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1 Empirical Bayes Model

The “empirical bayes” (EB) model is the standard model used to evaluate how

red light cameras (hereafter “cameras”) affect traffic accidents (e.g. Abbess

et al. [1981]; Hauer [2006]; Hauer [1992]; Hauer et al. [2002]). Section 1.1 sum-

marizes how the traffic literature uses the empirical bayes model to estimate

the causal effect of cameras on accidents. In section 1.4 we provide a summary

of the recent literature.

It is widely claimed that the empirical bayes model corrects for mean re-

version, while also improving statistical precision.1 Mean reversion occurs as

many cities (including Houston) install cameras at intersections with high ac-

cident levels in the previous year (Stein et al. [2006]). These intersections are

likely to experience a decline in accidents regardless of the effectiveness of the

camera program. Sections 1.2.1 and 1.2.2 discuss why the EB model does not

fully correct for mean reversion.

A well known challenge in studying the cause of traffic accidents is the

high variability in the number and location of accidents from year to year (e.g.

Hauer [1992]). This variability increases the accident variance at city inter-

sections and can make estimating statistically precise camera program causal

treatment effects difficult. A selling point of the EB model are the extremely

precise model estimates. This is true even when an EB study includes just a

handful of camera intersections (e.g. Carriquiry and Pawlovich [2004]; Persaud

and Lyon [2014]; Lord and Greedipally [2014]). Section 1.2.3 outlines why the

statistical precision of the EB model is overstated.

Section 1.3 provides empirical evidence that the EB Model fails to correct

for mean reversion. First, we simulate fake accident data and estimate the

causal effect of a placebo camera program using the EB model. Estimates from

1The EB model has become largely associated with Ezra Hauer. Hauer et al. [2002] states:
“The empirical bayes (EB) method for the estimation of safety increases the precision of
estimation and corrects for the regression-to-mean bias” (p126). Recent applications to red
light camera programs also support this view (e.g. Erke [2009], Høye [2013], Ko et al. [2013],
and Ko et al. [2017]). For example, Høye [2013] writes: “Since no obvious weaknesses in the
application of the EB method were found, all of these studies can be assumed to be largely
unaffected by [mean reversion]” (p81).
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an EB model consistently suggest a positive, statistically significant causal

effect of the camera program on the number of accidents when, in fact, no such

relationship exists (by construction). Second, we estimate the causal effect of

the introduction of cameras in Houston using an EB model. The EB model

estimates for the introduction of cameras in Houston imply a statistically

significant reduction in total accidents of 30% (untrimmed panel) and 5%

(trimmed panel). These results are in contrast to our referendum-based camera

removal estimates that avoid the endogeneity concerns related to the camera

placement and start times (e.g. mean reversion).

In summary, the EB Model’s failure to correct for mean reversion and the

model’s overstated statistical precision together can account for the large num-

ber of studies that conclude camera programs reduce intersection accidents.

In contrast to the current literature, our empirical strategy follows a “design-

based” econometric approach (Angrist and Pischke [2017]) that does not rely

on correctly modeling the entire accident generating process.

1.1 Estimating the Empirical Bayes Model

The first step is to specify a structural model of accidents. The structural

model of accidents is referred to as the Safety Performance Function (SPF).

The SPF is supposed to accurately characterize the deterministic relationship

between the number of accidents at an intersection and the variables that

cause these accidents. In practice, the SPF often includes a small number of

intersection characteristics such as average daily traffic, number of lanes, speed

limit, lane width, and right-turn-on-red prohibition (e.g. Lord and Greedipally

[2014]; Mahmassani et al. [2017]). Several recent papers use only average daily

traffic to model the SPF (e.g. Ko et al. [2013]; Pulugurtha and Otturu [2014];

Ko et al. [2017]).

The SPF is estimated using a sample of non-camera intersections to predict

accident levels at camera intersections. The traffic literature usually estimates

the SPF using a negative binomial regression. E(ki) is the expected number

of accidents for camera intersection i prior to the start of the camera program
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(pre-period).2 E(λi) is the expected number of accidents for a camera intersec-

tion during the camera program (post-period). E(ki) and E(λi) are estimated

by running the SPF model on a sample of non-camera intersections during the

pre- and post-periods, respectively.

The next step is to calculate a weighted average of the actual and predicted

number of pre-period camera intersection accidents at each camera intersec-

tion.

E(ki|Ki) = wiE(ki) + (1− wi)Ki (1)

Ki is the actual number of accidents at the camera intersection during the pre-

period. The weight wi, when estimating the model using a negative binomial

regression, is

wi =
1

1 + E(ki)
φ

(2)

, where φ is the estimated inverse negative binomial dispersion parameter.

The goal is for the weighted average to estimate what the level of accidents

would be absent any stochastic accident shocks. The concern for a researcher

interested in estimating the causal effect of the camera program is that the

camera intersections are likely to have higher than predicted pre-program ac-

cident levels due to positive stochastic shocks. If the model does not account

for these shocks, then it is likely to over-estimate any beneficial impact of

the camera program. The camera intersections are likely to experience mean

reversion and lower accident levels regardless of the camera program.

The estimated number of accidents, E(ki|Ki), is then adjusted to account

for the passage of time. Equation 3 adjusts the weighted average from Equa-

tion 1 using qi = E(λi)
E(ki)

. qi is calculated as the SPF prediction for the treated

sites in the post-period, divided by the SPF prediction for the treated sites in

the pre-period.

πi = qiE(ki|Ki) (3)

2The majority of studies focus on what happens when the cameras are installed. Our
discussion of the EB model follows this literature and considers the time period prior to the
start of the camera program as the pre-period.
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The assumption is that qi captures what would have occurred in the absence

of treatment. This assumption is similar to the common trends assumption in

the difference-in-differences model (e.g. Cameron and Trivedi [2005]), except

with two key distinctions. First, the difference-in-differences model uses trends

in the underlying data for the control group, whereas the EB model uses the

ratio of the before and after predictions from a traffic model (the SPF). Second,

an appealing feature of the difference-in-differences model is that the common

trends assumption is transparent and can be easily evaluated.3 Less clear is

how to evaluate and test the assumption underlying qi. We are not aware of a

single camera study using the EB model that tests this assumption.

The estimated causal effect of the cameras on the number of accidents

is calculated as δ = π − λ. π is the sum of expected accidents at camera

intersections in the post-period (from Equation 3). λ is the sum of the actual

number of accidents at camera intersections in the post-period. δ provides a

valid causal estimate of the camera program on the number of accidents at

camera intersections if πi is an unbiased estimate for the predicted accidents

at each camera intersection (absent the camera program).

θ =
λ
π

1 + V ar(π)
π2

(4)

The literature often presents the EB model results as θ, which is sometimes

referred to as the safety index. θ is a weighted ratio of actual accidents to

estimated accidents, and is interpreted as the estimated percent decrease in

accidents when π < λ.4

1.2 Internal Validity Concerns

We have three main concerns with the empirical bayes model. Section 1.2.1

outlines our concern with the EB model’s reliance on estimating the “structural

3Common trends in the pre-period can be tested. There is no way to know for sure how
the trend for the camera group would have evolved in the post-period without cameras.

4V ar[θ] =
θ2[

var(λ)

λ2
+
var(π)

π2 ]

1+
V ar(π)

π2
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relation” between accidents and the road characteristics that cause accidents

(Angrist and Pischke [2017]). Section 1.2.2 discusses why the EB model is

very unlikely to correct for mean reversion. Section 1.2.3 reviews why the

statistical precision of the EB model is overstated. The failure to correct for

mean reversion and the EB model’s overstated statistical precision together

can explain the large number of studies that conclude that camera programs

reduce the number of intersection accidents.

1.2.1 Modeling the Safety Performance Function

The EB model relies on the correct specification of the Safety Performance

Function. The starting point of the EB model is specifying the structural

relation between traffic accidents and the intersection characteristics that de-

termine the number of accidents. Estimates from the SPF are used to sep-

arately adjust the observed accident data for calendar time trends, and as a

way to eliminate bias due to regression to the mean. Successful use of the SPF

estimates for either purpose requires a complete and accurate model of what

causes traffic accidents.

As we highlight in the previous section, most EB camera studies specify

and estimate a very parsimonious safety performance function. Further, very

few studies report SPF model goodness of fit statistics to indicate the amount

of variation in traffic accidents that can be explained by the intersection char-

acteristics in the SPF.5 One exception is Powers and Carson [2004], who report

a R-squared of 0.24 from a linear regression for an SPF with two accident char-

acteristics (length of roadway segment and average daily traffic). Thus, the

SPF in Powers and Carson [2004] can only capture about 25% of the variation

in the number of accidents at an intersection. In other words, the model whose

purpose is to adjust for time trends and to eliminate bias due to regression to

5Those studies that do report model statistics (e.g. Ko et al. [2013]; Pulugurtha and
Otturu [2014]) focus on statistics such as Akaike information criterion (AIC) and quasi
likelihood under independence model criterion (QIC). These statistics are used for assessing
the strength of explanatory variables and comparing the relative fit of a model among a
finite set of models, given the sample data. These statistics are uninformative about the
overall amount of variation captured by the SPF.
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the mean, can not explain approximately three-quarters of the variation.

In our view, the EB model epitomizes what Angrist and Pischke [2017]

describe as the outdated “model-driven approach to regression” aimed at pro-

ducing a “statistically precise account of the processes generating economic

outcomes” (p1). We are skeptical that a model-driven approach can reliably

estimate the causal effect of altering a single intersection characteristic (e.g.

the installation/removal of cameras). For example, Table 2 panel A columns

(1) and (2) in the manuscript shows that observable characteristics of Houston

camera intersections differ greatly from the typical Houston non-camera inter-

section. It is very likely that important unobservable (or poorly measured)

characteristics also differ. The EB model applies SPF coefficient estimates

that are estimated from a sample of non-camera intersections to predict acci-

dent levels at camera intersections. The estimates for camera intersections are

likely to be biased due to model misspecification. By contrast, our empirical

strategy follows a “design-based” econometric approach that does not rely on

correctly modeling the entire accident generating process.

1.2.2 Mean Reversion

Mean reversion poses a serious empirical challenge when estimating the causal

effect of cameras on the number of intersection accidents. For example,

manuscript Figure 4 panel B shows that accident levels in San Antonio dramat-

ically decline in the years before and after a placebo camera program. These

placebo camera intersections are selected based on having very high accident

totals in 2003 using a similar method as the actual method to select Houston

intersections (Stein et al. [2006]). Both the placebo San Antonio camera in-

tersections and the Houston camera intersections display remarkably similar

yearly accident trends. In particular, accident levels immediately decrease in

2004 before the Houston camera program begins.

Advocates for the EB model assert that the model corrects for mean re-

version (e.g. Hauer et al. [2002]). Equation 1 is the key modeling step that

adjusts for mean reversion. Equation 1 calculates a weighted average of the

actual and predicted number of pre-period accidents at a camera intersection.
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The assumption is that the structural model (SPF) used to estimate the pre-

dicted number of accidents will provide an estimate that is non-mean reverting

and unbiased. Even if this assumption is true (Section 1.2.1 outlines why this

is unlikely to be the case), Equation 1 will only eliminate the mean reversion

if all of the weight is on the predicted number of accidents (i.e. wi = 1). Since

the pre-period accident levels are mean reverting, then the weighted average,

E(ki|Ki), will also be mean reverting if Equation 1 considers the actual num-

ber of accidents (i.e. when wi ∈ [0, 1)). However, the role of mean reversion

will likely be small (and statistically insignificant) provided the weight is close

to one.

Equation 2 shows how the weight, wi, is calculated. This equation is used

to calculate the weight because it minimizes the variance of E(ki|Ki) (Hauer

[1997]). The size of the weight is determined by the relative magnitudes of the

estimated pre-period number of accidents for intersection i and the estimated

dispersion parameter. The larger the ratio between the expected accidents

and the dispersion parameter the smaller is the weight. A small wi implies

more weight on the (mean-reverting) pre-period number of accidents and less

emphasis on the (non-mean reverting) SPF estimate. There is an explicit

trade-off between minimizing the variance and the introduction of bias due

to mean reversion. In essence, the weight represents the percentage of mean

reversion removed relative to a naive pre-/post- difference model.

In practice, the EB model places a small weight (wi) on the non-mean

reverting SPF estimate and a large weight (1-wi) on the mean-reverting actual

number of accidents when evaluating camera intersections. The reason is that

high accident intersections will have a larger accident to dispersion parameter

ratio. For example, Ko et al. [2017] evaluate the Houston program and use a

wi of around 0.03 to 0.06 for their main EB model (installation) estimations.6

wi is also below 0.1 in our application of the EB model to the Houston panel

dataset (see Section 1.3). Thus, roughly speaking, the EB model of Ko et al.

[2017] (and our own application) correct for less than one tenth of the mean

6Ko et al. [2017] estimate that the introduction of the cameras in Houston led to a
statistically significant 37% reduction in total accidents.
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reversion.

1.2.3 Statistical Precision

A notable feature of the EB model is the high level of precision of its esti-

mates. Hauer [1997] describes the EB model as incorporating two pieces of

information from the pre-period: accident levels at the intersections of inter-

est, and accident levels at similar intersections. The two pieces of information

are combined using a weighted average (Equation 1). The key question is what

weight to choose. Hauer [1997] advocates and derives the general form of wi

(Equation 2) under the criteria of maximizing the precision of E(ki|Ki). This

approach prioritizes reducing variance at the expense of producing estimates

robust to mean reversion.

We find the choice of the weight concerning for several reasons. First,

the EB model is wrongly reported as being robust to mean reversion. Second,

the San Antonio data (manuscript Section 4.2.2) and our EB model simulation

(Section 1.3.1) show that the effect of mean reversion when evaluating a camera

program can be large. Third, the model’s precision can lead to an increase in

the false positive rate. Only a small bias from mean reversion or via a poorly

specified SPF is necessary to reject the null hypothesis that the effect of the

camera program is zero. Taken together, the use of the EB model to study

camera programs is likely to lead to the publication of studies that report

incorrect, statistically significant results that suffer from a large amount of

bias.

Finally, the EB model overstates the precision of the estimated accident

treatment effect regardless of the choice of the weight. The reported variance

of the estimated treatment effect does not account for the fact that key model

inputs (E(ki) and E(λi)) are themselves estimates.

1.3 EB Model Simulation and Houston Estimates

In this section we show that the empirical bayes model fails to correct for

mean reversion through model simulation, and over-estimates the safety effect
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of the camera program in Houston. In section 1.3.1 we simulate fake accident

data and estimate the causal effect of a placebo camera program using the EB

model. Estimates from an EB model consistently suggest a positive, statisti-

cally significant causal effect of the camera program on the number of accidents

when, in fact, no such relationship exists (by construction). In section 1.3.2

we use the EB model to estimate the causal effect of the introduction of the

camera program in Houston on the number of accidents. The EB model im-

plies a statistically significant reduction in total accidents of 30% (untrimmed

panel) and 5% (trimmed panel).

1.3.1 Mean Reversion Simulation

We estimate camera program treatment effects from a placebo camera program

using an empirical bayes model on simulated intersection accident data. We

generate accident data for one thousand intersections over six years under

different assumptions regarding how well the “safety performance function”

(SPF) captures the underlying variation in accidents. The accident data are

generated in two steps.

First, we randomly assign each intersection an average daily traffic (ADT)

value using a gamma distribution. We select parameters for the gamma dis-

tribution so that the ADT mean and standard deviation (across intersections)

approximately matches the observed values in our Houston sample.7 Next,

we consider the randomly assigned ADT for each intersection as the “mean

ADT” for the intersection and generate random yearly ADT variation around

the mean at each intersection.8

Second, we generate the level of accidents at each intersection using the

randomly assigned intersection ADT values. We assume that the level of acci-

7The traffic engineering literature generally assumes that ADT follows a gamma distri-
bution (Hauer [1997]). The mean ADT for the 1,003 Houston intersections is 31,488, with a
standard deviation of 18,118. The ADT mean and standard deviation from our simulation
are 31,488 and 18,118 (using a shape parameter of 3.017 and a scale parameter of 10,425).

8We generate six yearly ADT values for each intersection by taking random draws from
a truncated normal distribution. The distribution is centered at each intersection’s mean
ADT, has a variance of 1,000, and is truncated from below at 200 (to rule out negative and
implausibly low ADT values).
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dents at each intersection is determined by a single intersection characteristic,

ADT, along with random yearly accident variation. The rationale is to specify

a simple accident generating process that can be captured by the EB model’s

structural model of accidents (i.e. the SPF). In practice, many EB model cam-

era studies specify the SPF using only ADT (e.g. Powers and Carson [2004];

Ko et al. [2013]; Ko et al. [2017]). In our simulations, we vary how much of the

observed accident levels are due to ADT (the deterministic factor) and how

much are due to random variation.9

We vary how well ADT explains the level of accidents in our simulations

so that we can observe the overall performance of the EB model based on the

quality of the underlying accident model. That is, we simulate results when the

SPF does a good job at capturing the true accident variation (ADT dependence

high, unexplained variation low) and when the SPF does a poor job (ADT

dependence low, unexplained variation high). When the ADT dependence is

high, the SPF could eliminate most mean reversion, provided the weight in

Equation 1 is near to one. Recall that, in practice, the weight (Equation 2) is

selected to minimize variance of the EB model estimator.

There is no actual camera program (i.e. treatment). We assign a placebo

camera to the fifty intersections in the sample that have the highest level of

accidents in the pre-camera period for each ADT dependence simulation. The

fifty intersections with the next highest level of accidents are selected as the

control intersections. We define the first two years of the generated panel

data as the pre-camera period, the next two years as having an active camera

program, and the final two years as post-program.10

9We specify the accident generation process as: Accidentsit = (ADTit∗yk ) + eit. The level
of accidents at intersection i in year t depends on the ADT and eit, a randomly distributed
negative binomial accident component (conditional on y) with variance approximately equal
to our main sample’s variance. The constant y ∈ (0, 1) varies in our simulations and repre-
sents the proportion of the accident level determined by ADT. k is a normalizing factor that
is set so that the mean number of accidents (across intersections) is 6.5 and approximately
equal to what we observe in our Houston panel.

10We chose the initial pool of 1,000 intersections and the final estimating panel size of 100
so as to approximate the sample sizes of our Houston analysis. The total accident levels for
the control intersections are similar to, but lower than, those of the camera intersections in
our simulation and in the actual control group (see manuscript Table 2).
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Table 2 shows the average results of the Monte Carlo simulations. We

repeat the data generation process and model estimation ten thousand times

for each ADT dependence parameter. Column (1) lists the ADT dependence

parameters which range from 0.1 to 0.9. For example, the first row shows

simulation results when 10% of the yearly accident level at each intersection is

determined by the yearly ADT at the intersection. Columns (2) and (3) in the

table show the estimated percent change and standard error (in parentheses)

for an empirical bayes analysis based on the camera installation and camera

removal, respectively. Columns (4) and (5) show the same estimates from a

simple difference-in-differences (DD) model.11

All of the empirical bayes installation estimates imply that turning on the

placebo cameras leads to a reduction in intersection accidents at camera in-

tersections. The estimates range from -41% when the SPF captures little of

the accident variation (first row) to -6% when the SPF captures most of the

accident variation (last row). All of the (mean simulation) estimates are sta-

tistically significant at conventional significance levels. Since the true effect

of the placebo camera program is zero, then the measured effect is due com-

pletely to mean reversion. Evaluating the empirical bayes treatment effect at

the time of removal, several years after the placebo camera selection, avoids

bias from mean reversion. The estimates in column (3) are all less than 3% in

magnitude and not statistically significant at conventional levels.

The difference-in-differences installation estimates in column (4) follow a

similar pattern as the empirical bayes installation estimates. The estimates

imply reductions in total accidents of between 39% and 58% and are statis-

tically significant at the 1% level. As in the EB model, the largest estimates

are from simulations where most of the variation in the level of accidents is

random and not dependent on ADT. The mean DD removal estimates are very

close to zero and not statistically significant at conventional levels.

11The installation estimates consider the first two panel years as the pre-period and the
middle two years as the post-period. The removal estimates consider the middle two years
as the pre-period and the final two years as the post-period.
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1.3.2 Houston Sample Predictions

In this section, we use the empirical bayes model to estimate the causal effect

on the number of vehicle accidents from starting (installation) and ending

(removal) the Houston camera program. We estimate the EB model on the

same propensity score trimmed panel as in the manuscript. We also estimate

the EB model on the untrimmed panel (see manuscript Table 2). The reason

for showing results for the untrimmed sample is to more closely replicate the

approach of the EB model literature, which does not typically attempt to

balance intersection covariates before estimating the model. The assumption is

that the safety performance function (SPF) adjusts for any differences between

intersections with and without cameras. We follow several recent studies and

model the SPF using only information on average daily traffic (e.g. Ko et al.

[2013]; Pulugurtha and Otturu [2014]; Ko et al. [2017]). Otherwise, our EB

model estimation approach is the same as Lord and Greedipally [2014].12

Table 3 shows the results from estimating the empirical bayes model on

our Houston panels. Recall that EB model estimates are usually presented

as a weighted ratio of actual accidents to estimated accidents. This ratio is

sometimes referred to as the safety index (θ from Equation 4). A ratio of less

than one is interpreted as a reduction in accidents.

The EB model camera removal estimates for the trimmed sample (panel

A, columns (4)-(6)) are very similar to our difference-in-difference estimates

(manuscript Table 3, panel A). The interpretation of the all accident coefficient

is that the removal of the cameras led to 6% fewer accidents. The point

estimate from our preferred model in the text implies 4% fewer accidents.

However, one notable difference is the dramatically higher precision of the EB

model. The probability value for the EB model estimate is 0.06, while it is

.70 in the difference-in-differences model. The increased precision comes from

using the SPF to leverage the out-of-sample predictions, and then using this

information to prioritize minimization of the estimator variance at the expense

of correcting (or guarding against) mean reversion (see Section 1.2.3).

12We contacted the authors who declined to share their code or data files. We wrote our
own code following the model description in Lord and Greedipally [2014].
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The camera installation estimates for the trimmed sample indicate that the

cameras led to fewer total accidents. This is inconsistent with the estimated

removal treatment effects that take advantage of the natural experiment. The

negative installation estimates are what we would expect if the model did not

fully correct for mean reversion.

The EB model relies on the SPF to capture the true intersection accident

risk and to adjust for risk differences between intersections. A number of

studies have specified parsimonious specifications for the SPF, including using

only ADT (as we do in our analysis). These estimation differences suggest

that a parsimonious SPF is unlikely to capture the true intersection accident

risk, and will lead to bias in the model estimates unless the out-of-sample

non-treatment intersections are carefully selected.

1.4 Camera Literature Review

Table 1 lists information for 21 recent camera studies. This section provides

further details on several of the studies.

Three of the studies estimate the causal effect when cameras are removed

(Hu and Cicchino [2017]; Ko et al. [2017]; Pulugurtha and Otturu [2014]). Hu

and Cicchino [2017] use large city fatal accident rates to estimate the effect of

having at least one red light camera. This is very underpowered as red light

camera programs cover a small part of the city.13

Ko et al. [2017] use the empirical Bayes before-after analysis to evaluate

the safety impacts of installing and deactivating cameras on different types

of red-light-running accidents at 48 Houston intersections. They estimate a

large reduction in angle accidents from installing the cameras, and a smaller

reduction in angle accidents from removing the cameras. There are several

aspects of Ko et al. [2017] that we view as questionable. First, the weights

used in their empirical bayes analysis are on average about 4% to 11%.14

This implies that the EB model eliminates only a small fraction of the mean

13Fewer then 2% of Houston accidents occur at red light camera intersections.
14This is an approximation since we use their mean accident levels and the weights have

a non-linear relationship to accident rates.
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reversion bias that is likely to affect the installation estimates (see Section 1.2.2

for a lengthier discussion). Second, the Safety Performance Function (SPF)

only considers average daily traffic (ADT). As such, the SPF is almost certainly

misspecified (see Section 1.2.1 for a discussion of general concerns on modeling

the SPF). Third, the Ko et al. [2017] removal estimates would need to be

about 40% larger (rather than about 50% smaller) to be internally consistent

with the installation estimations, after adjusting for different baseline accident

levels.15 Fourth, Ko et al. [2017] only consider rear end accidents caused by

“excessive braking.” The exclusion of a large number of accidents leads the

paper to underestimate rear end accident levels by 90% relative to our data.

Further, limiting the analysis to a subset of the total accidents makes it very

difficult to estimate a reliable overall (net) causal estimate for how cameras

affect accidents.

Pulugurtha and Otturu [2014] evaluate a camera program at 32 signalized

intersections in Charlotte, NC, and find a near zero effect on accidents from

camera installation and a large decline in accidents following removal. How-

ever, similar to Ko et al. [2017], they specify a SPF where the level of accidents

only depends on ADT (and no other roadway characteristic). The use of this

SPF is very likely to generate biased predictions for the level of accidents even

in the absence of cameras (treatment). The paper also produces internally

inconsistent results (again similar to Ko et al. [2017]). This inconsistency is

best explained through mean reversion leading the cameras to appear more

effective at reducing accident when they are installed.

Two other analyses conducted by private consulting companies and not

published in peer review journals deserve highlighting (Lord and Greedipally

[2014];Mahmassani et al. [2017]).16 Mahmassani et al. [2017] estimate the im-

pact of cameras in Chicago on accidents using an empirical bayes model. The

15On average, the number of accidents is lower at the time of camera removal in Houston
across all city intersections. This is also true in Texas cities without a camera program (see
manuscript Figure 4). The base year accidents levels for calculating percentage effects are
inflated with installation estimates as they have higher accident levels. This makes a 20%
reduction in accidents from installation estimation different in welfare terms then a 20%
reduction in accident levels from a removal estimation.

16We thank a referee for alerting us to these studies.
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study specifies a SPF with 21 variables (rather than just one or two as in Ko

et al. [2017] and Pulugurtha and Otturu [2014]). Nevertheless, we are doubtful

that any model that relies on the exact specification of the accident generating

process to correct for mean reversion will lead to unbiased estimates. First,

this approach introduces a second source of bias (omitted variable bias from

the misspecification of the SPF) as a strategy to correct for the first type of

bias. Second, even if there is no misspecification of the SPF, this strategy will

only correct for all of the mean reversion if the weight on the SPF-based esti-

mate is 100%. Mahmassani et al. [2017] do not publish the size of the weight,

but by our calculations, the weight is only about 17%.17

Further, Mahmassani et al. [2017] consider a sample of Chicago accidents

that only includes accidents that result in an injury. This sampling decision has

two drawbacks. First, the sample of injury accidents is not representative of all

accidents. Certain types of accidents are associated with higher injury rates.

For example, angle accidents are associated with a higher injury rate than non-

angle accidents (see manuscript Table 1). Thus, excluding non-injury accidents

is likely to exaggerate the importance of (any) reduction in angle accidents and

minimize the importance of (any) increase in non-angle accidents, and thereby

lead to a biased estimate for total accidents. Overall, the bias will lead to

results that exaggerate the effectiveness of a camera program at reducing total

accidents. Second, excluding non-injury accidents, which are far more common

than injury accidents, makes overall welfare analysis much more challenging.

The Lord and Greedipally [2014] analysis is similar to Mahmassani et al.

[2017]. Lord and Greedipally [2014] also use an empirical bayes model to

analyze Chicago’s camera program, specify a parsimonious SPF, and the SPF

has a low weight in the model (about 35%). Lord and Greedipally [2014] also

ignore non-injury accidents. In summary, both Lord and Greedipally [2014]

and Mahmassani et al. [2017] fail to account for mean reversion and fail to

estimate the full welfare impacts from the cameras due to sample selection.

17The authors of both reports declined to share either their data or estimation code.

16



2 Data Appendix

2.1 Data Sources

2.1.1 Vehicle Accidents

The 2003-2014 accident data from the Texas Department of Transportation’s

(TxDOT) Crash Records Information System (CRIS) includes all reported

motor vehicle traffic accidents in Texas. We use information on all accidents

in the cities of Houston and Dallas during this time period. The 2010-2014

CRIS data were downloaded via the TxDOT online database by month and

year http://www.txdot.gov/government/enforcement/data-access.html

As of 2016, TxDOT did not retain CRIS information prior to 2010. All

existing information prior to 2010 was transferred to the University of Texas

at Austin Center for Transportation Research (CTR) (https://ctr.utexas.

edu/). Researchers at CTR, who frequently use the data to investigate traffic-

related questions and publish in peer-reviewed academic journals, initially re-

fused to grant access to the 2003-2009 CRIS data.

We submitted a public information request to the University of Texas at

Austin Center for Transportation Research to release the CRIS data. The

public information request was appealed to the Texas attorney general’s office

by the University of Texas. In a letter dated January 23, 2017, the assistant

attorney general of Texas ruled that the University of Texas must release the

CRIS data. The University of Texas at Austin open records coordinator elec-

tronically transferred the complete record of accidents in CRIS from 2008-2009

on February 15, 2017. Michael R. Murphy, Research Engineer at the Univer-

sity of Texas at Austin Center for Transportation Research, subsequently sent

data from 2003-2007 on a CD on April 28, 2017. Documents related to the

Public Information Request and all of the original CRIS data are posted here:

https://justinpgallagher.com/research.html. The original CRIS data

files can also be downloaded from Dataverse (https://dataverse.harvard.

edu/dataset.xhtml?persistentId=doi:10.7910/DVN/GGLKEM.).

The CRIS data include a description of the accident type for each accident.
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Table 4 provides a list of accident type in Houston from 2003-2005 by frequency

of the type of the accident. Overall, 21% of the accidents are angle accidents

and 79% are non-angle accidents.

2.1.2 Red-light Cameras

We use information on red-light camera intersections from the annual Tx-

DOT red-light camera reports (Texas Department of Transportation (2009-

16)). The earliest available reports are from 2009. These reports are compiled

and published by the state of Texas using information submitted by munici-

palities. The reports provide the location of each camera. In addition, mu-

nicipalities with a camera program are required to submit annual information

on each camera, including: the date of installation, intersection speed limits,

total tickets issued, and estimates of average daily traffic.

2.1.3 Intersection Engineering Characteristics

We collect information on a number of structural intersection characteristics,

including whether the intersection has a median separating traffic, the speed

limit, the number of lanes, and whether the intersection includes a frontage

road. A frontage road is defined as a road running parallel to a highway that

is often used as an access point to the highway. The intersection characteris-

tics were collected using afore mentioned TxDOT reports, Google Maps and

Google MyMaps from June-July 2016. The dates of the images used to collect

the data roughly match the end of our panel period.

2.1.4 Average Daily Traffic

We collect average daily traffic (ADT) from three sources. The first source

is the red-light camera enforcement intersection reports (TxDOT (2009-16)).

Average daily traffic data from the TxDOT reports are likely from around

the year the reports were first filed in 2008 or the year of installation. ADT

data retained in the annual reports do not change year-to-year at the same
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intersection. We infer, in turn, that the ADT information was not collected

again for these reports after the initial reporting year.

We also use information from two other sources that provide traffic counts

in Houston and Dallas at numerous street locations (North Central Texas

Council of Governments [2016] and City of Houston [2017]). The rationale for

using street-based (rather than intersection-based) ADT information is so we

will have a consistent ADT measure for camera and non-camera intersections

in each city. The street-based ADT measures also allow for multiple ADT

measurements for a subset of our camera intersections.

Intersections are assigned ADT values using GIS software by summing the

ADT values for all roads at the intersection. We take the ADT points and

join them to the closest road segment using GIS software. We then identify

all intersections that have an ADT measurement for two or more approaches.

We sum ADT from each approach if two approaches are covered. If more

than two approaches are covered, then we calculate the average ADT across

all approaches and multiply it by two (e.g., if all four approaches on two roads

report ADT).

2.1.5 Red-light-running Tickets

We use two sources for the number of red-light-running tickets. First, red-light-

running tickets issued at each camera controlled intersection in both Houston

and Dallas are available from the camera reports (Texas Department of Trans-

portation [2009-16]). The camera ticket data are reported by fiscal year (July

1 - June 30), beginning in 2008-09. There is no published 2010-11 annual re-

port for Houston even though the Houston cameras were in operation for four

months.

We also obtained red-light-running ticket data on tickets issued by Hous-

ton police. These data exclude tickets issued via the traffic cameras. We

requested the data via an open records request (Municipal Court Record Num-

ber: 341JUNE17). We received the monthly intersection count of all red-light-

running tickets from April 2006 to December 2016.
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2.1.6 Additional Information for Welfare Calculation

Accident Costs

We use accident cost estimates from a recent National Highway Traffic Safety

Administration (NHTSA) report (Blincoe et al. [2015]). The NHTSA report

compiles accident costs by accident severity using the KABCO scale. The

scale is: K= killed, A = incapacitating injury, B = non-incapacitating injury,

C = complaint of pain, and 0 = no injury. The scale matches the police

coded accident data in CRIS, with the exception that CRIS uses “possible

injury” instead of “complaint of pain.” We also combine the “unknown” and

“no injury” categories in the CRIS accident data into a single grouping to

correspond to the KABCO no injury category. Note that the NHTSA report

explicitly accounts for misreporting of injuries, by either those involved in the

accident or the police officers filling out the reports. For example, the NHTSA

report estimates that on average there are $7,789 (2010 $) in injury-related

costs for the no-injury category (Blincoe et al. [2015], p251).

We use the total accident costs for the four non-fatal KABCO categories

in Table D-1 (Blincoe et al. [2015], p251). These categories include estimates

for direct injury related costs (medical, lost wages, and legal costs), traffic

congestion costs due to the accident, property damage, and lost quality of life

from accident sustained injuries.

We use the Department of Transportation’s recommended value of

statistical life, $8,860,000 (2010 $), as the cost of a fatal accident (Blincoe

et al. [2015]).

Houston Program Cost and Revenue

We obtained Houston red light camera program cost and revenue infor-

mation via the Houston city budget report for the Digital Automated

Red Light Enforcement for 2009 and 2010 (https://www.houstontx.

gov/budget/09budadopt/index.html and https://www.houstontx.gov/

budget/10budadopt/index.html). We use operating and maintenance es-

timates from fiscal years 2008-2009 and 2009-10. The cost data are total

expenditures net of transfers to the other government agencies through cost
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sharing programs and transfers to the cities general fund. The average cost

per camera per year (across the two reporting years) is $169,509.

The total average camera revenue from red light running tickets from 2008-

9 and 2009-10 is $11,381,937. As we write in the manuscript, the welfare model

considers the welfare benefit of raising revenue from fixed lump sum fines rather

than distortionary fiscal taxes. We follow Barrage [2016] who calculates that

a dollar raised via fiscal taxes, on average, has a marginal cost of public funds

of 1.49. In our analysis, for every dollar raised by the camera program, we

subtract 49 cents from the cost of running the program. The yearly per camera

revenue (gain) is $85,502.

The Houston budget documents do not provide information on the fixed

costs of installing the cameras. We attempted to collect this information via

a public records request but were unsuccessful. Instead we use estimates on

the purchase and installation of a standard digital camera system from Mac-

cubbin et al. [2001]. These estimates are also used by the Centers for Dis-

ease Control and Prevention (https://www.cdc.gov/motorvehiclesafety/

calculator/factsheet/redlight.html). The cameras cost an estimated

$50,000 to $60,000 to purchase and $25,000 to install. There are 66 Hous-

ton camera intersections. Most intersections require more than one camera to

capture the traffic entering the intersection from all of the cross streets. There

are a total of 152 cameras at the 66 camera intersections. Total estimated

fixed costs are $12.9 million.

We do not include the estimated fixed camera costs in our welfare model

analysis. The main reason for this is that the fixed costs roughly equate with

the higher estimated ticket revenue from the first two years of the camera

program. The camera revenue estimates we use are based off of fiscal years

2008-9 and 2009-10, which on average are about two (for 2007 cameras) and

three (for 2008 cameras) years after the date of camera installation. We

know that the number of tickets issued at red light cameras decreases over

time as drivers learn of camera location and adjust behavior (see manuscript

Figure 2 panel B). The yearly cost and revenue estimates are after the initial

introduction of the cameras and when the cost and revenue are at levels we
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may expect to continue indefinitely.

Number of Residents

The number of Houston residents age 18-64 is from a 2013 report by the

Houston Planning and Development Department (http://www.houstontx.

gov/planning/Demographics/docspdfs/SN/AgeTotalPopulation.pdf).

The source of the underlying data is the 2007-2011 American Community

Survey.

Mean Wage

The Federal Reserve Bank of St. Louis calculates the average weekly

wages for “employees in total covered establishments” in the Houston-

Sugar Land-Baytown MSA using Bureau of Labor Statistics information

(https://fred.stlouisfed.org/series/ENUC264240010SA). We calculate

the average hourly wage in Houston by averaging across the four 2011 quarters

and dividing by 40.

Number of Persons per Vehicle

The average number of persons per vehicle is from US Department of

Transportation report that analyzes the 2001 National Household Travel

Survey (USDOT [2003]). We use the mean across all personal vehicle trips.

A link to the report can also be found here: https://www.rita.dot.gov/

bts/sites/rita.dot.gov.bts/files/publications/highlights_of_the_

2001_national_household_travel_survey/html/table_a14.html

Length of Red Light Signal

We calculate the average length of a red light in Houston using two sources.

The duration of yellow lights and red-light lag times (i.e., when both directions

are red) are provided for each camera controlled intersection in the annual red-

light camera enforced intersection reports (Texas Department of Transporta-

tion [2009-16]). We estimate green-light durations using the Traffic Signal

Operations Handbook, which is published by the Texas Transportation Insti-
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tute and provides guidelines for minimum green-light times based on speed

limit (Bonneson et al. [2009], p2-5). We calculate that the average wait time

caused by having the cross street signal as green is 0.91 minutes.

We also use the Traffic Signal Operations Handbook to calculate the

estimated length of the turning only phase (when through traffic on both

streets have a red signal). The Traffic Signal Operations Handbook provides

a formula for calculating the recommended left-turn only phase. The formula

considers whether the cross roads are major or minor roads, the traffic

volume, and the number of lanes (Bonneson et al. [2009], p31). We have

all of this information for the 66 camera intersections. Using the formula

we calculate that the average length of the turning only phase is 20.88 seconds.

Number Additional Vehicles Stopping at Camera Intersections

We use an estimate of the number of additional vehicles stopping at camera

intersections (rather than continuing through the intersection) to estimate the

travel time delay in Houston under the camera program.

The intuition behind our calculation is that we can use the observed number

of annual red-light running tickets to work backwards to determine the number

of vehicles that were running red lights before the cameras were installed. We

know that the number of tickets decreases dramatically between the first and

second years after camera installation (manuscript Figure 2 panel B). Further,

we can use observational (count) estimates from the literature for the reduction

in red-light running from the year before the cameras (year 0) to the first year

after the cameras (year 1).

We use two sources of information to estimate the reduction in vehicles

passing through an intersection when the light turns red. A conservative es-

timate from the literature is that the number of red-light running vehicles

decreases by 42% in the first year of a camera program, relative to the year

before the program (McCartt and Hu [2014]). Next, we use red-light ticket

data from two camera intersections in Dallas to benchmark how the number

of red-light tickets change in the second and third years of a camera program

(Texas Department of Transportation (2009-16)). These are the only two cam-
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era intersections with cameras installed (in either Houston or Dallas) after the

mandated annual camera reports began documenting the number of tickets

in 2009, and which had an installation month in June or July. The instal-

lation month is important since the ticket data are reported by fiscal year

(July 1-June 30). While we are only using two camera intersections for our

benchmark, it is well documented that the number of tickets decreases over (at

least) the first few years of a red-light camera program as drivers learn about

the cameras. For example, Fisher [2017] examines ticketing patterns at more

than 300 Chicago red light cameras including during their installation. During

the first year the number of tickets issued drops by approximately 50%. The

number of tickets continues to slowly decline for (at least) several more years.

We estimate that there were 573,500 vehicles that ran a red light at one

of the 66 camera intersections in the year before cameras were installed. This

translates to 721,463 minutes of additional waiting at a traffic intersection

(calculated by multiplying by a 1.26 minute delay), 0.54 minutes of additional

waiting per person (dividing by the population), and 0.0082 minutes of waiting

per person per camera (dividing by 66).

Our baseline estimate is conservative. Since our calculations are derived

only of off of vehicles that actually ran a red light. The baseline calculation

does not account for vehicles under the camera program that stop when the

light is yellow and might have passed through the intersection before the light

turned red. This group of vehicles is likely to be large, potentially of a similar

magnitude as the number of vehicles that stop running red lights.

2.1.7 Houston Referendum Media and Online Search Information

Figure 3 in the manuscript provides evidence from three media sources on how

well aware Houston residents were of the red light camera voter referendum.

Newspaper Stories

The source of the newspaper stories is Houston’s largest daily newspaper, the

Houston Chronicle (https://www.chron.com/). We use the search feature

provided on the website to search for stories that include “red light camera”
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or “Annise Parker”. We verified that each story from the search was unique,

contained one of the search phrases, and had a publication date between

November 2008 - November 2012.

TV News Stories

The TV news story information is from closed captioning data provided by

Metro Monitor (https://metromonitor.com/). The closed captioning data

cover all programing on Houston’s ABC, CBS, FOX, and NBC affiliates. We

use a search function available to subscribers to search the closed captioning

text information for “red light camera” or “Annise Parker”. We verified

that each story from the search was unique, contained one of the search

phrases, and had a publication date between November 2008 - November 2012.

Online Searches

The online search frequency is from Google Trends (https://trends.google.

com/trends/). We limited the search geography to Houston, TX and the time

period to November 2008 - November 2012. We searched simultaneously for

the terms “red light camera” and “Annise Parker”.

2.2 GIS Data Processing

We start with the police-recorded (accident-level) CRIS data for each accident

in the cities of Houston, Dallas, and San Antonio. Next, we limit the sample to

accidents that occur within 200 feet of an intersection. We use GIS software

(ESRI ArcMap) to buffer the intersections by 200 feet and intersect them

with the accident (latitude/longitude) point shapefile to create an accident-

level output file containing all accidents within 200 feet of an intersection and

50 feet of a road.

We use the US Census TIGER/Line USA Major Roads shapefile as the

street map in GIS to determine the list of intersections in each city. All

camera intersections in Houston and Dallas are included on the street map.

We exclude non-camera intersections in Houston within one-half mile of a
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camera intersection, for camera intersections may impact driving behavior at

nearby intersections (e.g., Shin and Washington [2007]; Høye [2013]). We

also exclude Houston non-camera intersections if the intersection does not

have associated ADT information, or if there are no recorded accidents from

2003-2014. Finally, as a reliability check, we visually check all remaining

intersections in GIS to confirm that there are no duplicate intersections and

that we are not double-counting an intersection.

2.3 San Antonio Intersection Risk Index

We determine the most dangerous intersections in San Antonio using a simple

weighting method. We adapt the weighting formula that Stein et al. [2006]

utilized to rank order Houston intersections by accident risk. Our intersection

risk index is a weighted sum of San Antonio accidents for 2003 using the

following weights: 4 = fatal, 3 = incapacitating, 2 = non-incapacitating or

possible, 1 = unknown injury or no injury. Under the weighting scheme of

Stein et al. [2006], fatal accidents receive a weight of 3. Still, the two weighting

schemes produce similar intersection risk rankings. We select the 66 most

dangerous intersections to use as our placebo treatment intersections, since

this is the same number of 2006 and 2007 Houston camera intersections.

3 Robustness Analysis

3.1 Houston and Houston-Dallas Samples

This section provides additional analysis for the Houston and Houston-Dallas

samples, including figures referenced in the manuscript. Unless otherwise

noted, these samples consider accident data from 2008-2014 and estimate the

propensity score model using intersection data from the pre-referendum period

(2008-2010).

Figure 1 shows the distribution of the propensity scores in the Houston

and Houston-Dallas samples. The overlap in the propensity scores for the

treatment and control intersections is best for the Houston sample. This is
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one reason why our preferred estimates, and those that we emphasize in the

text, are from the Houston sample. The distribution of the propensity scores

in the Houston-Dallas sample is more bimodal. The Dallas camera propensity

scores tend to be clustered below 0.5 and the Houston camera propensity scores

above 0.5.

Figure 2 shows the location of the camera enforced (treated) and non-

camera enforced (control) intersections in our Houston sample. Overall, there

is a similar geographic distribution. Most of the camera and non-camera con-

trol intersections in our sample are to the west of downtown.

Figure 3 is constructed in exactly the same way as Figure 5 in the manuscript,

except that this appendix figure plots data for total accidents and injury ac-

cidents. The figure shows the difference between accident levels in treatment

and control accidents for total (left) and injury (right) accidents in the Hous-

ton (top) and Houston-Dallas (bottom) samples. The plotted coefficients are

from a regression with year fixed effects and the interaction of year fixed effects

with treatment status. The coefficients are normalized relative to 2010. The

standard errors from the regression are used to plot the shaded 95% confidence

intervals.

Figure 4 is constructed in exactly the same way as Figure 6 in the manuscript,

except that this appendix figure plots accident data for Houston intersections

in the Houston-Dallas sample (rather than Houston intersections in the Hous-

ton sample). Figure 4 panel A shows the pre-referendum level of angle (y-axis)

and non-angle (x-axis) accidents for each Houston camera intersection. Inter-

sections in our Houston-Dallas sample are marked with the black symbols,

and those intersections dropped via propensity score trimming with the white

symbols. Figure 4 panel B shows the pre-referendum to post-referendum shift

in the number of angle and non-angle accidents for each camera intersection.

One potential concern is that the camera intersections in our Houston-Dallas

sample may respond differently to the camera program than those intersec-

tions dropped from the analysis. Panel B shows that this is mostly not the

case. The shift in accidents for the camera intersections in our sample (black

symbols) is similar to that for camera intersections not in our sample (gray
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symbols), after accounting for yearly accident trends and fixed intersection

characteristics. If anything, the Houston intersections included in the sample

suggest a more positive view of the camera program, as compared to those

excluded from the sample. On average, ending the camera program led to

both more of an increase in angle accidents and less of a decrease in non-angle

accidents for the in-sample intersections (as compared to intersections not in

our sample).

Table 1 lists information for 21 recent camera studies that were published

in the last ten years. This list is largely based off of the studies included in

the meta-analyses by Høye [2013] and Goldenbeld et al. [2019]. Section 3 in

the manuscript and Section 1.4 of this document discuss the literature.

Table 4 provides a list of accident causes (types) in Houston from 2003-

2005 by frequency and type of accident. There are 45 different accident types,

10 of which include the word “angle” and other details (e.g., “Angle: Both

Going Straight”). Five non-angle accident types (“OMV other,” “other,” “not

reported,” “undetermined,” and “reported invalid”) are combined into the

category “other” listed in the table. Overall, 21% of the accidents are angle

and 79% non-angle. The most common non-angle accident type is “Single

Vehicle - Going Straight.”

In Table 5, we divide the non-angle accidents into five subgroups we label

as: head on, single vehicle, turning, rear end, and other. The table shows

coefficient estimates from our difference-in-differences model using the Houston

and Houston-Dallas samples, while limiting the dependent variable to each

of the accident subgroups. The results indicate that, when the cameras are

turned off, the reduction in non-angle accidents (manuscript Table 3) is mostly

attributable to a reduction in rear end accidents.

In Tables 6 and 7 we show how cameras affect angle and non-angle traffic

accidents based on the time of day and day of week. Table 6 estimates the

model using our Houston sample, while Table 7 uses the Houston-Dallas sam-

ple. We estimate our main model on the subset of accidents occurring on all

days, weekdays, and weekends. We also estimate our model on the subset of

accidents occurring during all hours, the daytime (9am-4pm), the nighttime

28



(4pm-7am), and rush hour (7-9am and 4-7pm). The all days by all hours esti-

mates are equivalent to our baseline estimates (Table 3 in the paper) and are

omitted from the appendix tables. Overall, while the estimates are imprecise,

the direction of the point estimates tend to conform to what we would have

expected given the baseline (average) results.

Table 8 estimates the effect on average daily traffic (ADT) from ending the

camera program using a difference-in-differences OLS model. The estimation

samples only include intersections in our Houston and Houston-Dallas samples

that have at least one ADT observation both before (2007-2010) and after

(2011-2014) the referendum. The estimates imply a modest increase in traffic

at Houston camera intersections after electronic monitoring ended of between

4% and 18%, although none of the estimates is statistically significant. We

note, however, that if there is measurement error in the interpolation procedure

used to assign the ADT data to intersections (see Section 2.1.4), then the ADT

estimates are likely to be attenuated towards zero.

Table 9 shows four additional robustness results. Our strategy to estimate

the effect of the cameras on the number of accidents is to use the voter refer-

endum as a natural experiment. At the same time, since our panel of accident

data begins in 2003, we are also able to estimate the introduction of the Hous-

ton cameras in 2006 and 2007.18 Panel A estimates the effect of introducing

the cameras using our main Houston sample. Panel B estimates the effect of

introducing the cameras using a second Houston sample. In Panel B, accident

characteristics from the three years before the first Houston camera was in-

stalled (2003-2005) are used to select our treatment and control intersections

using our logit model. The pre-trimmed Houston intersections are the same

as in our main Houston sample. However, the final control and treatment

intersections are selected based on pre-program (rather than pre-referendum)

18We estimate the model using 2003-05 as the pre-period and 2008-10 as the post-period.
We drop 2006 and 2007 so as to maintain a balanced panel. We do not know when the
cameras were installed during the two installation years. Even if we did, monthly accident
data that would permit a partition of the accident data during the installation years into
the pre- and post-periods is not available.
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accident characteristics.19

The estimates in panels A and B both suggest that turning on the cameras

reduced the number of overall traffic accidents by about 30%. This finding is

in contrast to our camera removal estimates that leverage the exogenous ref-

erendum. However, the entry results are not too surprising given the placebo

camera program simulation results (see Table 2 column 4) discussed in Sec-

tion 1.3.1. An analysis of the introduction of a placebo camera program using

a difference-in-differences model suggests that there is a large (39% to 58%)

and statistically significant reduction in total accidents attributable to the

(non-existent) camera program.

There is a difference between the simulation results in Table 2 and the entry

results in Table 9 in how we select the control group of intersections. In the

simulation exercise, the “treated” intersections are the 50 intersections with

the highest number of accidents in the pre-period, while the control group of

intersections are the 50 intersections with the next highest number of accidents.

In Table 9 panels A and B we attempt to more formally control for pre-trends

by selecting the estimating sample using a logit model. If we assume that

the actual Houston camera program treatment effect is zero (we estimate a

statistically imprecise removal estimate of -4% in our preferred sample), then

matching on pre-period trends is able to account for about half of the effect of

mean reversion when analyzing the endogenous introduction of the cameras.

Table 9 panel C uses the same alternative Houston sample as in panel

B, except returns to our preferred approach that focuses on the exogenous

removal of the cameras. The point estimate for the effect on total accidents,

-3%, is nearly identical to the point estimate from our main Houston sample

(-4%). Neither of the point estimates are statistically different from zero.

Table 9 panel D shows estimates from our main Houston model (i.e. using

a logit model and 2008-10 intersection characteristics), except that we use a

19The accident characteristics in the logit model (Ait) are the same except that average
daily traffic is not included, as this information is not available from the earlier time period.
The availability of the ADT data, the opportunity to provide out-of-city control group
estimates with Dallas camera intersections, and a better propensity score overlap, are the
reasons why our preferred Houston sample is selected using 2008-2010 characteristics.
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different propensity score trimming rule to select the final sample. In panel

D, we drop all intersections that either have estimated propensity scores less

than 0.01, or fall into a five unit bin (0.00 to 0.05, 0.051 to 0.10, etc.) which

does not have both treatment and control intersections. This trimming rule

results in a much larger group of control intersections. As with the results in

panel C, the estimated impact on total accidents is similar to our preferred

sample. However, the effects on angle and non-angle accidents are smaller in

magnitude.

3.2 Houston Frontage Sample

This section provides supporting documentation for the frontage sample. Most

of the intersections that receive a camera in Houston are on frontage roads.

Our main estimation samples are not balanced. In our Houston sample, 75% of

the camera intersections are on frontage roads, while just 4% of the non-camera

(control) intersections are on frontage roads. In our Houston-Dallas sample,

the difference is smaller, but still unbalanced. 75% of the Houston camera

intersections are on frontage roads, while 38% of the Dallas intersections are

on frontage roads. (See manuscript Table 2). To help address this concern,

we also estimate our model on a sample of Houston intersections that are

all located on frontage roads. Overall, we estimate a very similar effect on

total accidents (-6% using the Houston frontage sample and -4% in our main

Houston sample).

We construct this sample by visually identifying all intersections with

frontage roads alongside freeways (or similar roads) in Houston. This is done

in Google Maps. We then apply filters for being located within the city and

not within a half mile of a treated intersection.

Table 10 shows yearly means for accident and intersection characteristics

for camera and non-camera intersections in the frontage road sample before

and after trimming with the propensity score. The means are taken over the

pre-referendum years 2008-2010. We do not calculate mean values for ADT, as

we do not have ADT information for most of the intersections in the frontage
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sample.

Figure 5 shows the distribution of the propensity scores in the Houston

frontage road sample. There is reasonable overlap in propensity scores be-

tween the treatment and control groups, as there are just two bins with any

observations that fail to have both treatment and control intersections. Over-

all, the treatment intersections appear to be roughly uniformly distributed,

while the control intersections are more likely to have lower propensity scores.

Figure 7 shows the yearly average number of angle, non-angle, and injury

accidents for camera (treatment) and non-camera (control) intersections in

the frontage sample. There are very similar trends between the treatment and

control groups for the three pre-referendum years (2008-2010). The yearly

number of accidents is slightly higher for camera intersections for each accident

type in the years before the referendum, and mostly lower after the referendum.

Figure 8 panel A shows the pre-referendum level of angle (y-axis) and non-

angle (x-axis) accidents for each Houston frontage sample camera intersection.

Panel B plots the pre-referendum to post-referendum shift in the level of an-

gle and non-angle accidents for each camera intersection, after accounting for

yearly accident trends and fixed intersection characteristics.

3.3 Welfare Model

Table 11 shows the baseline parameter values for the welfare model. These

baseline values are discussed in manuscript Section 7.2 and in appendix Sec-

tion 2.1.6.

Table 12 shows how the cost-weighted elasticity estimates and the program

cost to accident cost ratios change when we vary the values used for key param-

eters. The first row of the table repeats the cost-weighted elasticity estimates

and program cost to accident cost ratios which are derived using our baseline

values (manuscript Table 6). In the rest of the table, we vary the parameter

values (one at a time) and report the new cost-weighted elasticity estimates

and program cost to accident cost ratios.

We set our baseline wage multiplier (σ) at 0.5 following Anderson [2014]
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and Parry and Small [2009]. Parry and Small [2009] write that the value of time

is “assumed from the empirical literature to be 49 to 104 percent of the market

wage, depending on location and time” (p714). In our sensitivity analysis we

increase and decrease the wage multiplier by 50%, leading to parameter values

of 0.75 and 0.25 respectively.

The minutes delayed per capita per year (m) depends on the average

amount of time that a vehicle waits at a signal interchange and the change in

the number of vehicles stopping at the red light under a camera program. Our

baseline estimate for the wait time is 1.26 minutes. The baseline wait time

is the average wait time across the 66 camera intersections (using engineering

documents on the length of signal times at each intersection). In sensitivity

analysis we increase and decrease the wait time by one standard deviation.

Our baseline estimate for the change in the number of cars waiting per year

under Houston’s camera program is 573,507. These estimates are derived from

four years of red light ticket data at each camera intersection. In sensitivity

analysis we increase and decrease the baseline values by one standard deviation

(based on the variation in the intersection-level ticket data).

The accident injury risk per capita per year (φ) is calculated using accidents

at the camera intersections from the two years before the camera program ends

(2008 and 2009). We use the accident records from CRIS to calculate five

different average accident injury risk rates (across the camera intersections).

These rates, after multiplying by one hundred thousand, are: fatality = 0.15,

incapacitating = 1,001, non-incapacitating = 276, possible = 128, and non

injury = 42. In the sensitivity analysis we increase and decrease the baseline

values by one standard deviation.

In our baseline analysis we use the KABCO injury classification scale and

the dollar values assigned to each injury level from the 304 page US Depart-

ment of Transportation (US DOT) and National Highway Traffic Safety Ad-

ministration report titled “The Economic and Societal Impact of Motor Vehicle

Crashes, 2010 (Revised)” (Blincoe et al. [2015]). We also use the US Depart-

ment of Transportation’s recommended value for a statistical life (VSL) of

$8.86 million. Blincoe et al. [2015] write that “the US DOT guidance mem-
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orandum discusses a feasible range of VSLs for sensitivity analysis in 2012

dollars from $5.2 million to $12.9 million [$5.1 million to $12.6 million in 2010

dollars]” (p245).

Blincoe et al. [2015] also provide dollar values for injury estimates using

the Abbreviated Injury Scale measure (MAIS). The report writes: “Through-

out this analysis translators developed from historical data records are used

to translate non-fatal injury severity estimates based on police records us-

ing a KABCO scale, into the more precise Abbreviated Injury Scale mea-

sure” (p248). The Abbreviated Injury Scale, according to the NSW Institute

of Trauma and Injury Management, is “an anatomically-based, consensus-

derived, global severity scoring system that classifies each injury by body re-

gion according to its relative importance on a 6 point ordinal scale.” (https://

www.aci.health.nsw.gov.au/get-involved/institute-of-trauma-and-injury-management/

Data/injury-scoring/abbreviated_injury_scale).

The MAIS injury dollar estimates tend to be about 50% lower (depending

on the injury level) than the KABCO estimates. We use the MAIS estimates

and the $5.1 million VSL lower value as the basis of the low φ estimate in our

sensitivity analysis. We can easily reject that the camera program is welfare

improving at the 90% confidence level when we use the MAIS dollar values (and

$5.1 million VSL). In this sense, we already view the baseline model estimates

that use the KABCO scale as conservative. Nevertheless, for a high estimate

we add to our baseline KABCO estimates the dollar difference between the

KABCO and MAIS classifications (i.e. increasing the KABCO estimates by

about 50%), while using $12.6 million as a VSL.
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5 Figures and Tables

Figure 1: Distribution of Propensity Scores: Houston and
Houston-Dallas Samples

0
.1

.2
.3

.4
D

en
si

ty

.1 .2 .3 .4 .5 .6 .7 .8 .9

Houston Sample

0
.1

.2
.3

D
en

si
ty

.1 .2 .3 .4 .5 .6 .7 .8 .9
Propensity Score

Treatment: Houston Camera Control

Houston-Dallas Sample

The figure shows the distribution of propensity scores in the Houston and Houston-Dallas
samples. The control group of intersections are Houston non-camera intersections in the
Houston sample, and Dallas camera intersections in the Houston-Dallas sample. The propen-
sity scores are estimated by logistic regression (see text for details). Each panel plots the
fraction of observations in the treatment (black bar) and control (grey bar) groups that
fall within five percentage point propensity score bins. The leftmost bin is for observations
with propensity scores ranging from 0.10 to 0.15, while the rightmost bin is for observa-
tions with scores from 0.85 to 0.90. Data sources: City of Houston, Texas Department of
Transportation.
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Figure 2: Houston Camera and Non-camera Locations

The figure plots the 32 camera intersections (triangles) and 47 non-camera intersections
(squares) in our main Houston sample. Map source: US Census TIGER/Line USA Major
Roads.
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Figure 3: Total and Injury Accident Trends for Treatment and
Control Intersections

The figure is constructed in exactly the same way as Figure 5 in the manuscript, except that
this appendix figure plots data for total accidents and injury accidents. The figure shows
the difference between accident levels in treatment and control accidents for total (left) and
injury (right) accidents in the Houston (top) and Houston-Dallas (bottom) samples. The
plotted coefficients are from a regression with year fixed effects and the interaction of year
fixed effects with treatment status. The coefficients are normalized relative to 2010. The
standard errors from the regression are used to plot the shaded 95% confidence intervals.
Data source: Texas Department of Transportation.
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Figure 4: Angle and Non-angle Accidents by Camera Intersection
Houston-Dallas Sample
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Panel B: Post-Referendum Shift in Accidents

Panel A shows the pre-referendum level of angle (y-axis) and non-angle (x-axis) accidents
for each Houston camera intersection based on whether the intersection is included in the
Houston-Dallas estimation sample, and by whether the intersection is on a frontage road.
Panel B plots the pre-referendum to post-referendum shift in the number of angle and non-
angle accidents for each camera intersection, after accounting for yearly accident trends and
fixed intersection characteristics.
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Figure 5: Distribution of Propensity Scores
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The figure shows the distribution of propensity scores in the Frontage road sample. The
control group of intersections are Houston non-camera intersections. The propensity scores
are estimated by logistic regression (see text for details). Each panel plots the fraction of
observations in the treatment (black bar) and control (grey bar) groups that fall within five
percentage point propensity score bins. The leftmost bin is for observations with propensity
scores ranging from 0.10 to 0.15, while the rightmost bin is for observations with scores from
0.85 to 0.90. Data sources: City of Houston, Texas Department of Transportation.
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Figure 6: Houston Camera and Non-camera Locations
Frontage Road Sample

The figure plots the 40 camera intersections (triangles) and 50 non-camera intersections
(squares) in our Houston frontage sample. Map source: US Census TIGER/Line USA
Major Roads.
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Figure 7: Treatment and Control Intersection Accident Trends
Frontage Road Sample

The figure plots yearly accident residuals from an OLS regression of yearly angle (row 1),
non-angle (row 2), and injury (row 3) accidents on a vector of intersection fixed effects. The
residuals are plotted separately for the control and treatment intersections. Treatment and
control intersections are Houston camera and propensity score matched non-camera inter-
sections (2008-2010) located on frontage roads. The accident data from 2010 are multiplied
by 6/5 before running the regression, in order to account for 10 months of available data.
Data source: Texas Department of Transportation.
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Figure 8: Angle and Non-angle Accidents by Camera Intersection
Frontage Road Sample
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Panel B: Post-Referendum Shift in Accidents

Panel A shows the pre-referendum level of angle (y-axis) and non-angle (x-axis) accidents
for each Houston frontage sample camera intersection. Panel B plots the pre-referendum to
post-referendum shift in the level of angle and non-angle accidents for each camera inter-
section, after accounting for yearly accident trends and fixed intersection characteristics.
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Table 1: Statistical Techniques in the Red Light Camera Literature

Study City Install Remove Overall Angle

Abdulsalam et al. (2017) X X X 3* -28* 37*

X X X -16* -39* 49*

Ahmed (2015) X X X -- -24 325*

Budd et al. (2011)N,3
X X X -26* -44* --

Claros et al. (2016) X X X 1* -11* 16*

Contini (2016) X X X -25* -33* -107*

Cunningham and Hummer (2010) X X X -8 -32* 5

De Pauw (2014) X X X -14* -24* 44*

Hu and Cicchino (2017)3
X X -14* -- --

X X 16* -- --

Hu et al. (2011)
3

X X -14* -- --

Ko et al. (2013)
1

X X X -20* -24* 37

Ko et al. (2017)1
X X X -37* -47* 18

X X X 20 23 13

Langland et al. (2014)3
X X -12 -- --

Lee (2016) X X X 50* 31* --

Llau (2015) X X X -19* -3* 40*

Lord and Geedipally (2014)N,2
X X X 5 -15* 22*

Mahmassani et al. (2017)N,2
X X X -16* -32* 14*

Maina (2016) X X X -15* -- --

Pulugurtha and Otturu (2014) X X X 2 -- --

X X X -36 -- --

Schattler et al. (2017)
N

X X X -34* -66* --

Walden et al. (2011)N
X X X -26* -19* 44*

Wong (2014) X X X 17 24 34

1: only consider red light running accidents

2: only consider injury accidents

Primary Method Level of Analysis Policy Change

Empirical   

Bayes

Results (% change)

Inter- 

section

Before vs. 

After

Rear 

End

This table lists information for 21 recent camera studies that were published since 2009. This list is largely based off of the studies
included in the meta-analyses by Høye [2013] and Goldenbeld et al. [2019]. All of the studies in the table estimate the causal effect
of the cameras from the camera installation, while three also estimate the causal effect when cameras are removed (Hu and Cicchino
[2017]; Ko et al. [2017]; Pulugurtha and Otturu [2014]). The table superscripts are as follows: * indicates that the study reports the
finding as statistically significant; N indicates that the study is not published in a peer review journal; 1 indicates that the study
only considers red light running accidents; 2 indicates that the study only considers injury accidents; 3 indicates that the study only
considers accidents with fatalities.
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Table 2: Monte Carlo Simulation of the Impact of Red Light
Cameras

(1) (2) (3) (4) (5)

ADT Dependence Installation Removal Installation Removal

0.1 -41.21 -0.63 -58.02 0.52
(3.23) (8.76) (3.34) (9.93)

0.2 -40.00 -0.62 -57.54 0.57
(3.22) (8.50) (3.38) (9.64)

0.3 -38.32 -0.84 -56.40 0.34
(3.24) (8.17) (3.50) (9.28)

0.4 -36.22 -0.89 -54.88 0.37
(3.30) (7.63) (3.68) (8.68)

0.5 -33.55 -1.07 -53.14 0.29
(3.39) (7.13) (3.91) (8.08)

0.6 -30.03 -1.23 -51.59 0.25
(3.49) (6.52) (4.20) (7.38)

0.7 -24.50 -1.45 -50.25 0.22
(3.74) (6.03) (4.62) (6.81)

0.8 -13.29 -1.88 -48.07 0.20
(4.31) (5.48) (5.39) (6.25)

0.9 -5.89 -2.62 -39.05 0.13
(2.06) (4.53) (6.82) (5.18)

Empirical Bayes Difference in Differences

The table shows Monte Carlo treatment effects from a placebo camera program using sim-
ulated intersection accident data. We generate accident data for one thousand intersections
over six years, under different assumptions for how well the safety performance function
(SPF) captures the underlying variation in accidents. Column (1) shows the percent of the
variation in total accidents explained by the SPF. We assign a placebo camera to the 50
intersections in the sample that have the highest level of accidents in the pre-camera period
for each SPF (ADT dependence) simulation. The 50 intersections with the next highest
level of accidents are selected as the control intersections. We define the first two years of
the generated panel data as the pre-camera period, the next two years as having an ac-
tive camera program, and the final two years as post-program. Please refer to Appendix
Section 1.3.1 for details. Columns (2) and (3) show the estimated percent change in total
accidents and standard error (in parentheses) for an empirical bayes analysis based on the
camera installation and camera removal. Columns (4) and (5) show the same estimates
using a difference-in-differences model.
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Table 3: Empirical Bayes Model Accident Estimates from Starting
and Ending the Houston Camera Program

(1) (2) (3) (4) (5) (6)

Dependent Variable Accident Type: All Angle Non-Angle All Angle Non-Angle

Safety Index, Ѳ 0.95 0.84 1.10 0.92 1.20 0.80

(0.03) (0.06) (0.04) (0.06) (0.13) (0.06)

Safety Index, Ѳ 0.70 0.57 0.79 0.93 1.10 0.87

(0.04) (0.07) (0.06) (0.04) (0.07) (0.05)

Installation Removal

Panel A: Propensity Score Trimmed Houston Sample

Panel B: Non-Trimmed Houston Sample

The table shows empirical bayes model estimates from starting (installation) and ending
(removal) the camera program in Houston. Standard errors are in parentheses. We estimate
the empirical bayes model on the same trimmed Houston sample as we use in the text, as
well as the untrimmed sample (see manuscript Table 2). Empirical bayes model estimates
are usually presented as a weighted ratio of actual accidents to estimated accidents. This
ratio is sometimes referred to as the safety index. A ratio of less than one is interpreted as
a reduction in accidents. Please refer to Section 1.3.2 for more details. Standard errors are
in parentheses and indicate whether the estimated safety index is statistically significantly
different that 1.
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Table 4: Frequencies of Accident Subtypes for Angle
and Non-angle Accidents

Accident Group Accident Type Percent of Group Percent of Total

Angle Both Going Straight 0.779 0.163
Straight - Backing 0.038 0.008
Straight - Stopped 0.003 0.001
Straight - Right Turn 0.062 0.013
Straight - Left Turn 0.103 0.022
Both Right Turn 0.000 0.000
Right Turn - Left Turn 0.002 0.000
Right Turn - Stopped 0.006 0.001
Both Left Turn 0.002 0.001
Left Turn - Stopped 0.004 0.001
Total 0.209

Non-angle Single Vehicle - Going Straight 0.216 0.171
Single Vehicle - Right Turn 0.008 0.006
Single Vehicle - Left Turn 0.010 0.008
Sincle Vehicle - Backing 0.050 0.039
Single Direction - Rear End 0.214 0.169
Single Direction - Sideswipe 0.147 0.116
Single Direction - Straight - Stopped 0.125 0.099
Single Direction - Straight - Right Turn 0.021 0.016
Single Direction - Straight - Left Turn 0.030 0.023
Single Direction - Both Right Turn 0.003 0.002
Single Direction - Right Turn - Left Turn 0.000 0.000
Single Direction - Right Turn - Stopped 0.000 0.000
Single Direction - Both Left Turn 0.005 0.004
Single Direction - Left Turn - Stopped 0.000 0.000
Opposite Direction - Both Going Straight 0.014 0.011
Opposite Direction - Straight - Backing 0.011 0.009
Opposite Direction - Straight - Stopped 0.001 0.000
Opposite Direction - Straight - Right Turn 0.000 0.000
Opposite Direction - Straight - Left Turn 0.067 0.053
Opposite Direction - Backing - Stopped 0.005 0.004
Opposite Direction - Right Turn - Left Turn 0.001 0.001
Opposite Direction - Right Turn - Stopped 0.000 0.000
Opposite Direction - Both Left Turn 0.001 0.000
Opposite Direction - Left Turn - Stopped 0.000 0.000
Parking - Straight 0.015 0.012
Parking - Right Turn 0.000 0.000
Parking - Left Turn 0.000 0.000
Parking - Stopped 0.001 0.001
Other - Both Parking 0.001 0.000
Other - Both Backing 0.004 0.003
Other 0.052 0.041
Total 0.791

The table provides a list of accident causes (types) in Houston from 2003-2005 by frequency
of the type of the accident. There are 45 different accident types, 10 of which include
the word “angle” and other details (e.g., “Angle: Both Going Straight”). Five non-angle
accident types (“OMV other,” “other,” “not reported,” “undetermined,” and “reported
invalid”) are combined into the category “other” listed in the table. Source: Texas
Department of Transportation.
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Table 5: The Effect on Accidents from Ending the Camera Program:
Non-angle Subgroup Analysis

(1) (2)

Dependent Variable: Houston Houston-Dallas

Head On .152 -.575

(.638) (1.152)

[0.809] [0.740]

Single Vehicle -.007 -.121

(.208) (.232)

[0.974] [0.612]

Turning -.139 -.2

(.16) (.155)

[0.446] [0.248]

Rear End -.268 -.289

(.123) (.159)

[0.042] [0.117]

Other .265 -.522

(.208) (.456)

[0.236] [0.336]

Treatment Intersections 32 28

Control Intersections 47 24

Our main model estimates pool together all non-angle accidents. Table 4 lists all of the
non-angle accident classifications. This table breaks the non-angle accident group into five
subgroups we label as: Head On, Single Vehicle, Turning, Rear End, and Other. The
table shows coefficient estimates (and standard errors) from estimating our difference-in-
differences model using the Houston and Houston-Dallas samples, while limiting the depen-
dent variable to each of the accident subgroups. Standard errors are robust to heteroskedas-
ticity and clustered by intersection. The table also displays probability values (in brackets)
from a permutation test for the null hypothesis that each coefficient is equal to zero. Source:
Texas Department of Transportation.
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Table 6: The Effect on Accidents from Ending the Camera Program:
Time of Day and Day of Week

Houston Sample

(1) (2) (3) (4)

All Day Night Rush Hour

9am-4pm 4pm-7am 7-9am,4-7pm

Panel A: Angle

All 0.272 0.359 0.060

(0.162) (0.150) (0.207)

[0.097] [0.029] [0.785]

Weekday 0.277 0.234 0.385 0.157

(0.138) (0.171) (0.173) (0.226)

[0.058] [0.187] [0.036] [0.516]

Weekend 0.215 0.351 0.311 -0.193

(0.190) (0.270) (0.228) (0.314)

[0.277] [0.198] [0.212] [0.524]

Panel B: Non-Angle

All -0.300 -0.175 -0.081

(0.130) (0.139) (0.140)

[0.030] [0.219] [0.576]

Weekday -0.168 -0.288 -0.235 0.029

(0.108) (0.148) (0.150) (0.160)

[0.129] [0.062] [0.135] [0.859]

Weekend -0.252 -0.347 -0.089 -0.468

(0.144) (0.171) (0.201) (0.230)

[0.084] [0.048] [0.662] [0.054]

Treated 32 32 32 32

Control 47 47 47 47

The table shows estimates from our main model using the Houston sample on the subset
of accidents occurring on all days, weekdays, and weekends, as well as, the subset of
accidents occurring during all hours, the daytime (9am-4pm), the nighttime (4pm-7am),
and rush hour (7-9am and 4-7pm). The all days by all hours estimates (omitted) are
equivalent to our baseline estimates (Table 3 in the paper). Standard errors are robust to
heteroskedasticity and clustered by intersection. The table also displays probability values
(in brackets) from a permutation test for the null hypothesis that each coefficient is equal
to zero. Source: Texas Department of Transportation.54



Table 7: The Effect on Accidents from Ending the Camera Program:
Time of Day and Day of Week

Houston-Dallas Sample

(1) (2) (3) (4)

All Day Night Rush Hour

9am-4pm 4pm-7am 7-9am,4-7pm

Panel A: Angle

All 0.048 0.145 -0.233

(0.206) (0.197) (0.282)

[0.825] [0.474] [0.369]

Weekday -0.109 -0.155 0.203 -0.485

(0.151) (0.166) (0.205) (0.306)

[0.463] [0.414] [0.330] [0.064]

Weekend 0.249 0.591 -0.138 0.288

(0.302) (0.571) (0.326) (0.403)

[0.417] [0.235] [0.662] [0.508]

Panel B: Non-Angle

All -0.256 -0.320 -0.336

(0.161) (0.167) (0.193)

[0.164] [0.071] [0.101]

Weekday -0.395 -0.255 -0.541 -0.415

(0.146) (0.205) (0.185) (0.178)

[0.018] [0.272] [0.009] [0.034]

Weekend -0.106 -0.257 -0.013 0.004

(0.214) (0.246) (0.266) (0.399)

[0.639] [0.328] [0.961] [0.999]

Treated 28 28 28 28

Control 24 24 24 24

The table shows estimates from our main model using the Houston-Dallas sample on the
subset of accidents occurring on all days, weekdays, and weekends, as well as, the subset
of accidents occurring during all hours, the daytime (9am-4pm), the nighttime (4pm-7am),
and rush hour (7-9am and 4-7pm). The all days by all hours estimates (omitted) are
equivalent to our baseline estimates (Table 3 in the paper). Standard errors are robust to
heteroskedasticity and clustered by intersection. The table also displays probability values
(in brackets) from a permutation test for the null hypothesis that each coefficient is equal
to zero. Source: Texas Department of Transportation.55



Table 8: The Effect on Average Daily Traffic from Ending the
Camera Program

(1) (2)

Houston Sample Houston-Dallas Sample

Panel A: OLS

After Removal * Treated 2,308 7,270

(10,128) (11,604)

[0.762] [0.435]

Percent Change 6 18

Panel B: OLS, IPS Weighted 

After Removal * Treated 4,718 2,970

(10,984) (12,095)

[0.692] [0.775]

Percent Change 12 7

Treatment 25 22

Control 10 19

This table shows the coefficient of interest from estimating our difference-in-differences
model using OLS on the (2008-2014) Houston and Houston-Dallas samples. The dependent
variable is the average daily traffic (ADT) at each intersection. Intersection ADT values
are not available for each year, nor for every intersection. The intersections included in the
models have one observation before the program (measured between 2008 and 2010), and
one observation after the program (measured between 2011 and 2014). The intersections
included in the analysis are a subset of those intersections in our complete Houston and
Houston-Dallas samples. Panel B uses inverse propensity score weighting. Standard errors
are robust to heteroskedasticity and clustered by intersection. The table also displays
probability values (in brackets) from a permutation test for the null hypothesis that each
coefficient is equal to zero. Sources: City of Houston, North Central Texas Council of
Governments, Texas Department of Transportation.
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Table 9: Red Light Camera Program Robustness Specifications:
Turning Cameras On, Pre-program Sample,

Different Propensity Score Trimming

(1) (2) (3) (4)

Dependent Variable: Angle Non-angle Total Injury

Panel A: Entry Houston Sample

After Removal * Treated -.61 -.273 -.392 -.335

(.132) (.094) (.082) (.159)

[0.000] [0.010] [0.000] [0.060]

Equality of Angle and Non-angle, p-value 0.030 [0.049]

Treatment Intersections 32 32 32 32

Control Intersections 47 47 47 47

Panel B: Entry - 2003-5 Sample

After Removal * Treated -.111 -.09 -.087 -0.298

(.126) (.119) (.091) (.156)

[0.381] [0.472] [0.346] [0.066]

Equality of Angle and Non-angle, p-value 0.902 [0.919]

Treatment Intersections 25 25 25 25

Control Intersections 40 40 40 40

Panel C: Removal - 2003-5 Sample

After Removal * Treated .099 -.093 -.028 .072

(.136) (.118) (.108) (.186)

[0.457] [0.450] [0.792] [0.691]

Equality of Angle and Non-angle, p-value 0.137 [0.268]

Treatment Intersections 25 25 25 25

Control Intersections 40 40 40 40

Panel D: Common Support

After Removal * Treated -.007 -0.153 -.096 -0.372

(.09) (.078) (.075) (.126)

[0.947] [0.082] [0.241] [0.017]

Equality of Angle and Non-angle, p-value 0.001 [0.288]

Treatment Intersections 57 57 57 57

Control Intersections 390 390 390 390

The table shows four robustness specifications. The estimates in this table should be com-
pared to our main Houston referendum-based removal estimates from the manuscript: Ta-
ble 3 panel A, and manuscript Table 4 panel A column (1). Panel A of this table estimates
the effect of turning on the cameras using our main Houston sample. Panel B estimates
the effect of turning on the cameras using a propensity score trimmed sample based on
intersection characteristics from 2003-5. Panel C uses the same sample as Panel B, except
estimates the effect of removal. Panel D shows estimation results from a Houston sample
created via an alternative propensity score trimming rule. Standard errors (in parenthe-
ses) are robust to heteroskedasticity and clustered by intersection. The table also displays
probability values (in brackets) from a permutation test for the null hypothesis that each
coefficient is equal to zero. In each panel we test the null hypothesis that the angle and
non-angle coefficients are equal using the clustered standard errors and from a permutation
test (in brackets). Source: Texas Department of Transportation.
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Table 10: Sample Accident Intersection Characteristics
Frontage Road Sample

(1) (2) (3) (4) (5) (6)

Treatment Control Difference/SD Treatment Control Difference/SD

Accident Characteristics 
Total 22.46 5.52 1.68 21.48 17.49 0.40

Angle 8.46 2.09 1.35 7.60 6.06 0.33

Non-angle 13.99 3.43 1.64 13.88 11.43 0.38

Injury 2.04 0.64 0.95 1.83 1.57 0.18

Red-light Running 6.99 1.59 1.31 6.12 4.82 0.31

Engineering Characteristics
Lanes 7.35 6.46 0.49 7.05 7.40 -0.19

Speed Limit 41.31 38.59 0.58 41.08 39.75 0.28

Divided 1.00 1.00 . 1.00 1.00 .

Number of Intersections 54 440 40 50

All Intersections All Intersections, Trimmed

Panel A: Houston Control (2008-2010)

The table shows the means for accident and intersection characteristics for the frontage road
sample camera and non-camera intersections before and after propensity score trimming.
The means are taken over the years 2008-2010. Data sources: City of Houston, Google
Maps, North Central Texas Council of Governments, Texas Department of Transportation.
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Table 11: Welfare Model Statistics for Baseline
(Conservative) Calculation

Statistic Value

Annual cost per camera [r] 85,006
Population age 18-65 [n] 1,331,812
Average wage [w] 28.30
Wage multiplier [σ] 0.50
Minutes delayed per capita per year [m] 0.0082
Accident injury risk per capita per year, multiplied by 100,000  [φ]:
     Fatality 0.15
     Incapacitating 0.64
     Non-incapacitating 5.33
     Possible 20.69
     No Injury 28.76
Accident injury costs (1,000's $) per person [kj]:
     Fatality 8,860
     Incapacitating 1,001
     Non-incapacitating 276
     Possible 128
     No Injury 42
Accident elasticity estimates [εj] (point estimate, 90% CI):
     Incapacitating and Fatality 0.41  [-0.16, .98]
     Non-incapacitating 0.12  [-0.26, 0.49]
     Possible 0.01  [-0.21, 0.24]
     No Injury -0.01  [-0.19, 0.17]
Yearly expected accident cost [C] 73.01

The statistics in the table can be used to evaluate the social welfare of the camera program
using equation 6 in the paper. The table shows the statistics used in our conservative
baseline calculation. All dollar estimates in the table are in 2010 $. We multiply our
injury outcome difference-in-difference coefficient estimates by -1 to make the elasticity
estimates more intuitive, since we estimate the response to a reduction in cameras (i.e., the
end of the program). Sources: American Community Survey, Bureau of Labor Statistics,
National Highway Traffic Safety Administration, Texas Comptroller, Texas Department of
Administration, Texas Transportation Institute, US Department of Transportation.
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Table 12: Welfare Model Sensitivity

I. Cost-weighted elasticity 

estimates  [LHS of Eq. 6]

Value Used Point Estimate [90% C.I.] Baseline
(a) (b) (c)

Baseline Model 0.139 [-0.202, 0.479] 0.163 0.268 0.247 0.435

Wage multiplier [σ]

     Baseline 0.5

     High Estimate (50% Increase) 0.75 0.139 [-0.202, 0.479] 0.215 0.372 0.341 0.624

     Low Estimate (50% Decrease) 0.25 0.139 [-0.202, 0.479] 0.110 0.163 0.152 0.247

Minutes delayed per capita per year [m]

     (i) Average Wait Time
     In minutes, per cycle of the signal interchange

          Baseline 1.26

          High Estimate (+1 S.D.) 1.45 0.139 [-0.202, 0.479] 0.178 0.299 0.275 0.492

          Low Estimate (- 1 S.D.) 1.07 0.139 [-0.202, 0.479] 0.147 0.236 0.219 0.379

     (ii) Δ Number of Cars Waiting (Per Year)

          Baseline 573,507

          High Estimate (+1 S.D.) 993,953 0.139 [-0.202, 0.479] 0.240 0.422 0.385 0.713

          Low Estimate (- 1 S.D.) 226,560 0.139 [-0.202, 0.479] 0.099 0.141 0.132 0.207

Accident injury risk per capita per year, 

multiplied by 100,000  [φ]: 

Baseline Values: Fatality: 0.15, Incapacitating: 0.64,                                      

Non-incapacitating: 5.33, Possible: 20.69, No Injury: 28.76

     High Estimate (+1 S.D.) 0.143 [-0.201, 0.487] 0.156 0.257 0.237 0.419

     Low Estimate (- 1 S.D.) 0.135 [-0.202, 0.471] 0.169 0.278 0.257 0.453

Accident injury costs (1,000's $) per person [kj]: 

Baseline Values (KABCO): Fatality: 8,860, Incapacitating: 1,001,                                           

Non-incapacitating: 276, Possible: 128, No Injury: 42

     High Estimate (KABCO + (KABCO - MAIS)) 0.137 [-0.201, 0.474] 0.110 0.182 0.167 0.296

     Low Estimate  (MAIS) 0.145 [-0.203, 0.493] 0.309 0.508 0.468 0.826

II. Program Cost to Accident Cost Ratios                             

[RHS of Eq. 6]

More Comprehensive Estimates

Ceteris Paribus Changes to Individual Model Values

The first row of the table repeats the cost-weighted elasticity estimates and program cost to accident cost ratios which are derived
using our baseline values (manuscript Table 6). The more comprehensive estimates (columns a-c) are the same as those in manuscript
Table 6. In the rest of the table, we vary the parameter values (one at a time) and report the new cost-weighted elasticity estimates
and program cost to accident cost ratios. In the φ panel we change each of the baseline injury risks by one standard deviation. Baseline
accident injury costs are from the KABCO injury classification scale. MAIS, a widely reported second injury classification scale, leads
to dollar injury estimates that are about 50% lower than the KABCO estimates. Sources: American Community Survey, Bureau of
Labor Statistics, National Highway Traffic Safety Administration, Texas Comptroller, Texas Department of Administration, Texas
Transportation Institute, US Department of Transportation.
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