Ch 13: Introduction to Manufacturing Systems

Learning Objectives:

By the end of the lecture the student should be able to:

- Explain what manufacturing system is?
- Outline major phases in the history of manufacturing.
- Outline and explain components/activities (and their relationships) of production and manufacturing systems.
- Classify and explain manufacturing systems depending on its characteristics/complexity.
- □ Highlight the challenges/complexity of manufacturing systems.
- □ Briefly explain what agile/lean manufacturing is?
- □ Briefly explain what data-rich manufacturing is?

NOTE: Materials used to create this presentation were supplied from:

Lecture notes designed by 2008 Pearson Education Inc. Third Edition by Professor Mikell P. Groover

Lecture notes designed by Professor Darek Ceglarek, University of Wisconsin - Madison.

Manufacturing: An Introduction

What is manufacturing?

Manufacturing (or Production): The process of converting raw materials into products that have value in the marketplace.

- manufacturing concerns about making cars, airplanes, stoves, shoes, toys, TVs, mobile phones, and etc.
- manufacturing engineering is the study of how to make maximal amount of desirable products with minimal production cost, and minimal time.
- manufacturing is the backbone of modern society and creates the wealth of a nation

□ The types of manufacturing

- **Continuous:** gasoline, steel, plastic film, ...
- **Discrete:** car, airplane, computer, furniture, ...

Brief History of Manufacturing

Discovery and invention of materials and processes to make things

- Neolithic period (8000-3000 B.C)
 - Woodworking, polishing of stone, firing of clay pottery, metallurgy (copper, gold, silver and tin)
- Bronze Age (3500-1500 B.C)
 - Work with iron, quenching, tempering (heat treatment of steel)
- □ Iron Age (starting 1000 B.C)
 - New properties of steel

Development of systems of production

- First Industrial Revolution (1760-1830) in England
 - Watt's steam engine
 - Machining operations (boring, milling, turning, drilling, etc.)
 - Eli Whithey: interchangeable parts
 - Adam Smith: division of labor
- Second Industrial Revolution (1865-1900)
 - Railroads
 - Fredrick Taylor, Frank and Lilian Gilbreath: scientific management (motion study, time study, standardization, data collection, record keeping, cost accounting, etc.)
 - Henry Ford: assembly line (mass production
 - Henry Gantt: process planning (Gantt chart)
 - Electrification
- Modern Manufacturing Systems (I&ME 471)

The change of characteristics of manufacturing

Modern Production System

Functional Components of Modern Production System

Manufacturing in the Product Life Cycle

Manufacturing System Activities

Manufacturing System: Defined

A collection of integrated equipment and human resources, whose function is to perform one or more processing and/or assembly operations on a starting raw material, part, or set of parts

- Equipment includes
 - Production machines and tools
 - Material handling and work positioning devices
 - Computer systems
- Human resources are required either full-time or periodically to keep the system running

Production Machines

- In virtually all modern manufacturing systems, most of the actual processing or assembly work is accomplished by machines or with the aid of tools
- Classification of production machines:
 - Manually operated machines are controlled or supervised by a human worker
 - Semi-automated machines perform a portion of the work cycle under some form of program control, and a worker tends the machine the rest of the cycle
 - 3. Fully automated machines operate for extended periods of time with no human attention

Work Transport Between Stations

- Two general categories of work transport in multi-station manufacturing systems:
 - 1. Fixed routing
 - Work units always flow through the same sequence of workstations
 - Most production lines exemplify this category
 - 2. Variable routing
 - Work units are moved through a variety of different station sequences
 - Most job shops exemplify this category

a) Fixed routing; b) Variable Routing

Material Handling System

In most manufacturing systems that process or assemble discrete parts and products, the following material handling functions must be provided:

- 1. Loading work units at each station
- 2. Positioning work units at each station
- 3. Unloading work units at each station
- 4. Transporting work units between stations in multistation systems
- 5. Temporary storage of work units

Example: Multistage Manufacturing System

- Product/process design determines process performance
- Information integration is a critical area in developing such methodologies

Classification of Manufacturing Systems

- Factors that define and distinguish manufacturing systems:
 - 1. Types of operations
 - 2. Number of workstations
 - 3. System layout
 - 4. Automation and manning level
 - 5. Part or product variety

Manufacturing Systems for Medium or High Product Complexity

	Ρ				
Product variety	Hard	Job shop with multiple single-station cells, manned	(Multiple <i>s</i> ystems required)	(Multiple systems required)	
	Soft	Job shop with multiple single-station cells, manned	Multi-station system with variable routing, manned or automated	Multi-station system with fixed routing, manned or automated	
	None	(Craft shop)	Job shop with multiple single-station cells, manned or automated	Multi-station system with fixed routing, manned or automated	
		Low	Medium	High	Q
			Annual production quantity		

Manufacturing Systems for Low Product Complexity

Â	P				
	Hard	Single-station cell, manned, batch production	Single-station cell, manned or automated, batch production	(Reverts to multiple single stations dedicated to each part or product)	
oduct varie	Soft	Single-station cell, manned, batch- or mixed- model production	Single-station cell, manned or automated, mixed-model production	(Reverts to multiple single stations dedicated to each part or product)	
P	None	(Not feasible, system would be grossly underutilized)	Single-station cell, manned (system would be underutilized)	Single-station or multi- station system, automated, single model production	
		Low	Medium	High	
		1			

Manufacturing Challenges

- Rapid changing market
- Fast development of new technology
 - Example: nano-engineering, bio-engineering
- Competition
- A "use brain" generation, not willing to learn the trade which requires hand skills

To Survive

(1) Lower cost

- (2) High quality
- (3) Faster product development cycle

Complexity in Manufacturing Systems

Current Direction: Lean/Agile Manufacturing

- "Lean/Agile" Manufacturing Objectives
 - Reduce Costs
 - Increase Responsiveness
 - Improve Quality

Future Direction: Data-rich Manufacturing Environment

Data-rich Manufacturing Environment

With in-process sensors flooded in manufacturing processes, the amount of information will increase exponentially in the future.

Data-rich ≠ Information-rich

Curtsey of NSF Engineering Research Center for Reconfigurable Machining Systems