EQ
ENC - - - SH VH VH EQ SH VH
EXH - - - - VH VH SL EQ VH
FMT - - - - - EQ VL VL EQ
FNS - - - - - - VL VL EQ
IOH - - - - - - - SH VH
RSH - - - - - - - - VH
STR - - - - - - - - -

187

Table E.8: Product factors → quality aspect matrix in the context of usability

Use. DTI DOC ENC EXH FMT FNS IOH RSH STR
DTI - SL EQ VL EQ EQ VL EQ EQ
DOC - - SH VL SH SH VL SH SH
ENC - - - VL EQ EQ VL EQ EQ
EXH - - - - VH VH EQ VH VH
FMT - - - - - EQ VH EQ EQ
FNS - - - - - - VL EQ EQ
IOH - - - - - - - VH VH
RSH - - - - - - - - EQ
STR - - - - - - - - -

188

APPENDIX F

C# OPERATIONALIZED MODEL: DERIVED WEIGHTS

189

F.1 Derived Factor Incoming Weight Values

TQI Node {Performance Efficiency: 0.151, Portability: 0.0816, Maintainability:
0.1822, Compatibility: 0.0537, Reliability: 0.4327, Security: 0.0156, Usability:
0.0831}

Performance Efficiency {Functional Syntax: 0.0296, Format: 0.0198, Resource
Handling: 0.2408, Data Type Integrity: 0.1229, Documentation: 0.0170, I/O
Handling: 0.2408, Exception Handling: 0.2408, Encryption: 0.0265, Structure:
0.0617}

Portability {Functional Syntax: 0.0575, Format: 0.0292, Resource Handling:
0.2351, Data Type Integrity: 0.0449, Documentation: 0.0909, I/O Handling: 0.2714,
Exception Handling: 0.2042, Encryption: 0.0262, Structure: 0.0407}

Maintainability {Functional Syntax: 0.1747, Format: 0.1747, Resource Handling:
0.0321, Data Type Integrity: 0.1339, Documentation: 0.1747, I/O Handling: 0.0419,
Exception Handling: 0.0808, Encryption: 0.0124, Structure: 0.1747}

Compatibility {Functional Syntax: 0.0518, Format: 0.0221, Resource Handling:
0.1701, Data Type Integrity: 0.1488, Documentation: 0.0318, I/O Handling: 0.1983,
Exception Handling: 0.3283, Encryption: 0.0244, Structure: 0.0244}

Reliability {Functional Syntax: 0.0265, Format: 0.0115, Resource Handling:
0.1318, Data Type Integrity: 0.1924, Documentation: 0.0275, I/O Handling: 0.1318,
Exception Handling: 0.2606, Encryption: 0.0115, Structure: 0.2063}

Security {Functional Syntax: 0.0184, Format: 0.0184, Resource Handling: 0.1219,
Data Type Integrity: 0.1219, Documentation: 0.0184, I/O Handling: 0.2803,
Exception Handling: 0.1219, Encryption: 0.2803, Structure: 0.0184}

Usability {Functional Syntax: 0.0312, Format: 0.1762, Resource Handling: 0.0312,
Data Type Integrity: 0.0312, Documentation: 0.1111, I/O Handling: 0.2205,
Exception Handling: 0.3363, Encryption: 0.0312, Structure: 0.0312}

190

APPENDIX G

C# OPERATIONALIZED MODEL: FULL MODEL DATA

191

1 {

2 "name": "CSharp ISO25k Quality Model",

3 "additionalData": {},

4 "global_config": {

5 "benchmark_strategy": "pique.calibration.DefaultBenchmarker",

6 "weights_strategy": "pique.calibration.AHPWeighter"

7 },

8 "factors": {

9 "product_factors": {

10 "Functional Syntax": {

11 "description": "The operators, syntactic decision, object

selection, etc., that determine how a functional act is

defined. This is disjoint from the Format property by having

potential impact on more than just human-readability",

↪→

↪→

↪→

12 "value": 0.0

13 },

14 "Format": {

15 "description": "Code formatting. This involves how the code is

written as it appears to a human reader. Common synonyms

include Style, Simplification, Readability, Convention,

Verbosity, Naming",

↪→

↪→

↪→

16 "value": 0.0

17 },

18 "Resource Handling": {

19 "description": "Management of resources: often related to locking

of instances and file IO",↪→

20 "value": 0.0

21 },

22 "Data Type Integrity": {

23 "description": "A representation of how well each object adheres

to CSharp object oriented typing expectations",↪→

24 "value": 0.0

25 },

26 "Documentation": {

27 "description": "Information about the source code intended to

assist human understanding",↪→

28 "value": 0.0

29 },

30 "IO Handling": {

31 "description": "Management of the data going into and out of a

source component. Can relate to data sanitization, filtering,

rejection, querying, database queries and storage, etc",

↪→

↪→

32 "value": 0.0

33 },

34 "Exception Handling": {

192

35 "description": "Goodness of approach in handling exceptions in a

compliant and productive way",↪→

36 "value": 0.0

37 },

38 "Encryption": {

39 "description": "The concealment of code elements such that external

entities are unable to decipher its information",↪→

40 "value": 0.0

41 },

42 "Structure": {

43 "description": "The organization of classes, files, and methods.

Includes object oriented concepts such as inheritance",↪→

44 "value": 0.0

45 }

46 },

47 "quality_aspects": {

48 "Performance Efficiency": {

49 "weights": {

50 "Functional Syntax": 0.0296,

51 "Format": 0.0198,

52 "Resource Handling": 0.2408,

53 "Data Type Integrity": 0.1229,

54 "Documentation": 0.017,

55 "IO Handling": 0.2408,

56 "Exception Handling": 0.2408,

57 "Encryption": 0.0265,

58 "Structure": 0.0617

59 },

60 "description": "This characteristic represents the performance

relative to the amount of resources used under stated

conditions",

↪→

↪→

61 "value": 0.0

62 },

63 "Portability": {

64 "weights": {

65 "Functional Syntax": 0.0575,

66 "Format": 0.0292,

67 "Resource Handling": 0.2351,

68 "Data Type Integrity": 0.0449,

69 "Documentation": 0.0909,

70 "IO Handling": 0.2714,

71 "Exception Handling": 0.2042,

72 "Encryption": 0.0262,

73 "Structure": 0.0407

74 },

193

75 "description": "Degree of effectiveness and efficiency with which a

system, product or component can be transferred from one

hardware, software or other operational or usage environment to

another",

↪→

↪→

↪→

76 "value": 0.0

77 },

78 "Maintainability": {

79 "weights": {

80 "Functional Syntax": 0.1747,

81 "Format": 0.1747,

82 "Resource Handling": 0.0321,

83 "Data Type Integrity": 0.1339,

84 "Documentation": 0.1747,

85 "IO Handling": 0.0419,

86 "Exception Handling": 0.0808,

87 "Encryption": 0.0124,

88 "Structure": 0.1747

89 },

90 "description": "This characteristic represents the degree of

effectiveness and efficiency with which a product or system can

be modified to improve it, correct it or adapt it to changes in

environment, and in requirements",

↪→

↪→

↪→

91 "value": 0.0

92 },

93 "Compatibility": {

94 "weights": {

95 "Functional Syntax": 0.0518,

96 "Format": 0.0221,

97 "Resource Handling": 0.1701,

98 "Data Type Integrity": 0.1488,

99 "Documentation": 0.0318,

100 "IO Handling": 0.1983,

101 "Exception Handling": 0.3283,

102 "Encryption": 0.0244,

103 "Structure": 0.0244

104 },

105 "description": "Degree to which a product, system or component can

exchange information with other products, systems or

components, and/or perform its required functions while sharing

the same hardware or software environment",

↪→

↪→

↪→

106 "value": 0.0

107 },

108 "Reliability": {

109 "weights": {

110 "Functional Syntax": 0.0265,

194

111 "Format": 0.0115,

112 "Resource Handling": 0.1318,

113 "Data Type Integrity": 0.1924,

114 "Documentation": 0.0275,

115 "IO Handling": 0.1318,

116 "Exception Handling": 0.2606,

117 "Encryption": 0.0115,

118 "Structure": 0.2063

119 },

120 "description": "Degree to which a system, product or component

performs specified functions under specified conditions for a

specified period of time",

↪→

↪→

121 "value": 0.0

122 },

123 "Security": {

124 "weights": {

125 "Functional Syntax": 0.0184,

126 "Format": 0.0184,

127 "Resource Handling": 0.1219,

128 "Data Type Integrity": 0.1219,

129 "Documentation": 0.0184,

130 "IO Handling": 0.2803,

131 "Exception Handling": 0.1219,

132 "Encryption": 0.2803,

133 "Structure": 0.0184

134 },

135 "description": "Degree to which a product or system protects

information and data so that persons or other products or

systems have the degree of data access appropriate to their

types and levels of authorization",

↪→

↪→

↪→

136 "value": 0.0

137 },

138 "Usability": {

139 "weights": {

140 "Functional Syntax": 0.0312,

141 "Format": 0.1762,

142 "Resource Handling": 0.0312,

143 "Data Type Integrity": 0.0312,

144 "Documentation": 0.1111,

145 "IO Handling": 0.2205,

146 "Exception Handling": 0.3363,

147 "Encryption": 0.0312,

148 "Structure": 0.0312

149 },

195

150 "description": "Degree to which a product or system can be used by

specified users to achieve specified goals with effectiveness,

efficiency and satisfaction in a specified context of use",

↪→

↪→

151 "value": 0.0

152 }

153 },

154 "tqi": {

155 "Total Software Quality": {

156 "weights": {

157 "Performance Efficiency": 0.151,

158 "Portability": 0.0816,

159 "Maintainability": 0.1822,

160 "Compatibility": 0.0537,

161 "Reliability": 0.4327,

162 "Security": 0.0156,

163 "Usability": 0.0831

164 },

165 "description": "The total quality value representing the entire

system",↪→

166 "value": 0.0

167 }

168 }

169 },

170 "measures": {

171 "Exception Handling Smells": {

172 "positive": false,

173 "normalizer": "pique.evaluation.DefaultNormalizer",

174 "eval_strategy": "pique.evaluation.DefaultMeasureEvaluator",

175 "parents": [

176 "Exception Handling"

177],

178 "diagnostics": [

179 {

180 "name": "loc",

181 "eval_strategy": "pique.evaluation.LOCDiagnosticEvaluator",

182 "toolName": "RoslynatorLoc",

183 "findings": [],

184 "description": "Normalizer diagnostic lines of code",

185 "value": 0.0

186 },

187 {

188 "name": "RCS1044",

189 "eval_strategy": "pique.evaluation.DefaultDiagnosticEvaluator",

190 "toolName": "Roslynator",

191 "findings": [],

196

192 "description": "Remove original exception from throw statement",

193 "value": 0.0

194 },

195 {

196 "name": "RCS1075",

197 "eval_strategy": "pique.evaluation.DefaultDiagnosticEvaluator",

198 "toolName": "Roslynator",

199 "findings": [],

200 "description": "Avoid empty catch clause that catches

System.Exception",↪→

201 "value": 0.0

202 },

203 // ...

204 {

205 "name": "RCS1236",

206 "eval_strategy": "pique.evaluation.DefaultDiagnosticEvaluator",

207 "toolName": "Roslynator",

208 "findings": [],

209 "description": "Use exception filter",

210 "value": 0.0

211 }

212],

213 "thresholds": [

214 0.0,

215 9.476E-5,

216 6.38E-4

217],

218 "description": "Code smells related to exception handling",

219 "value": 0.0

220 },

221 "Functional Syntax Smells": {

222 "positive": false,

223 "normalizer": "pique.evaluation.DefaultNormalizer",

224 "eval_strategy": "pique.evaluation.DefaultMeasureEvaluator",

225 "parents": [

226 "Functional Syntax"

227],

228 "diagnostics": [

229 {

230 "name": "loc",

231 "eval_strategy": "pique.evaluation.LOCDiagnosticEvaluator",

232 "toolName": "RoslynatorLoc",

233 "findings": [],

234 "description": "Normalizer diagnostic lines of code",

235 "value": 0.0

197

236 },

237 {

238 "name": "RCS1048",

239 "eval_strategy": "pique.evaluation.DefaultDiagnosticEvaluator",

240 "toolName": "Roslynator",

241 "findings": [],

242 "description": "Use lambda expression instead of anonymous

method",↪→

243 "value": 0.0

244 },

245 {

246 "name": "RCS1061",

247 "eval_strategy": "pique.evaluation.DefaultDiagnosticEvaluator",

248 "toolName": "Roslynator",

249 "findings": [],

250 "description": "Merge if statement with nested if statement",

251 "value": 0.0

252 },

253 // ...

254 {

255 "name": "RCS1236",

256 "eval_strategy": "pique.evaluation.DefaultDiagnosticEvaluator",

257 "toolName": "Roslynator",

258 "findings": [],

259 "description": "Use exception filter",

260 "value": 0.0

261 }

262],

263 "thresholds": [

264 0.0,

265 0.00140055,

266 0.00696056

267],

268 "description": "Code smells related to functional syntax",

269 "value": 0.0

270 },

271 "Encryption Smells": {

272 "positive": false,

273 "normalizer": "pique.evaluation.DefaultNormalizer",

274 "eval_strategy": "pique.evaluation.DefaultMeasureEvaluator",

275 "parents": [

276 "Encryption"

277],

278 "diagnostics": [

279 {

198

280 "name": "loc",

281 "eval_strategy": "pique.evaluation.LOCDiagnosticEvaluator",

282 "toolName": "RoslynatorLoc",

283 "findings": [],

284 "description": "Normalizer diagnostic lines of code",

285 "value": 0.0

286 },

287 // ...

288 {

289 "name": "SCS0034",

290 "eval_strategy": "pique.evaluation.DefaultDiagnosticEvaluator",

291 "toolName": "Roslynator",

292 "findings": [],

293 "description": "Password RequiredLength Not Set",

294 "value": 0.0

295 }

296],

297 "thresholds": [

298 0.0,

299 0.0,

300 0.0

301],

302 "description": "Code smells related to Encryption",

303 "value": 0.0

304 },

305 "Documentation Smells": {

306 "positive": false,

307 "normalizer": "pique.evaluation.DefaultNormalizer",

308 "eval_strategy": "pique.evaluation.DefaultMeasureEvaluator",

309 "parents": [

310 "Documentation"

311],

312 "diagnostics": [

313 {

314 "name": "loc",

315 "eval_strategy": "pique.evaluation.LOCDiagnosticEvaluator",

316 "toolName": "RoslynatorLoc",

317 "findings": [],

318 "description": "Normalizer diagnostic lines of code",

319 "value": 0.0

320 },

321 {

322 "name": "RCS1138",

323 "eval_strategy": "pique.evaluation.DefaultDiagnosticEvaluator",

324 "toolName": "Roslynator",

199

325 "findings": [],

326 "description": "Add summary to documentation comment",

327 "value": 0.0

328 },

329 {

330 "name": "RCS1139",

331 "eval_strategy": "pique.evaluation.DefaultDiagnosticEvaluator",

332 "toolName": "Roslynator",

333 "findings": [],

334 "description": "Add summary element to documentation comment",

335 "value": 0.0

336 },

337 // ...

338 {

339 "name": "RCS1232",

340 "eval_strategy": "pique.evaluation.DefaultDiagnosticEvaluator",

341 "toolName": "Roslynator",

342 "findings": [],

343 "description": "Order elements in documentation comment",

344 "value": 0.0

345 }

346],

347 "thresholds": [

348 0.0,

349 3.2634E-4,

350 0.00205573

351],

352 "description": "Code smells related to documentation",

353 "value": 0.0

354 },

355 "Format Smells": {

356 "positive": false,

357 "normalizer": "pique.evaluation.DefaultNormalizer",

358 "eval_strategy": "pique.evaluation.DefaultMeasureEvaluator",

359 "parents": [

360 "Format"

361],

362 "diagnostics": [

363 {

364 "name": "loc",

365 "eval_strategy": "pique.evaluation.LOCDiagnosticEvaluator",

366 "toolName": "RoslynatorLoc",

367 "findings": [],

368 "description": "Normalizer diagnostic lines of code",

369 "value": 0.0

200

370 },

371 {

372 "name": "RCS1001",

373 "eval_strategy": "pique.evaluation.DefaultDiagnosticEvaluator",

374 "toolName": "Roslynator",

375 "findings": [],

376 "description": "Add braces (when expression spans over multiple

lines)",↪→

377 "value": 0.0

378 },

379 {

380 "name": "RCS1002",

381 "eval_strategy": "pique.evaluation.DefaultDiagnosticEvaluator",

382 "toolName": "Roslynator",

383 "findings": [],

384 "description": "Remove braces",

385 "value": 0.0

386 },

387 // ...

388 {

389 "name": "RCS1215",

390 "eval_strategy": "pique.evaluation.DefaultDiagnosticEvaluator",

391 "toolName": "Roslynator",

392 "findings": [],

393 "description": "Expression is always equal to true/false",

394 "value": 0.0

395 }

396],

397 "thresholds": [

398 0.00107901,

399 0.04671379,

400 0.12169017

401],

402 "description": "Code smells related to format",

403 "value": 0.0

404 },

405 "DTI Smells": {

406 "positive": false,

407 "normalizer": "pique.evaluation.DefaultNormalizer",

408 "eval_strategy": "pique.evaluation.DefaultMeasureEvaluator",

409 "parents": [

410 "Data Type Integrity"

411],

412 "diagnostics": [

413 {

201

414 "name": "loc",

415 "eval_strategy": "pique.evaluation.LOCDiagnosticEvaluator",

416 "toolName": "RoslynatorLoc",

417 "findings": [],

418 "description": "Normalizer diagnostic lines of code",

419 "value": 0.0

420 },

421 {

422 "name": "RCS1008",

423 "eval_strategy": "pique.evaluation.DefaultDiagnosticEvaluator",

424 "toolName": "Roslynator",

425 "findings": [],

426 "description": "Use explicit type instead of 'var' (when the type

is not obvious)",↪→

427 "value": 0.0

428 },

429 {

430 "name": "RCS1009",

431 "eval_strategy": "pique.evaluation.DefaultDiagnosticEvaluator",

432 "toolName": "Roslynator",

433 "findings": [],

434 "description": "Use explicit type instead of 'var' (foreach

variable)",↪→

435 "value": 0.0

436 },

437 // ...

438 {

439 "name": "RCS1234",

440 "eval_strategy": "pique.evaluation.DefaultDiagnosticEvaluator",

441 "toolName": "Roslynator",

442 "findings": [],

443 "description": "Duplicate enum value",

444 "value": 0.0

445 }

446],

447 "thresholds": [

448 0.0,

449 0.0,

450 1.398E-5

451],

452 "description": "Code smells related to data type integrity",

453 "value": 0.0

454 },

455 "Resource Handling Smells": {

456 "positive": false,

202

457 "normalizer": "pique.evaluation.DefaultNormalizer",

458 "eval_strategy": "pique.evaluation.DefaultMeasureEvaluator",

459 "parents": [

460 "Resource Handling"

461],

462 "diagnostics": [

463 {

464 "name": "loc",

465 "eval_strategy": "pique.evaluation.LOCDiagnosticEvaluator",

466 "toolName": "RoslynatorLoc",

467 "findings": [],

468 "description": "Normalizer diagnostic lines of code",

469 "value": 0.0

470 },

471 {

472 "name": "RCS1059",

473 "eval_strategy": "pique.evaluation.DefaultDiagnosticEvaluator",

474 "toolName": "Roslynator",

475 "findings": [],

476 "description": "Avoid locking on publicly accessible instance",

477 "value": 0.0

478 },

479 {

480 "name": "RCS1090",

481 "eval_strategy": "pique.evaluation.DefaultDiagnosticEvaluator",

482 "toolName": "Roslynator",

483 "findings": [],

484 "description": "Call 'ConfigureAwait(false)'",

485 "value": 0.0

486 },

487 // ...

488 {

489 "name": "VSTHRD200",

490 "eval_strategy": "pique.evaluation.DefaultDiagnosticEvaluator",

491 "toolName": "Roslynator",

492 "findings": [],

493 "description": "Use Async naming convention",

494 "value": 0.0

495 }

496],

497 "thresholds": [

498 0.0,

499 0.00409824,

500 0.03116094

501],

203

502 "description": "Code smells related to resource handling",

503 "value": 0.0

504 },

505 "IO Handling Smells": {

506 "positive": false,

507 "normalizer": "pique.evaluation.DefaultNormalizer",

508 "eval_strategy": "pique.evaluation.DefaultMeasureEvaluator",

509 "parents": [

510 "IO Handling"

511],

512 "diagnostics": [

513 {

514 "name": "loc",

515 "eval_strategy": "pique.evaluation.LOCDiagnosticEvaluator",

516 "toolName": "RoslynatorLoc",

517 "findings": [],

518 "description": "Normalizer diagnostic lines of code",

519 "value": 0.0

520 },

521 {

522 "name": "SCS0001",

523 "eval_strategy": "pique.evaluation.DefaultDiagnosticEvaluator",

524 "toolName": "Roslynator",

525 "findings": [],

526 "description": "Command Injection",

527 "value": 0.0

528 },

529 {

530 "name": "SCS0002",

531 "eval_strategy": "pique.evaluation.DefaultDiagnosticEvaluator",

532 "toolName": "Roslynator",

533 "findings": [],

534 "description": "SQL Injection (LINQ)",

535 "value": 0.0

536 },

537 // ...

538 {

539 "name": "SCS0036",

540 "eval_strategy": "pique.evaluation.DefaultDiagnosticEvaluator",

541 "toolName": "Roslynator",

542 "findings": [],

543 "description": "SQL Injection (EnterpriseLibrary.Data)",

544 "value": 0.0

545 }

546],

204

547 "thresholds": [

548 0.0,

549 0.0,

550 0.0

551],

552 "description": "Code smells related to IO handling",

553 "value": 0.0

554 },

555 "Structure Smells": {

556 "positive": false,

557 "normalizer": "pique.evaluation.DefaultNormalizer",

558 "eval_strategy": "pique.evaluation.DefaultMeasureEvaluator",

559 "parents": [

560 "Structure"

561],

562 "diagnostics": [

563 {

564 "name": "loc",

565 "eval_strategy": "pique.evaluation.LOCDiagnosticEvaluator",

566 "toolName": "RoslynatorLoc",

567 "findings": [],

568 "description": "Normalizer diagnostic lines of code",

569 "value": 0.0

570 },

571 {

572 "name": "RCS1060",

573 "eval_strategy": "pique.evaluation.DefaultDiagnosticEvaluator",

574 "toolName": "Roslynator",

575 "findings": [],

576 "description": "Declare each type in separate file",

577 "value": 0.0

578 },

579 {

580 "name": "RCS1085",

581 "eval_strategy": "pique.evaluation.DefaultDiagnosticEvaluator",

582 "toolName": "Roslynator",

583 "findings": [],

584 "description": "Use auto-implemented property",

585 "value": 0.0

586 },

587 // ...

588 {

589 "name": "RCS1241",

590 "eval_strategy": "pique.evaluation.DefaultDiagnosticEvaluator",

591 "toolName": "Roslynator",

205

592 "findings": [],

593 "description": "Implement non-generic counterpart",

594 "value": 0.0

595 }

596],

597 "thresholds": [

598 0.0,

599 0.00334999,

600 0.00923788

601],

602 "description": "Code smells related to structure",

603 "value": 0.0

604 }

605 }

606 }

206

APPENDIX H

THE QUAMOCO META MODEL UML

207

Figure H.1: Quamoco meta model. Source: [41]

	Titlepage
	Copyright
	Acknowledgements

	Table of Contents
	List of Tables
	List of Figures
	List of Algorithms
	Abstract
	Chapter 1 — Introduction
	Motivation
	Motivation Formalized: GQM
	Contributions

	Chapter 2 — Background
	Quality Modeling
	Measurement
	Benchmark Repositories and Utility Functions
	Quality Control Loop
	History of Quality Modeling
	Critiques of Quality Modeling
	Conclusions

	Chapter 3 — Supporting Work
	Quamoco
	QATCH
	Conclusions

	Chapter 4 — PIQUE System Design and Technical Details
	System Design
	Default Mechanisms
	Overriding Mechanisms
	Model Derivation Process
	Product Assessment Process

	Chapter 5 — PIQUE Operationalized: New Models; New Tools
	Introduction
	Deriving and Using a C# Quality Model
	A C# Security Model
	Conclusion

	Chapter 6 — Test Cases
	Introduction
	Test Designs
	Test Motivations
	Model Construction and Implementation Effort Tests
	Model Understandability Tests
	Model Assessment Result Validity Tests
	Summary of Results

	Chapter 7 — Discussion
	Goal 01: The Research Perspective
	Goal 02: The Industry Perspective

	Chapter 8 — Threats to Validity
	Internal Validity
	External Validity
	Construct Validity

	Chapter 9 — Conclusion
	References Cited
	APPENDICES
	APPENDIX A: C# Quality Model Description
	APPENDIX B: C# Operationalized Model: Product Factor Descriptions
	APPENDIX C: PIQUE Tool Integration Technical Document
	APPENDIX D: C# Benchmark Repository Information
	APPENDIX E: C# Operationalized Model: Comparison Matrices
	Quality Aspect to TQI layer
	Product Factors to Quality Aspects layer
	APPENDIX F: C# Operationalized Model: Derived Weights
	Derived Factor Incoming Weight Values
	APPENDIX G: C# Operationalized Model: Full Model Data
	APPENDIX H: The Quamoco Meta Model UML

