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1. Pre-Lab Activity 
 
Write the equation for the irradiance (intensity) distribution in a diffraction pattern from a 

uniformly illuminated grating of period . Calculate the angle expected for the 1st-order 

spot of HeNe laser light (= 633 nm) diffracted by a grating with 40 lines/mm.  
 

2. Introduction 
 
Diffraction effects play an important role in virtually every aspect of wave propagation, 
and any electro-optical device or system must be designed to accommodate this 
fundamental behavior of light.  In this lab we will observe and measure the diffraction 
pattern that arises from a periodic grating and from a circular aperture.  We will restrict 
our attention to the important Fraunhofer region, which is the far-field diffraction pattern.  
The reason is not merely for convenience of analysis (since the Fraunhofer diffraction 
region is the simplest to express mathematically), but also because it is the Fraunhofer 
diffraction pattern that appears in the focal plane of a positive lens.  It is precisely this 
diffraction pattern that limits the resolution of a “perfect” imaging instrument – the so-
called diffraction limit. 
 
Far field limit 
We saw in class that when the observation plane is sufficiently far from the aperture 
plane, the diffraction pattern takes on the simple form of a Fourier transform relationship 

to the aperture function.  The condition for this was seen to be  2Dz  where D is 

the dimension of the aperture.  Under these conditions the field pattern U(x) may be 
represented by 
 

 


aperture

)(2-
e ),( ydxd,y')xt(CyxU yx fyfxj

,  

where  xx zxf  and  yy zyf  

which is seen to be the two-dimensional Fourier transform of the aperture field 
transmission function t(x’,y’).   For a simple hole in a screen, t(x,y) = 1 inside the hole 
and t(x,y) = 0 everywhere else.  More complicated transmission functions can include 
variable magnitude and phase terms across the aperture. 
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Effect of a lens 
The effect of a lens is to take a plane wave (a wave focused at infinity) and bring it to a 
focus in the lens back focal plane.  If we take the view of the above far-field diffraction 

pattern as a collection of plane waves making angles x and y with respect to the optic 
axis, then we may expect that the far-field pattern will be replicated in the focal plane of 
the lens.  The transverse position of the features of the diffraction pattern are related to 

the diffraction angles according to x = xf and y = yf. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
If the lens is placed behind the aperture in the previous arrangement we have the 

following relationship, after substituting for x = x/f and y = y/f : 
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, where fxfx   and fyf y  . 

 
 
 
 
 
 
 
 
 
 
 
 
 
We will use these basic results to interpret the diffraction patterns produced in the lab.  
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3. Diffraction Grating 
 
In this section you will measure the diffraction pattern from a periodic transmission 
grating.  The grating is a transmission function varying in only one dimension, so only a 
one dimensional Fourier transform is required for its analysis.  Consider the 
transmission function t(x) specified below: 
 
 
 
 
 
 
 
 
 

We know from Fourier theory that if aA
F

  and bB
F

  then )( baAB
F

 , where the 

double arrow indicates a Fourier transform relationship.  Furthermore, we know that 

)comb()/comb(  x

F

fx  and )sinc()/rect( x
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DfDDx   where we define 

x

x
x






)sin(
)sinc( .  The above pattern for t(x) can be represented as a a rect function 

convolved with a comb function, so the Fourier transform of the pattern must look like a 
sinc function multiplied by another comb function.  The result is illustrated below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a) Use a Ronchi ruling as a diffraction grating for this experiment.  Use a rotation stage, 

and mount the grating perpendicular to the laser beam with vertically oriented 
grooves.  The rotation stage axis should be vertical, parallel to the grooves.  
Observe the diffraction pattern in the far field.  Describe the diffraction pattern. 

b) Measure the angle of a high order diffracted spot, and calculate the grating pitch (in 
lines/mm) and the grating period. 

c) Rotate the grating and observe the change in the diffraction pattern.  What rotation 
angle corresponds to a spread of the diffraction pattern by a factor of two?  What is 
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the corresponding grating period, measured normal to the beam propagation 
direction? 

d) Return the grating to beam normal.  Place a long focal length lens (200 – 250 mm 
focal length) behind the grating, and image the diffraction pattern onto a CCD 
camera.  Describe what you see.  Compare the focused pattern to the far field 
pattern. 

e) Measure the optical power of the first few diffracted orders (out to order 5).  You may 
make this measurement using the camera image, or by measuring each diffracted 
order directly using the power meter.  Comment on how well (or poorly) this agrees 
with the predicted intensity.  Base your prediction on the Fourier relationship 
between the diffraction pattern and the grating, with the assumption of an intensity 
grating with equal dimension lines and spaces.  Remember that the above 
relationships refer to the optical field, and that you are measuring irradiance 
(intensity). 

 

4. Measure the Width of Your Hair 
 
In this section you will measure the diffraction pattern from a strand of hair.  Like the 
grating, a long hair has a transmission function varying in only one dimension, so a one 
dimensional Fourier transform is all that is required for its analysis.  A hair (the darker 

the better) may be modeled as an obstruction of width D, with 𝑡(𝑥) = 1 − rect(
𝑥

𝐷
). The 

field behind the hair may be written 𝑈(𝑥) = 𝑒
−
𝑥2

𝑤2(1 − rect (
𝑥

𝐷
)), which is plotted below. 

 

 

The Fourier transform of this field produces a far-field amplitude 𝑈(𝜃) = 𝑤√𝜋𝑒
−(
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𝜆
)
2

−

𝐷 sinc(
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𝜆
). Below is a plot of the far-field intensity 𝐼(𝜃) = |𝑈(𝜃)|2. The pattern is 

characterized by a strong undiffracted beam, with a superimposed sinc pattern due to 

the hair. The nulls of the sinc function occur when 
𝐷𝜃

𝜆
= 1,2,3….  
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f) Tape a hair from your head to a card or a glass slide. Illuminate with the laser beam, 

and observe the diffraction pattern in the far field on a card or the wall (or you may 
use a CMOS camera for this).  Describe the diffraction pattern. 

g) Measure the angle of the first few nulls of the diffraction pattern, and then compute 
the width of your hair. 

 
 

5. Focusing with a lens 
 
a) You will use a CCD camera to measure the shape and width of a focused laser 

beam in this section.  The manual for the camera we are using is linked on the 
course webpage. You will find there that the pixel pitch for our cameras is 5.3 um.   

 
 
 
 
 
 
 
 
 
 
 
Diffraction limited spot size 
b) You will need to expand the laser beam for these measurements.  Use a short focal 

length lens (such as Thor Labs C230TM-B asphere (f=4.5mm)) as the primary lens 
and a 100mm focal length achromatic doublet lens as the secondary. If these lenses 
are not available, build a beam expander with the lenses at hand, but try for at least 
10x expansion. Pay attention to lens orientation for minimum aberration (highly 
curved face away from the beam focus).  Use an adjustable iris as the aperture stop 
for your measurements.  Place a long focal length lens (250 mm) directly behind the 
iris as the test lens for your measurement.  With small apertures, the lens will be 
“diffraction limited”, meaning that aberrations introduced by the lens are small 
enough that the spreading of the spot will be dominated by diffraction effects.  Place 

nulls of sinc 

extraneous null 

laser f = 4.5mm 

f = 100mm Test lens 
f = 250mm Iris 

(aperture) 

CMOS camera ND filter 



EELE 482 Lab #3 

 

Diffraction  Page 7 (last changed 9/24/2018 12:29 PM) 

the camera in the focal plane of the lens.  You will need to reduce the intensity of the 
laser until the CMOS array is in its linear range of operation (not saturated) by 
inserting ND filters or crossed polarizers in front of the laser. 

c) Make measurements of the diffracted spot size for aperture (iris) diameters in the 
range of 1-3 mm.  Begin with the largest aperture, and adjust the beam intensity until 
the center of the diffracted spot is in the mid-range in the camera response.  Make a 
note of the ND filters used for this and the subsequent measurements.  How does 
the diffracted spot size change as a function of the aperture diameter?  Do your 
measurements agree with theory?  Why are we using such a long focal length lens?  
(How many pixels are in the focused spot?)  How does the intensity at the center of 
the focused spot depend on the aperture diameter?  Can you explain this with a 
simple geometrical argument? 

d) If time permits, you may experiment with non-circular apertures or objects, and 
observe the diffraction pattern.  For the best Fourier imaging relationship, place the 
objects one focal length in front of the lens, and observe the diffraction pattern one 
focal length behind the lens. 

 

6. Fresnel Lens (optional, with time and if we can find the Fresnel 
lens!) 

 
The Fresnel lens operates on the combined effects of refraction and diffraction.  It 
consists of refracting segments separated by step discontinuities in the refracting 
surface, with the OPL change at the discontinuities being an integer number of 
wavelengths so that each segment, or “zone” adds constructively with the next.  The 
classic Fresnel lens has step heights of a single wavelength, and therefore the zone 
widths decrease for zones further from the center of the lens, where the slope of the 
refractive surface is steeper.  The Fresnel lens in the lab is constructed with steps that 
are several wavelengths high, and with zone widths that are nearly uniform.  In this 
case, the height of the discontinuities is increasing for zones that are further from the 
center of the lens. 
 
A well designed Fresnel lens can produce a diffraction limited spot when the beam is 
centered on the lens and the lens tilt is minimal, and when used at the design 
wavelength.  The imaging performance decreases rapidly when the illumination 
wavelength differs from the design wavelength, and for images made away from the 
optic axis, or with increased amounts of tilt.  The plastic lenses in the lab are not 
probably diffraction limited even under the best conditions. 
 
a)  Using the expanded beam from the HeNe, measure the approximate focal length of 
the Fresnel lens.  With the camera, measure the shape and size of the spot in the focal 
plane, and compare to a “diffraction limited” spot.  Comment on appropriate uses for a 
Fresnel lens, and its advantages over conventional lenses. 


