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A B S T R A C T

The growth and distribution of plant species in water limited environments is often limited by the atmospheric
evaporative demands which is measured in terms of potential evapotranspiration (PET). While PET estimated by
different methods have been widely used to assess vegetation response to climate change, species distribution
models offer unique opportunity to compare their efficiency in predicting habitat suitability of plant species. In
this study, we perform the first multi-species comparison of two widely used metrics of PET i.e., Penman-
Monteith and Thornthwaite, and show how they result in similar or different on projected distribution of water
limited species and potential consequences on their conservation strategies across North Central U.S. To build
species distribution models of eight species, we used two sets of environmental predictors which were identical
except for the metric of PET (Penman-Monteith vs Thornthwaite) and projected habitat suitability for historical
(2005) and future (2099) periods. We found an excellent model performance with no difference under two sets
of predictors (AUC = ∼0.93). The relative influence of Thornthwaite PET on habitat prediction was higher than
Penman PET for most of the species. We observed that the area of the projected suitable habitat was always
higher under Thornthwaite set of predictors than Penman set of predictors (ranges from 25 % to 941 %), with the
exception of Pinus contorta for which the reverse was true. In most cases, these differences were non-trivial,
indicating that the choice of the PET metric, although both of them are commonly used, can have dramatic
consequences on the conservation management decisions. Therefore, the conservation management decisions
can be markedly different depending on the choice of the PET metric used for species distribution modeling of
water limited species.

1. Introduction

Species distribution models (SDMs) are widely used tools for pro-
jecting distribution of species under climate change and for estimating
the relative impact of various predictors of distribution (Chang et al.,
2014; Guisan and Thuiller, 2005; Mainali et al., 2015; Piekielek et al.,
2015). Hence, SDMs may offer an opportunity to compare the relative
importance of two different measures of the same underlying phe-
nomenon. To date, most SDM applications have used one formulation of
potential evapotranspiration (PET), i.e., Thornthwaite, for projecting
habitat suitability of species under the climate change (Chang et al.,
2014; Dilts et al., 2015). This widely used formulation of PET is based

only on temperature. A new formulation of PET called Penman-Mon-
teith includes additional metrics for estimating PET. As PET estimated
by these two metrics differ in a given space, it is reasonable to expect
that the projected suitable habitat also differs depending on the metric
of PET. In this study, we explore how two common methods of PET
estimation can have different impacts on habitat projections and po-
tential consequences on conservation efforts of water limited species
across north central U.S.

Atmospheric evaporative demand often plays the dominant role in
structuring the vegetation communities in water limited environment
(Currie, 1991; Li et al., 2013). This demand, called PET, has been es-
timated with several methods such as Penman-Monteith (Monteith,
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1965; Penman, 1948), Thornthwaite (1948); Priestley and Taylor
(1972), and Turc (1961). As different methods result into different PET
values, the choice of PET in modeling approaches may result in dif-
ferent ecological interpretations. However, the common approaches of
estimating PET include Penman-Monteith method (hereafter Penman)
and Thornthwaite method (hereafter, Thornthwaite). Because
Thornthwaite PET can be computed with temperature alone, it has had
wider applications. Alternatively, Penman method requires several
additional variables, viz solar radiation, relative humidity, vapor
pressure deficit, and wind speed. Although it provides a more sophis-
ticated model of PET, a reliable estimation of PET with Penman has
largely been a formidable challenge in past, especially at large spatial
extents, primarily because of lack of available metrics at such spatial
extents. The latest generation of GCMs, however, provide key elements
required to estimate Penman PET, i.e. solar radiation, vapor pressure
deficit, and wind speed (Abatzoglou and Brown, 2012; Stocker et al.,
2013; Taylor et al., 2012), making it easier than before to compute the
PET.

Comparison of the two metrics of PET has shown considerable
variation in space. Some have found higher Penman PET compared to
Thornthwaite PET and others found the opposite (Fisher et al., 2011;
Hobbins et al., 2008; Lu et al., 2005; Van Der Schrier et al., 2011). A
global comparison found that PET estimates by Thornthwaite are
higher than Penman in the tropics and lower in the subtropics (Van Der
Schrier et al., 2011). Lower PET values derived from Thornthwaite
types method compared to Penman method have been reported for the
USA (Fisher et al., 2011; Vörösmarty et al., 1998) and Sub-Saharan
Africa (Hulme et al., 1996). In a recent study, Adhikari et al. (2019)
estimated lower Thornthwaite PET than Penman PET along a strong
water balance ecotone across north central U.S. Compared with
Thornthwaite, Penman formulation of PET validated reasonably well
against field data in regional and global scale studies (Benli et al., 2010;
Chen et al., 2005; López-Urrea et al., 2006; Tukimat et al., 2012; Weiß
and Menzel, 2008). The greater reliability of Penman PET values is
thought to be due to a more sophisticated model of PET with several
variables, which is expected to estimate the actual physical process
more reliably than a simpler Thornthwaite model of PET does (Lu et al.,
2005). Because of their wider use and noticeable differences, it is ne-
cessary to compare the effects of PET derived from these two methods
for ecological and management applications.

Because the two methods are substantially different in estimated
PET, various indices derived from these PET (e.g., variation in aridity
index, Palmer’s drought index, and moisture index) should also vary
considerably between Penman and Thornthwaite (Dewes et al., 2017).

Consequently, this Penman-Thornthwaite discrepancy can have adverse
impacts on strategies, plans, and processes for climate change adapta-
tion (McAfee, 2013). Therefore, the choice of PET must be guided by
objective evaluation of the alternate methods that provide an estimate
of PET. For instance, future studies could project the less extreme loss of
habitat suitability of water-limited species under Thornthwaite PET due
to less atmospheric evaporative demands under Thornthwaite PET.

Past studies have demonstrated considerable difference in habitat
predictions resulting from different algorithms, spatial resolutions,
global climate models, predictors, sample sizes, and climate change
scenarios (Acevedo et al., 2017; Araújo and Guisan, 2006; Bucklin et al.,
2015; Henderson et al., 2014; Hernandez et al., 2006; Mainali et al.,
2015; Pearson et al., 2006; Syphard and Franklin, 2009, 2010; Thuiller
et al., 2004). However, model performance and projections of habitat
suitability of species mostly influenced by moisture stress under
Penman vs. Thornthwaite PET have not been evaluated yet. Particu-
larly, the choice of PET estimated by an appropriate method can be of
highly impactful in projecting suitable habitat in water-limited en-
vironment. Therefore, the choice of PET in SDM of water-limited spe-
cies can influence policy-guiding efforts for conservation and manage-
ment of species under current and future climates. In this study, we
compare the impact of Penman and Thornthwaite PET in projecting the
habitat suitability of eight dominant tree species in water-limited forest
ecosystems of north central U.S. Specifically; we aim to answer the
following scientific questions in this study:

1 Does the performance of models built under the Penman PET set of
predictors better explain distributions of water-limited tree species
than those built under Thornthwaite PET set (the two sets keep
identical set of predictors except for PET)?

2 To what extent does the weighting of environmental predictors
differ in models using the Penman vs. Thornthwaite formulation of
PET?

3 How does projected area of suitable habitat for water limited species
under climate change differ under the two metrics of PET?

2. Methods

2.1. Study area and species

North central U.S. is our study region that spans from Washington at
north-west to Michigan at north-east and from Nevada at south-west to
Tennessee at south-east; the study region is 3,495,769 km2 of the con-
tiguous U.S. and it includes over twenty-five states (Fig. 1). The region

Fig. 1. Map showing study area (North Central U.S.) and Forest Inventory Analysis (FIA) records of species presence. Red box represents the North Climate Science
and Adaptation Center domain. Color of species presence records in the map corresponds the color assigned for the texts of species name. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article).
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is characterized by strong environmental gradients from drier west to
high humid east due to gradients in temperature and precipitation. The
region comprises eight major forest communities with the following
dominant tree species: Doulas fir (Psuedotsuga menziessi), Ponderosa
pine (Pinus ponderosa), Aspen (Populus sp.), Black spruce (Picea sp.),
Hemlock (Tsuga sp.), Whitebark pine (Pinus albicaulis), and Red maple
(Acer rubrum). Many forest ecosystems of this region are under various
degrees of exposure to the climate change. To study the difference in
influence of Penman PET and Thornthwaite PET on habitat modeling,
we selected eight dominant tree species, viz., Juniperus scopulorum,
Pinus contorta, Pinus flexilis, Pinus ponderosa, Pinus resinosa, Pinus albi-
caulis, Pinus pungens and Psuedotsuga menziessi, that (1) exist in rela-
tively dry region of north central U.S., and (2) have their growth and
distribution strongly limited by water availability.

2.2. Distributional data

We derived presence and absence records of each species from the
U.S. FIA program database (http://apps.fs.fed.us/fiadb-downloads/
datamart.html). The FIA has delineated the forest of our entire study
area into a grid of hexagonal cells that are 2500 ha (= 25 km2) each. In
each grid cell is one long-term sampling plot composed of four adjacent
circles of 58.9 ft (∼18m) radius each. A census on the trees is con-
ducted inside these circles. This systematic and through sampling across
the U.S. provides a high-quality data about tree distribution. The ab-
sences were drawn from the grid cells that did not contain the species in
FIA data. To reduce the chances of false absences, we added a buffer of
5 km around each presence point and excluded any absences falling
within this buffer. Our approach of (a) identifying areas of absences
with thorough sampling and (b) excluding absent records within 5 km
radius of a presence point is expected to provide high quality data for
species distribution models because the absent records are more likely
to represent an absent state compared to a typical SDM where pseu-
doabsences are drawn. For a regression model like Random Forest we
used, two categories of the data represent contrasting states of presence
and absence although modelers conveniently use the term “pseu-
doabsences” for the background data. This collectively indicates that
our models are more informed as they operate on environmental space
of presences vs true absences.

The delineation of geographic background for obtaining absences
can dramatically impact the model performance and estimated habitat
suitability. Specifically, a large background can artificially inflate
model evaluation score such as AUC and simultaneously give a model
that does a poor job of discriminating sites for suitability in the core
region of distribution (Acevedo 2012). Therefore, we adopted local
convex hull approach to determine the geographic background where a
model is trained. A local convex hull of presences eliminates larger
areas within minimum convex polygon without occurrence records,
thereby shrinking the background. For each species, we tried a range of
local convex hull with different alpha parameters and selected the one
that was substantially smaller than minimum convex polygon but in-
cluded enough areas to contrast grid cells with presences in environ-
mental space. Because we use a regression model (Thuiller et al., 2016)
that builds SDM by contrasting environmental space of presences with
that of absences (when the absences do not fall in the grid cells with
presences), we included an equal number of presence and absence re-
cords to the model.

2.3. Historic climate data

Environmental predictors including monthly average minimum and
maximum temperature, precipitation, PET, and relative humidity, solar
radiation, and wind speed for the entire United States at 4 km spatial
resolution were derived from Multivariate Adaptive Constructive
Analogs (MACA) products. Available predictors in MACA data have
been derived by a statistical downscaling method and calibrated with

observed meteorological dataset (i.e. training dataset) from several
weather stations to make compatible spatial patterns after correcting
historical biases. These predictors are available through webpage of
University of Idaho (https://climate.northwestknowledge.net/MACA/)
(Abatzoglou and Brown, 2012). MACA data incorporates daily data
from general circulation models and validated over western United
States by global reanalysis data. The advantage of MACA data over
other downscaled data includes the following: 1) MACA avoids inter-
polation based methods with the use of analogs, and 2) MACA’s mul-
tivariate approach to improve the physical relationships among the
variables (Abatzoglou and Brown, 2012). The 4 km spatial resolution
data was again statistically downscaled to 1 km spatial resolution.
Available PET estimates in MACA product was computed with Penman-
Monteith method using solar radiation, humidity, and wind velocity
data. A subset of each predictor was created with a shape file of our
study area (Fig. 1). Monthly average Thornthwaite PET was estimated
using monthly average temperature from MACA products following a
method described in Chang et al. (2014). All the historic climate data
were summarized as monthly average for the period of 1980-2006.

2.4. Non climate predictors

In addition to the climatic variables, we used aridity index, avail-
able water holding capacity (AWHC), and % sand (Miller and White
1998) as non climatic predictors to project habitat suitability of species.

2.5. Collinearity analysis

Eighty-seven predictors were initially considered for each species
for constructing SDMs. For a given species, the only predictor that was
different between Penman and Thornthwaite set was the measure of
PET: Penman PET vs Thornthwaite PET before the collinearity analysis.
Highly collinear predictors do not uniquely contribute to the model but
such a collinearity among predictors can be problematic when assessing
significance of individual parameters. Therefore, we eliminated highly
correlated predictors of each species from the set using Software for
Assisted Habitat Modeling (SAHM) embedded in the VisTrails scientific
workflow management system (Morisette et al., 2013). Specifically, for
each species, we eliminated predictors from the set such that the re-
maining covariates have a Pearson’s correlation coefficient of <0.70.
Since this was performed for each species separately, the final set of
predictors for each species was different. However, different species do
not necessarily have the same collinearity between two predictors. This
set of predictors was paired with (1) Penman PET to create one set of
predictors (hereafter, Penman set), and with (2) Thornthwaite PET to
create another set of predictors (hereafter, Thornthwaite set). The dif-
ferences in the habitat suitability estimates with the use of Penman set
and Thornthwaite set would be the unique effect of Penman PET and
Thornthwaite PET when several other predictors are included as pre-
dictors.

2.6. GCM and future climate data

To understand impacts of warming under climate change from 2071
to 2099, we adopted two climate change scenarios with the same set of
climate variables projected by general circulation model (GCM).
Selected two climate change scenarios include high and low re-
presentative concentrative pathway (RCP8.5 and RCP4.5) from 2010 to
2099. The RCP 8.5 scenario represents the amount of anthropogenic
forcing of 8.5W/m2 consistent with increases in atmospheric green-
house gases at current rates whereas RCP 4.5 represents anthropogenic
forcing of 4.5W/m2, a significant reduction in global greenhouse
emissions (Moss et al. 2010). For each of these two emission scenarios,
the future climates were created by averaging their prediction for the
period of 2071–2099 from a warm and dry CCSM4 GCM. Both historical
and future environmental variables are similar, but future ones are
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projected under climate change scenarios. The CCSM4 GCM moderately
captures overall spread of future projections of temperature and pre-
cipitation changes across the study area (Adhikari and Hansen, 2019;
Adhikari et al., 2019).

2.7. Species distribution models

To model species distribution, we used Random Forest (RF) im-
plemented in Biomod2 software programmed in R environment
(Thuiller et al., 2016) as it is one of the most efficient modeling
methods used in species distribution modeling (Magness et al., 2008;
Mainali et al., 2015). Often single decision tree (or, classification and
regression tree, CART) may end up with high variance and high biases.
Contrary to CART, the advance extension of RF builds multiple decision
trees using subsamples of available input variables; this makes the
model more stable with better generalization and higher predictive
power of independent data (Breiman, 2001). RF has been found in
omitting noises in the input variables to improve accuracy and control
over-fitting (Matsuki et al., 2016).

2.8. Model development and evaluation

Since no independent dataset was available, the presence/absence
data of each species was randomly split in a ratio that 80 % data have
been used for model development/calibration and 20 % data have been
used for model evaluation with 5-fold cross-validation (Dormann et al.,
2012). The calibration and evaluation selection was run for 100 times
before analysis the result. The accuracy of the model was assessed from
the data generated by the split-sample using two metrics: area under the
curve (AUC) of receiver operator characteristic (ROC) curves and true
skill statistic (TSS). These two metrics consider different weights asso-
ciated with various types of prediction errors of omission, commission
or confusion. Widely reported AUC metric is both threshold and pre-
valence independent model evaluation metric (Fielding and Bell, 1997).
Models with the AUC value <0.70 is considered as poor, 0.7-0.9 as
moderate and > 0.9 a good model. TSS is threshold dependent metrics
for model evaluation which ranged between -1 (no agreement) and
1(total agreement) (Landis and Koch, 1977). We interpreted TSS sta-
tistics as <0.4 were poor, 0.4-0.8 useful, and >0.8 good to excellent. R
script of the analysis is included in supplement.

2.9. Analysis

We compared AUC and TSS scores secured by the best models cre-
ated from Penman set vs Thornthwaite set. The study also compared the
relative influence of the predictors on habitat predictions of each spe-
cies under two sets of predictors.

We categorized probability or habitat suitability into two categories
as below: suitable (greater than 0.50) and unsuitable (less than 0.50).
We then assessed the ratio of the suitable area predicted by Penman set
to the Thornthwaite set.

3. Results

Each species ended up with different numbers of predictors for
model trainings after removing autocorrelated predictors (Fig. 2). In-
terestingly, the final set of predictors of a species were very similar in
the two sets of PET. Available water holding capacity and soil texture
(percent sand) were common predictors among all species.

Our results showed no difference in performance of the models
constructed with the two sets of predictors (Table 1). Overall, the
models under both sets (Penman and Thornthwaite) of predictors se-
cure good to excellent score in prediction, with the AUC and TSS values
ranging from 0.93 to 0.98 and 0.71 to 0.85 respectively (except that

AUC was 0.84-0.86; TSS was 0.58-0.61under both sets of predictors for
P. pungens). AUC is a popular metric of model evaluation when a model
needs to be evaluated for both false positive and false negative (a si-
tuation that is not typical of traditional ecological analysis but defi-
nitely a concern in SDM). This metric is highly intuitive to modelers.
Therefore it has a wider application in SDM work. However, studies
have shown many times that AUC can be unreliable in certain condi-
tions (e.g., Lobo et al., 2008; Mainali et al., 2015). To minimize this
challenge, we employed alpha hull of presences for selecting absences.
Also, the design of the study (true absences) would mean that AUC
should reflect true underlying model performance, which is in contrast
to a typical SDM where the background points are used as pseu-
doabsences. This made us confident that AUC is the right choice of
model evaluation and we stuck to it because scientific community is
more comfortable to this metric. To add to our analysis, we also com-
puted TSS score. These two model evaluation scores are strongly cor-
related with R2 = 0.96. This indicates that the traditionally reported
problems with AUC are virtually absent in our study. Therefore, we
reported the model output of habitat suitability based on widely used
AUC.

Among the environmental predictors, precipitation had highest in-
fluence on habitat distribution of all species except P. resinosa under
Penman PET set (Fig. 2). However, Thornthwaite PET showed highest
influence on predicting habitat of all species except P. resinosa under
Thornthwaite set. Therefore, as the most dominant pattern in influen-
tial predictors, Thornthwaite set identifies Thornthwaite PET itself as
the most influential predictor whereas Penman set identifies predictors
other than the measure of PET as the most influential predictors. Under
both sets of predictors, soil texture (% sand) was the most influential
factor for the distribution of P. resinosa (Fig. 2). Available soil water
holding capacity showed some degree of influence on the habitat dis-
tribution of P. contorta, P. flexilis, P. resinosa and P. menziesii (Fig. 2).
Under both set of predictors, solar radiation from March to July showed
some influence over the distribution of J. scopulorum, and P. menziesii.
May to September precipitation showed considerable impacts on dis-
tribution of J. scopulorum, P. flexilis, P. ponderosa, P. albicaulis and P.
menziesii under both sets of predictors (Fig. 2). January precipitation
showed the greatest impacts on distribution of P. pungens under both
PET. Interestingly, the influence of precipitation on habitat prediction
of all species was lower under Thornthwaite set than under Penman set;
it is easy to see that this difference is offset by the difference in influ-
ence of the metric of PET itself.

A total of 48 separate maps of habitat suitability (Fig. 3) were
generated for 8 species * 3 climate scenarios (current, RCP4.5, RCP8.5)
* 2 sets of predictors (Penman and Thornthwaite). The extent of sui-
table habitat under current climate was predicted higher by
Thornthwaite set than Penman set for five species, viz. J. scopulorum, P.
ponderosa, P. resinosa, P. menziesii, and P. pungens (Figs. 3–5, Table 2).
All of these species except P. resinosa showed a marked decline in sui-
table habitat in future, with the difference between Penman and
Thornthwaite remaining similar as under current climate. For two
species (P. albicaulis and P. flexilus), predicted current habitat was si-
milar under both Penman and Thornthwaite but they diverge in future,
showing similar effect as in the other species (i.e., Thornthwaite pre-
dicting larger extent than Penman). The only species that exhibited
larger extent predicted by Penman than Thornthwaite under any cli-
mate is P. contorta. The percentage change in habitat of all species in
future compared to current prediction are listed in Table 3. Overall,
Thornthwaite set predicted larger extent of suitable habitat than
Penman set did for all scenarios (current, RCP 4.5, RCP 8.5) of all
species with two exceptions: (1) the prediction was similar for P. albi-
caulis and P. flexilis under current climate, and (2) the predictions are in
reverse direction (Penman>Thornthwaite) for P. contorta under all
climate (Fig. 5).
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4. Discussion

Various metrics of potential evapotranspiration (PET) have been
used in studies related to ecology, conservation, biogeography, climate
change, etc where the choice of PET metric is apparently driven more
by convenience and less by justification. Given that each metric of PET
is specific in its parameters and model structure, the measure of PET is
metric specific. Though a thorough comparison of different metrics on
species distribution has never been tested, projected species distribu-
tions have been used in various kinds of management decisions and
research questions. Here we perform the first multi-species comparison
of two widely used measures of PET and show how they result in similar
or different projection of species distribution.

Additional novelties of our study includes the following: (1) This is
the first ever application of Penman-Monteith estimate of PET in species
distribution modeling; (2) We downscaled MACA variables to a spatial
resolution that is ecologically relevant to tree species distribution.
MACA product is special in that it offers many non-standard climatic
variables for future that are not available from other sources; and (3)
We applied our model across a continental water-balance ecotone
where the spatial pattern of water limitation emphasizes the need to
represent PET adequately in modeling efforts. Collectively, our study
makes a case for future modeling efforts of tree species distributions

using a metric of PET that is more appropriate for the studied system
and geographical area.

In this study, we compared influenced of PET estimated by two
methods on habitat suitability of eight dominant tree species of north
central US region, which is mostly driven by moisture stress. For each
species, we predicted the habitat suitability with two sets of identical
environmental predictors under Penman and Thornthwaite PET where
the only difference is in the metric of PET (different species can have
different set of predictors). This design of keeping all the predictors
constant and varying only one predictor of interest (PET) allows us to
directly and quantitatively compare the relative importance of two
measures of PET (Penman vs Thornthwaite). Because the metric of PET
is one of the most important predictors of the species distribution in
moisture limited environment, the estimated importance of the PET as
predictor is interpretable as a measure of variable importance that is
unique to PET when all the other predictors (correlated and un-
correlated to PET) are also included in the model. Because these two
metrics are commonly used estimates of PET, the discrepancy between
the two models in projecting species distribution will have important
consequences in conservation and restoration planning. Their differ-
ence in relative influence indicates the unique contribution of the me-
tric in explaining species distribution. We show that the distribution of
these species is projected substantially differently under Penman PET
vs. Thornthwaite PET metrics. However, the predictive performance of
models built with two sets of predictors was similar within a species.

The accuracy of current modeling method is high, showing good to
excellent model performance under AUC model evaluation metrics, and
the two sets of predictors do not differ in model performance. However,
the observed dissimilarities in species distribution projections could be
due to the impacts of limiting factors on growth and distribution of
plant species which are captured differently by the regression models
built based on Penman set of predictors vs Thornthwaite set of pre-
dictors. (e.g. sandy soil explained higher variability in habitat projec-
tion of P. resinosa). The interpretation of high performance of the
models has some important caveats. First, the model performance me-
tric is relevant only to model training and testing areas. The region of
model projection can be much larger. Beyond the geographic space of
model construction, the evaluation metric is irrelevant, and models
with very high evaluation metric in the model construction range can

Fig. 2. Comparison of relative importance score of each of the predictors under Penman and Thornthwaite sets. Each panel shows one predictor (listed on x-axis). The
left cluster of points represent importance of the variable when it was included in Penman set and the right cluster in Thornthwaite set for eight species (in different
color). A line connecting same colored circles on the Penman and Thornthwaite set reflects how the variable contributed explanatory power in the two sets of
predictors. For example, a positive slope indicates that the variable has higher influence under Thornthwaite set than in Penman set, and vice versa. Because highly
correlated predictors were eliminated sequentially for each species separately, the final set of predictors to enter the model was unique for the species.

Table 1
Evaluation scores for each species under two set of predictors: Area under ROC
curve (AUC), and True skills statistics (TSS). Note: PenAUC and PenTSS re-
present AUC and TSS scores under Penman set of predictors. ThornAUC and
ThornTSS represent AUC and TSS scores under Thornthwaite set of predictors.

Species PenAUC PenTSS ThornAUC ThornTSS

J. scopulorum 0.93 0.72 0.93 0.72
P. contorta 0.98 0.85 0.97 0.85
P. flexilus 0.93 0.71 0.93 0.72
P. ponderosa 0.97 0.82 0.97 0.82
P. resinosa 0.97 0.84 0.97 0.84
P. menziesii 0.93 0.72 0.93 0.72
P. albicaulis 0.94 0.76 0.95 0.79
P. pungens 0.84 0.58 0.86 0.61
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yield an unrealistic model for projecting far from the training area
(Mainali et al., 2015). Second, a good fit of model with current dis-
tribution does not necessarily indicate the similar performance in the
future (Porfirio et al., 2014). The underlying statistical relationship
between environmental factors and suitable habitat of the species may
change over time. These two types of challenges collectively indicate
that the spatial (first challenge) and temporal (second one) stability of
the species distribution models may not be as good as we desire, and
unfortunately, our study can have both types of challenges.

AUC has been criticized as an unreliable metric of model evaluation

metric in SDM with valid reasons (Lobo et al., 2008; Mainali et al.,
2015). It is sensitive to geographic background (Lobo et al., 2008); it is
entirely possible to secure a very high AUC and yield a useless model
(Acevedo, 2017). Our study design is different from a traditional SDM
study and so does not suffer from the same problems reported else-
where for the following reasons. First, we do not use pseudoabsences;
we have real absences collected by a long-term systematic data col-
lection effort of large institutions that have well set standards. Second,
contrary to a standard SDM that uses a convex hull, we shrank the
background by using alpha hull. Third, our approach does a fair job in

Fig. 3. Probability distribution maps of all species under current and future climates (RCP4.5 and RCP8.5 scenarios for 2099) as predicted by two sets of predictors,
viz. Penman and Thornthwaite sets of variables. (Abbreviation, PEN: Penman; thorn: Thornthwaite; jusc: Juniperus scopulorum, pial: Pinus albicaulis, pico: Pinus
contorta, pifl: Pinus flexilis, pipo: Pinus ponderosa, pire: Pinus resinosa, pipu: Pinus pungens, psme: Pseudotsuga menzeisii).
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comparing the models because the Penman vs Thornthwaite set of
predictors were supplied with the same set of presence-absence data
including x-fold split of points into training and testing set. In such
situations, even when the absolute value of AUC is not reliable, the
relative difference is an indicator of model fit to data. Therefore, we
have confidence in our results based on models evaluated with AUC.

Using eight tree species of water limited environment, we have
demonstrated that uncertainties associated with methodological issues
of important variables can affect model outputs substantially. This is
not a situation of missing out an important predictor. Rather, this is an
issue of two different approaches of estimating an important predictor,
which is PET. A sub-optimal choice of the model for estimating PET

may lead into erroneous planning for conservation and management of
targeted species. Although, no past studies explicitly considered the
issues on variation in habitat prediction due to difference in PET from
two methods, our study suggests that the discrepancies in model out-
puts of different species have been associated with the sets of predictors
under Penman and Thornthwaite PET. Among eight species considered
for this study, the model showed that the predicted habitat suitability
was higher under Thornthwaite set for current and both climate change
scenarios than for Penman set for all species except P. contorta. Since
many past studies reported lower PET values estimated by
Thornthwaite method (Adhikari et al., 2019; Fisher et al., 2011; Hulme
et al., 1996), the habitat suitability of water limited species under the

Fig. 3. (continued)
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influence of Thornthwaite PET should be over predicted because of low
atmospheric evaporative demands under Thornthwaite method.

This study showed that difference in estimation method of the
identical predictors (here PET) can alter influence of other variables on
modeling outputs. In this study, the unique contribution of precipita-
tion in explaining species distribution is higher under Penman set for
most of the species. For example, under the Penman set, July pre-
cipitation was the most important predictor of the habitat of P. flexilis,
P. ponderosa, and J. scopulorum but this was replaced by July PET with
the Thornthwaite set. This may be due to the change in the extent of
collinearity between the predictors when multiple methods produce
different outputs for the same predictors. In addition, this variation is
contingent upon the species types, environmental conditions, and
geographical locations (Acevedo et al., 2012; Syphard and Franklin,
2009). The contribution of temperature on distribution is lower for all
species; given that these species grow in water limited environments, it
is not surprising to see a lesser role of temperature in determining
distribution. However, the impacts of other variables are similar under
both sets of predictors showing less importance on distribution of water
limited plants.

4.1. Management and conservation implications

The consideration of potential range of a species for conservation
and management depends upon the predictive ability of models for
habitat suitability and identification of appropriate environmental
predictors. Discrepancies in model predictions due to different sets of
environmental predictors can impair the conservation and resource
management planning. For example, it is important to be cautious
during formulation of management plans for P. resinosa as the model
predicted decreases in suitable habitat under Penman set and increases
under Thornthwaite set. This species can be categorized as highly
vulnerable when habitat is predicted under Penman PET set. Hence the
study suggests for a careful consideration of model outputs generated
by using appropriate predictors. As several other studies have shown
that Penman estimate of PET is more reliable than Thornthwaite
(López-Urrea et al., 2006; Weiß and Menzel, 2008; Benli et al., 2010),
these prior studies can be a guide for selecting appropriate set of pre-
dictors even for species for which the future predictions are markedly
different between Penman vs. Thornthwaite set.

Fig. 4. Area of species range of each species under current and future climates (in 2099) projected by RCP4.5 and RCP8.5 climate change scenarios. Each panel shows
comparison of suitable habitat area predicted by Penman and Thornthwaite sets of predictors.

A. Adhikari, et al. Ecological Modelling 414 (2019) 108836

8



5. Conclusion

Penman and Thornthwaite are commonly used measures of PET.
These two measures are substantially different in model structure and
complexity. Whereas Penman is considered to represent PET more ac-
curately than Thornthwaite, the latter has wider availability. In this
study, we performed a litmus test of how these two metrics of PET
perform in predicting species distribution of eight species from
moisture stress environment. For entire species range, Thornthwaite
predicted higher area than Penman in most of the cases (climatic sce-
narios of eight species), and the differences are non-trivial. Hence, it is
important to indicate that (1) the two metrics of PET are substantially
different in predicting species range or highly suitable habitat, and (2)
these differences are not uniform across species, i.e., one or the other
metric of PET can predict higher suitable area for different species.
Therefore, the conservation management decisions can be markedly
different depending on the metric of PET used for SDM. It is important
to emphasize that the ease of availability should not drive the use of
Thornthwaite PET. Neither should the model complexity of Penman
should make it more desirable. Whereas a more complex formulation of

Penman PET might be better able to characterize the actual PET be-
cause of its associated several additional variables, a careful compar-
ison of the two metrics in a given area and study systems would yield
most accurate projection of species distribution.

Fig. 5. Ratio of the suitable habitat area predicted by Penman
set to Thornthwaite set for suitable habitat under current
climate as well as RCP4.5 and RCP 8.5 climate change sce-
narios. A ratio of >1 indicates that Penman set of predictors
project bigger area of species range than Thornthwaite does.
(Abbreviation; jusc: Juniperus scopulorum, pial: Pinus albi-
caulis, pico: Pinus contorta, pifl: Pinus flexilis, pipo: Pinus pon-
derosa, pire: Pinus resinosa, pipu: Pinus pungens, psme:
Pseudotsuga menzeisii).

Table 2
Aerial extent of suitable habitat (in km2) for each species under Penman and Thornthwaite sets. Note: _Pen, _Thorn represent under Penman and Thornthwaite set of
predictors, respectively.

Species Current_Pen Current_Thorn RCP4.5_Pen RCP4.5_Thorn RCP8.5_Pen RCP8.5_Thorn

J. scopulorum 450,425 624,878 182,704 337,277 125,316 193,216
P. contorta 1,766,815 485,274 1,382,681 271,265 1,116,585 271,265
P. flexilus 428,465 427,169 255,450 306,653 90,273 112,610
P. ponderosa 1,761,741 2,296,307 1,586,167 2,109,136 1,462,664 1,832,729
P. resinosa 423,371 877,361 354,007 946,205 123,737 1,288,507
P. Menziesii 566,263 831,140 327,784 673,665 141,861 444,749
P. albicaulis 227,574 224,311 96,355 125,129 35,934 81,431
P.pungens 1,913,907 2,127,396 795,491 1,586,616 237,377 770,378

Table 3
Percent change in species range in future compared to current range. The
changes are reported for Penman set (“PenSpRange”) and Thornthwaite set
(“ThornSpRange”) of predictors for each of the two climate change scenarios
separately: RCP4.5 (“Change4.5”) and RCP8.5 (“Change8.5”).

Species PenSpRange
Change4.5

PenSpRange
Change8.5

ThornSpRange
Change4.5

ThornSpRange
Change8.5

J. scopulorum −59.44 −72.18 −46.03 −69.08
P. flexilus −40.38 −78.93 −28.21 −73.64
P. ponderosa −9.97 −16.98 −8.15 −20.19
P. resinosa −16.38 −70.77 7.85 46.86
P. Menziesii −42.12 −74.95 −18.95 −46.49
P. albicaulis −64.411 −79.762 −44.216 −63.70
P.pungens −58.44 −87.60 −25.42 −63.788
P. contorta −21.74 −36.80 −44.10 −72.54
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