Recovery of Surface Applied Urea is Maximized Through Spring Application and Agrotain[®] Use

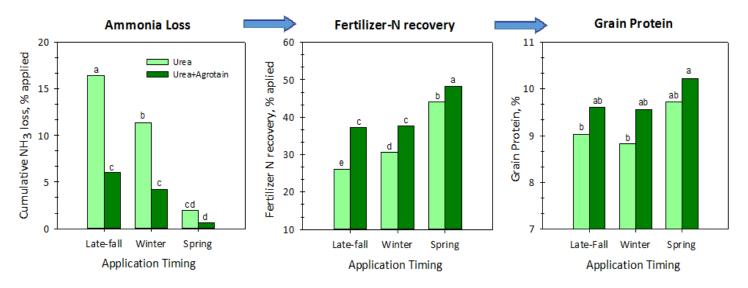
C.M. Romero¹, R.E. Engel¹, C. Chen², and C.A. Jones^{1*}

¹Dept. of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT and ²Eastern Agricultural Research Center, Montana State University, Sidney, MT

IMPACT STATEMENT

Ammonia (NH₃) volatilization is a critical factor affecting fertilizer-N recovery (FNR) by winter wheat. Urease inhibitor Agrotain[®] is effective in reducing volatile losses from surface applied urea during cold weather months. However, maximum benefits to FNR and grain protein are achieved when fertilizer-N is applied during spring rather than late-fall or winter timings.

SUMMARY


Surface applications of urea are susceptible to volatilization as NH₃, and management strategies are needed to enhance FNR. The objective of this study was to determine the effect of application timing (late-fall, winter, and spring) and urease inhibitor Agrotain[®] on FNR and winter wheat grain protein. FNR was greater for spring (46.1%) than late-fall (31.7%) and winter (34.1%) applications. Addition of Agrotain[®] to urea improved FNR of all timings, but the response was greater for late-fall and winter compared to spring applications. The greater FNR of spring timings resulted in higher protein concentrations (0.6-0.8% points) relative to late-fall and winter applications. Management strategies to enhance FNR in Montana should consider delaying surface application of urea until the spring or addition of Agrotain[®] for latefall and winter timings that are more susceptible to NH₃ volatilization.

INTRODUCTION

Urea is currently the most common fertilizer-N source used by Montana growers, comprising approximately 86% of total N consumption. In winter wheat systems, urea is often surface broadcast in a separate operation following seeding. The timing of these applications varies, but can occur from late-fall to early spring. Although urea is a low-cost fertilizer-N source, it is susceptible to volatility as NH₃ gas, affecting FNR and crop productivity. Previous MSU trials have shown that NH₃ volatilization will vary greatly with application timing; losses can be quite large (>20% of applied N rate) following urea applications in the late-fall and winter (i.e., Nov to March). Volatility can be decreased by 60-65% with the addition of Agrotain[®] (active ingredient N-(n-butyl) thiophosphoric triamide, NBPT). Similarly, NH₃ loss can be mitigated by applying urea to dry soil surfaces in advance of large (≥ 0.5 inch) precipitation events that are more likely to occur in early spring than late-fall or winter. The goal of fertilizer-N management should be to minimize N loss and produce the highest FNR by the crop. Given the importance of application timing and Agrotain® on NH₃ loss from urea, this study was conducted to determine the impact of these two parameters on FNR and grain protein.

PROCEDURES

Field trials were conducted near Denton, MT during the 2011/12, 2012/13, and 2013/14 seasons. The experiments were located in large fields (> 150 acre) that were under no-till, crop-fallow management with winter wheat being the dominant crop. We applied fertilizer-N at three different times (late-fall, winter, and spring) and used two N sources (urea and urea+Agrotain[®]). The late-fall application was made in late-November to early-December at approximately soil freeze up. The winter application occurred in

Figure 1. Ammonia loss (% of applied N at 90 lb N/ac); fertilizer-N recovery (grain plus straw) and grain protein (applied at 45 and 90 lb N/ac) as affected by urea application timing and Agrotain[®] averaged over three growing seasons. Different letters indicate significant difference among treatments with 95% confidence.

February onto frozen soil. The spring application was in April following ground thaw and crop green-up. Urea and urea+Agrotain[®] were applied at rates of 45 and 90 lb N/ac. The urea was coated with Agrotain[®] (0.1% rate) as a liquid formulation (26.7% active ingredient). FNR in grain plus straw was determined using ¹⁵N-enriched fertilizer (at 45 and 90 lb N/ac rates) (Romero et al., 2017) and NH₃ volatility by a micrometeorological approach (only at 90 lb N/ac rate)

(http://landresources.montana.edu/ureavolatiliza tion/methodology.html).

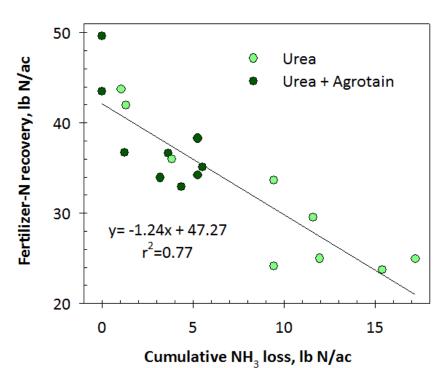
RESULTS AND DISCUSSION

Application timing and Agrotain[®] both affected FNR (Figure 1). On average, spring application resulted in greater FNR (46.1%) than late-fall (31.7%) and winter (34.1%) timings. We attribute this response to the better synchrony of spring-applied N with crop-N demand and the lower volatility loss of spring-applied urea (Figure 1). We found NH₃ loss was lower for spring applied-N because large precipitation followed fertilizer-N (>0.5 inch) events application and presumably allowed urea to infiltrate to a depth where it couldn't volatilize to the atmosphere. In contrast, precipitation events that followed late-fall and winter applications were typically light (≤ 0.2 inch) and scattered, and as a result urea likely remained near the surface where it was susceptible to volatility (Engel et al., 2017).

Addition of Agrotain® to urea reduced cumulative NH₃ loss by 66%. The average FNR response was greater for late-fall (by 11.3%) and winter (by 6.9%) than spring (by 4.0%) applications. Grain protein was sensitive to fertilizer-N management (Figure 1) and 0.6-0.8% points from increased spring applications or Agrotain[®] addition. The strong relationship between FNR and cumulative NH₃ loss is further evidence that NH₃ volatilization represents an important pathway of N loss in Montana's dryland cropping systems (Figure 2). Broadcast urea should be applied in the spring to provide the highest FNR compared with overwinter timings. Alternatively, addition of Agrotain[®] can improve urea FNR for broadcast applications made during cold weather months.

REFERENCES

- Engel, R., C. Jones, C. Romero, and R. Wallander. 2017. Late-fall, winter and spring broadcast applications of urea to no-till winter wheat I. Ammonia loss and mitigation by NBPT. Soil Sci. Soc. Am. J. 81:322-330. doi:10.2136/sssaj2016.10.0332.
- Romero, C., R. Engel, C. Chen, R. Wallander, and C. Jones. 2017. Late-fall, winter and spring broadcast applications of urea to no-till winter wheat II. Fertilizer N recovery, yield


and protein as affected by NBPT. Soil Sci. Soc. Am. J. 81:331-340. doi:10.2136/sssaj2016.10.0333.

ACKNOWLEDGEMENTS

The authors wish to express their thanks to the Montana Agricultural Experiment Station,

Koch Agronomic Services and International Plant Nutrition Institute for supporting this research. We appreciate Kathrin Olson-Rutz's review of this paper.

*Corresponding author: clainj@montana.edu

Figure 2. Fertilizer-N recovery in grain plus straw of winter wheat was directly related to cumulative NH_3 loss for the nine trials (three years x three application timings at 90 N/ac application rate).