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Location of Cardinal Points from the ABCD Matrix
for the General Optical System

Cardinal Point Measured Function Special Case
From To (n1=n2)

First Focal Point P1 F1 -n1/(n2C) -1/C
First Principle Point I P1 (n1-n2D)/(n2C) (1-D)/C
First Nodal Point I N1 (1-D)/C (1-D)/C
Second Focal Point P2 F2 -1/C -1/C
Second Principle Point II P2 (1-A)/C (1-A)/C
Second Nodal Point II N2 (n1-n2A)/(n2C) (1-A)/C

Table 1

When analyzing an optical system, we often are first interested in basic properties
of the system such as the focal length (or optical power of the system) and the location of
the focal planes, etc.  In the limit of paraxial optics, any optical system, from a simple
lens to a combination of lenses, mirrors and ducts, can be described in terms of six
special surfaces, called the cardinal surfaces of the system.  In paraxial optics, these
surfaces are planes, normal to the optical axis.  The point where the plane intersects the
optical axis is the cardinal point corresponding to that cardinal plane.  The six special
planes are:

First Focal Plane Second Focal Plane
First Principle Plane Second Principle Plane
First Nodal Plane Second Nodal Plane

Once we know the location of these special planes, relative to the physical location of the
lenses in the system, we can describe all of the paraxial imaging properties of the system.

I II

F1 P1 N1 P2 N2 F2

Figure 1  Cardinal points of a system which is characterized by an
ABCD matrix between an input plane I and an output plane II.
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First Focal Plane:  The first focal plane is in the left hand space of the optical system,
which by our convention corresponds to the object space of the imaging system.  The
intersection of the first focal plane with the optical axis is the first focal point F1.  Rays
originating from this point will leave the system parallel to the optical axis on the right
side, focused to infinity in the image space.  The distance between the first focal plane
and the first principle plane, F1P1, is the first focal length of the system, f1.

Second Focal Plane:  The second focal plane is in the right hand, or image space of the
optical system.  The intersection of the second focal plane with the optical axis is the
second focal point, F2.  Rays coming from infinity on the left, and parallel to the optical
axis, will come to a focus at F2.  The distance from the second principle plane to the
second focal plane, P2F2, is the second focal length of the system, f2.  The ratio of the first
and second focal lengths of the system is given by 2121 nnff = , where n1 and n2 are the

indices of refraction in the object and image spaces, respectively.

First Principle Plane:  The first principle plane is in the left hand, object space of the
system.  The point where the first principle plane intersects the optical axis is the first
principle point, P1.

Second Principle Plane:  The second principle plane is in the right hand, image space of
the system.  The point where the second principle plane intersects the optical axis is the
second principle point, P2.

The first and second principle planes are conjugate planes (meaning that a point in the
first principle plane is imaged by the system to a point in the second principle plane) with
the special property of unity magnification.  Any ray crossing the first principle plane at
height y1 will cross the second principle plane at height y2=y1.

Nodal Planes:  The nodal points N1 and N2 are conjugate axial points with the special
property that a ray through N1 is conjugate to a parallel ray through N2.  In other words,
the nodal points are conjugate points in the object and image space with unity angular
magnification.  The planes normal to the axis that contain the nodal points are called the
nodal planes.  If n1=n2 then the nodal planes coincide with the principle planes.

The usefulness of the cardinal points is best illustrated with some specific
examples.  But first, consider any arbitrary optical system for which we are given the
location of the principle planes and the focal points.  How can we trace a paraxial ray
through this system, and locate the image of a particular object point?  Typically, for a
thin lens, one traces rays using the following simple construction, illustrated in Figure 2.
Consider an object space ray AB.  We can construct a ray parallel to AB but going
through the center of the lens where it does not deviate from its initial path.  We extend
this ray to the point where it intersects the second focal plane.  Since parallel rays on the
object side must meet in the second focal plane, we can now draw the image space ray
that is conjugate to the object ray AB.  This ray must pass through the same point in the
second focal plane as the parallel ray.
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Figure 2

To find the image of a point, a similar construction is used.  Consider the object
point Q1 in Figure 3.  We can locate the image by constructing two special rays through
the lens.  First, we can extend a ray from Q1 parallel to the optical axis.  After passing
through the lens this ray must go through the second focal point, F2.  A second ray is
drawn from Q1 through the first focal point F1 to the lens.   This ray must exit the system
parallel to the axis, since it goes through the focal point.  The intersection of these two
rays locates the image point Q2.  A third ray may be drawn from Q1 through the lens
center.  The undeviated ray must also pass through the image point Q2.

Now consider the more general system, specified only by the locations of the
cardinal points.  The same technique that is used for the thin lens is adopted, but now
instead of drawing rays to the lens, we draw them to the principle planes.  Beginning at
point Q1, draw a ray parallel to the optical axis until it intersects the first principle plane.
Because the magnification between principle planes is unity, this ray will emerge from
the second principle plane at the same height.  The two rays are connected with a dashed
line to show that they are conjugate to one another.  Because this object ray was parallel
to the axis to begin with, the dashed line looks like an extension of the ray, so we often
talk about drawing a ray parallel to the axis from Q1 to the second principle plane.  From
the point where the ray emerges from the second principle plane, we draw the image
space ray through the second focal point F2.  We construct a second ray from Q1 through
the first focal point F1, extending the ray until it intersects the first principle plane.  Again
we transfer this ray through the system to the second principle plane preserving unity
magnification between the two (shown again as a dashed line parallel to the axis).  The

Q1

F2

F1

Image point

Object point

Q2

Figure 3
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ray emerging must travel parallel to the axis on the image side since it passed through the
first focal point.  The intersection of these two rays must coincide with the image point
Q2.  Again, a third ray may be constructed by using the unity angle magnification
property of the nodal points.  A ray drawn from Q1 to the first nodal point N1 will emerge
from the second nodal point N2 along a parallel direction.  This ray too must intersect the
image point Q2.

Consider some specific examples.

Thin Lens
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right at the lens.  Referring to Table 1, we see that the first and second principle planes
are also located at the lens.  We have specified the ABCD matrix in terms of the second
focal length f2, which is given above.  From the table we see that the first focal length is
given by f1 = n1f2/n2.   We define the optical power P of the system as P = n1/f1 = n2/f2, so

the power of a thin lens is given by 
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= .  From Table 1 we can also

Figure 4
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find the location of the nodal points.  We see that N1 is located (f1 - f2) in front of the lens,
and N2 is located (f2 - f1) behind the lens.

As an example, consider a plano-convex thin lens with f = 1 in air.  For the plano-convex
lens, R1=∞ so all of the power of the lens is due to the second interface.  We plan to use
this lens as a “water immersion” lens to image something in water and form an image in
air.  The situation is depicted in the following drawing.

We can locate the principle planes and nodal points using the results just presented.  We
assume that n1=1.33 for water, and n2=1.0 for air.  The focal length on the air side is the
same as when the lens was in air (since R1=∞), so f2 = 1.  The focal length on the water
side is f1 = (n1/n2) f2 = 1.33.  The first nodal point is located f1 – f2 = 1/3 in front of the
lens.  The second nodal point is located f2 – f1 = -1/3 behind the lens, or in other words
coincident with the first nodal point.  Typical rays for an object at Q1 and image at Q2

have been sketched on the diagram.

The power of the matrix method becomes evident for more complicated optical
systems.  Even a relatively “simple” optical system consisting of only a few lenses can
become cumbersome when one must sequentially relay the image from one optical
surface to the next.  Furthermore, the overall performance of the system is often more
apparent when the system is represented as its ABCD matrix.  In the next example we
will consider the properties of a two lens system by analyzing its ABCD matrix.

Two Thin Lenses

Consider now a system composed of two thin lenses in air, with focal lengths f1

and f2 respectively, and separated by a distance d = f1 + f2.  (When considering multiple
lenses or optical surfaces we will use the notation that a single subscript refers to the
specific lens or optical surface.  If the indices of refraction on either side of the surface or
lens are different, then we will use a double subscript, with the first number referring to
the number of the surface and the second subscript referring to either the object or image
space,  e.g. f12 refers to the second focal distance of lens “1”.)  To write the matrix for the

F2F1
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combination of the two lenses we first write the matrices for each lens and the space in
between.

A ray at any point in the system is represented by the height above the optical
axis, y, and the angle the ray makes with the axis, θ.  These two parameters are

represented as a vector ),( Θ=
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matrix.  For the two lens system above we can multiply out the matrices to obtain
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Now we are ready to consider the problem of two lenses separated by d=f1+f2.

Substituting into M sys we obtain 
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M .  Because C=0, the cardinal

points are all located at infinity.  Furthermore, the focal length of the system is infinite, so
that we call this system afocal, or telescopic.  That means that rays parallel to the axis on
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the object side are also parallel to the axis on the image side.  With C=0, the output angle
is given by θ = Dθ1, where D = -f1/f2 is the angular magnification.  This arrangement can
be used as a beam expander, with the lateral magnification given by A = -f2/f1.

The telescopic system can be used to form an image, even though the focal length
of the system is infinite.  Consider the above system, but now we consider the input plane
to be a finite distance z1 in front of the first lens, and the output plane to be a distance z2

behind the last lens.  Then the system matrix becomes
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M .  In terms of

the matrix elements, yout = Ayin + Bθin , so that if B = 0, the output position is independent
of the input ray angle, which is the condition for imaging.  In this case, an image is
formed right at the output plane of the system.  The magnification is given by the matrix
element A = -f2/f1.

f1 f2z1 z2

Input plane I Output Plane II


