Gaussian Beams

1) Parameters of a Gaussian Laser Beam

A 1 mW HeNe laser produces a Gaussian beam of wavelength $\lambda = 633$ nm and a spot size $2w_0 = 0.1$ mm.

- a) Determine the angular divergence of the beam and its depth of focus (this is twice the Rayleigh range z_0). Find the beam diameter at $z = 3.5 \times 10^5$ km (approximately the distance to the moon).
- b) What is the radius of curvature of the wavefront at z = 0, $z = z_0$, and $z = 2z_0$?
- c) What is the optical intensity (in W/cm²) at the beam center (z = 0, $\rho = 0$) and on axis at the point $z = z_0$, $\rho = 0$? Compare this with the intensity at $z = z_0$ of a 100 W spherical wave produced by a small isotropically emitting light source located at z = 0. The intensity of an isotropically radiating point source is given by I = P/($4\pi r^2$) where P is the power and r is the distance from the source.

2) Beam Identification by Two Widths

A Gaussian beam of wavelength $\lambda = 10.6 \,\mu\text{m}$ (emitted by a CO₂ laser) has widths $w_1 = 1.699 \,\text{mm}$ at z_1 , and $w_2 = 3.38 \,\text{mm}$ at z_2 with $z_2 - z_1 = 10 \,\text{cm}$. Determine the location of the waist (find z_1 and z_2) and the waist radius w_0 . You may assume that the measurements are in the far field, meaning that $z >> z_0$. Check this assumption by computing w_1 and w_2 once you have solved for w_0 and z_1 and z_2 .

3) Beam Focusing

An argon-ion laser produces a Gaussian beam of wavelength $\lambda = 488$ nm and waist radius $w_0 = 0.5$ mm. Design a single-lens optical system for focusing the light to a spot of diameter 100 µm. Specify lens focal length and its position relative to the laser beam waist. What is the shortest focal-length lens that may be used?