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Abstract
Recent advances in remote sensing and ecological modeling warrant a timely and robust
investigation of the ecological variables that underlie large-scale patterns of breeding bird
species richness, particularly in the context of intensifying land use and climate change. Our
objective was to address this need using an array of bioclimatic and remotely sensed data sets
representing vegetation properties and structure, and other aspects of the physical environment.
We first build models of bird species richness across breeding bird survey (BBS) routes, and
then spatially predict richness across the coterminous US at moderately high spatial resolution
(1 km). Predictor variables were derived from various sources and maps of species richness
were generated for four groups (guilds) of birds with different breeding habitat affiliation
(forest, grassland, open woodland, scrub/shrub), as well as all guilds combined. Predictions of
forest bird distributions were strong (R2

= 0.85), followed by grassland (0.76), scrub/shrub
(0.63) and open woodland (0.60) species. Vegetation properties were generally the strongest
determinants of species richness, whereas bioclimatic and lidar-derived vertical structure
metrics were of variable importance and dependent upon the guild type. Environmental
variables (climate and the physical environment) were also frequently selected predictors, but
canopy structure variables were not as important as expected based on more local to regional
scale studies. Relatively sparse sampling of canopy structure metrics from the satellite lidar
sensor may have reduced their importance relative to other predictor variables across the study
domain. We discuss these results in the context of the ecological drivers of species richness
patterns, the spatial scale of bird diversity analyses, and the potential of next generation
space-borne lidar systems relevant to vegetation and ecosystem studies. This study strengthens
current understanding of bird species–climate–vegetation relationships, which could be further
advanced with improved canopy structure information across spatial scales.

Keywords: canopy, climate, diversity, energy, habitat, lidar, remote sensing, scale, structure,
breeding bird survey
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1. Introduction

Ecologists have long sought to explain the distribution pat-
terns of species diversity, which is an increasingly important
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Figure 1. Distribution of BBS routes throughout North America and the number of GLAS lidar shots within 200 m of each route (upper
left). The inset details the locations of the GLAS shots (right) and the histogram shows their height (m) distribution (lower left).

research goal as climate change is expected to alter these
patterns considerably (e.g. Parmesan 2006, Bellard et al 2012).
Animal species richness and abundance distribution patterns
have often been explained in terms of environmental vari-
ables, including climate and vegetation properties (e.g. Kerr
2001, Ricklefs 2004, Ceballos and Ehrlich 2006, Mittelbach
2010). Past work hypothesized animal species richness is more
strongly related to climate and energy (e.g. productivity) at
large spatial scales but more closely related to habitat diversity
at regional to local scales (Blackburn and Gaston 1996, Currie
et al 1999, Deppe and Rotenberry 2008, Kerr 2001, Kerr and
Packer 1997, Mittelbach et al 2001). The relative importance
of these environmental variables for predicting bird species
richness has been explored at various scales (e.g. Cueto and
Casenave 1999, Seoane et al 2004, Coops et al 2009, Hinsley
et al 2009, Hansen et al 2011, Bar-Massada et al 2012, Fitterer
et al 2012), but is still not well defined across scales. This is
partly because measurements of vertical habitat heterogeneity
and canopy structure (i.e. the horizontal and vertical distribu-
tion of canopy elements) have not been widely or consistently
available across a range of locations, despite having long been
recognized as important determinants of microclimates and
microhabitats, and consequently the abundance and distribu-
tion of species (MacArthur and MacArthur 1961, Whittaker
et al 2001).

Light detection and ranging (lidar) is advancing field-
based understanding of these ecological interactions by provid-
ing novel information on spatial and vertical canopy structure

and the impact of this structure on habitat diversity and quality
(Bergen et al 2009, Lefsky et al 2002, Turner et al 2003,
Vierling et al 2008). There is now a rapidly growing number
of studies utilizing airborne lidar for biodiversity research,
and many studies have found moderate to strong relationships
between remotely sensed vegetation canopy structure, habi-
tat quality, species richness and abundance, and habitat use
(Bradbury et al 2005, Clawges et al 2008, Goetz et al 2010,
2007, Hill et al 2004, Lesak et al 2011, Seavy et al 2009,
Swatantran et al 2012). However, these studies have been
limited because airborne lidar data is generally not available
over large areas. Consequently it has been difficult to test
hypotheses relating the impact of variations in canopy structure
to bird species richness patterns over large scales in a system-
atic fashion. A unique global vegetation canopy structure data
set was acquired from space by GLAS (GeoScience Laser
Altimetry System) onboard ICESat (the Ice, Cloud, and Land
Elevation Satellite) from 2003 to 2009 (Schutz et al 2005).
The GLAS data set provides the first opportunity to explore the
importance of structure relative to other vegetation properties
over large spatial extents and across broad gradients in climate
and other environmental factors.

Here we investigate the patterns of breeding bird species
richness across the coterminous United States and south-
ern Canada, a domain established by the existence of well-
documented bird observation data sets provided by the North
American Breeding Bird Survey (BBS) (Pardieck and Sauer
2007, Ralph et al 1995) (figure 1). We predict species richness
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using models that incorporate a range of environmental and
vegetation variables, and assess the relative importance of
different influences on bird richness patterns across the study
domain. Important aspects of this work include; (i) derivation
and use of a range of satellite remote sensing variables,
including vegetation canopy structure metrics, (ii) application
of climate data that capture extremes and variability as well
as mean conditions, (iii) application of advanced machine
learning methods (ensembles of regression trees) for data
mining and predictive model development within buffer zones
surrounding BBS routes, (iv) robust model results and cross
validation, (v) production of continuous, relatively high reso-
lution (1 km) maps of species richness for various bird habitat
guilds. Whereas some of these topics have been explored in
past biodiversity research (see above), few have incorporated
all of these elements or considered the relative importance of
factors driving species richness patterns consistently across
large spatial extents and a diversity of habitat types.

2. Methods

We assessed 47 bioclimatic and vegetation predictor variables
of bird species richness (our response variable) for different
guild types and in aggregate. We explored statistical associa-
tions and the strength of Pearson correlation coefficients for
each predictor variable with species richness. We also used
Random Forests, a regression tree method that calculates the
average of an ensemble of individual trees using bootstrapped
sampling (Cutler et al 2007), to predict species richness. When
compared against other species distribution models, Random
Forests has consistently performed well (e.g. Lawler et al 2006,
Cutler et al 2007). One advantage of the random forest method
is that provides us a mechanism for interpreting how important
each of the predictor variables are (i.e. their explanatory power)
and how results change as predictor variables are changed
(so-called partial dependence plots, described below).

2.1. Bird species richness variables

2.1.1. Breeding bird survey. We used data acquired, compiled
and distributed by the BBS, which was launched in 1966
to characterize avian population trends along survey routes
through time (Pardieck and Sauer 2007, Ralph et al 1995).
Bird counts are conducted annually at the peak of the nesting
season along ∼4100 randomly selected routes throughout the
United States and Canada (www.pwrc.usgs.gov/bbs). Along
each 40 km route, a trained observer conducts stops about
every kilometer and records all birds heard or seen within a
3-min period. The BBS data are publically available (ftp://ftp
ext.usgs.gov/pub/er/md/laurel/BBS/DataFiles).

We note that a potential source of error in using BBS data
to derive species richness is the lack of complete detectability
of all species that occur along a route (Boulinier et al 1998).
Nichols et al (1998) developed a series of estimators based on
capture–recapture theory to account for incomplete detection
among species. The approach, however, requires assumptions
that may not be met on BBS routes (e.g. closed populations,
equal detection probabilities along routes) and other studies

Table 1. Bird breeding habitat guilds, with the number of bird
species, their abundance, and the number of BBS routes with data
for that specific guild. The top four guilds were selected for analysis.

Habitat guild Routes Speciesa/b Individuals

Forest 1239 123/20 969 401
Open woodland 1308 105/20 2 036 529
Grassland 1285 60/6 941 448
Scrub 1286 45/7 313 590

Deserts 68 8 8 034
Town 1223 12 760 215
Shore-line 320 45 45 030
River/stream 197 3 1 457
Lake/pond 1231 55 403 344
Ocean 17 32 5 606
Marsh 1203 59 665 849

Top 4 guilds — 333 4 260 968
Other guilds — 214 1 889 535
Top 4% of total — 61% 69%

a The number of species considered in this study.
b The number of species from Matthews et al (2011)
considered in this study.

have found results of continental scale bird richness had similar
results with and without the correction (Hansen et al 2011,
Phillips et al 2010). Thus, we elected not to apply detectability
corrections here.

We used the yearly summary data for each route for the
years 2004–2006 (inclusive), which most closely matched
the timeframe of the other data sets (predictor variables) with
which we were working. Only routes and species with all three
years of data were used. Bird species richness was thus derived
for each of more than 3000 BBS routes in the coterminous
US with a full suite of predictor variable data. We summed
bird observations across all stops along each route for all
three years. The number of unique species recorded totaled
668. We then used these species richness estimates as the
response variable in the model development and analyses that
follow.

2.1.2. Bird habitat guilds. We categorized and independently
analyzed richness of bird species within breeding habitat
groups (guilds) using the system developed by Peterjohn
and Sauer (1993). We focus on four habitat guilds (forest,
open woodland, grassland and scrub) comprising 69% of
the total number of observed individuals and 61% of the
total number of species (table 1). These guilds were also
most broadly geographically distributed and most relevant in
terms of terrestrial vegetation habitat, allowing analyses of
the greatest number of bird species across a broad range of
vegetated habitat types and ensuring a sufficient number of
observations for statistically robust analyses.

2.1.3. Predictor variables. The predictor variables were
selected to represent a spectrum of habitat characteristics that
could potentially influence the richness of bird species in any
particular area. We separated these into three broad categories:
physical environment (20 climate and topography variables),
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Table 2. Naming convention and brief description of the predictor variables and their source. Variables are organized according under broad
categories including canopy structure, (other) vegetation properties, and physical environment. Elevation and all of the structure variables
are in units of height (m) with the exception of COMP, VDR, Npeaks (unitless), and AreaBE, AreaCD (m2). Units of temperature (◦C) and
precipitation (mm) are used. VCF, Life Form, and Tree Leaf metrics are proportional (%). Biomass is (Mg ha−1) and NPP (gC m−2 yr−1).

Variable name Variable description Source

Canopy structure CH Canopy height GLAS lidar
HOME Median energy of the lidar waveform GLAS lidar
COMP Waveform complexity GLAS lidar
Npeaks Number of peaks in the waveform GLAS lidar
AmpMax Maximum amplitude of the waveform GLAS lidar
AreaBE Area under the waveform GLAS lidar
CD Height (depth) of the canopy layer GLAS lidar
AreaCD Energy under the canopy layer GLAS lidar
VDR Canopy vertical distribution ratio GLAS lidar

Vegetation properties NPP Net primary productivity MODIS-17A3
EVIarea Integrated EVI during the growing season MODIS-12Q2
VCF Vegetation continuous fields (canopy cover) MODIS-44B
Biomass Biomass density CONUS
LFcrop Life form: crops SYNMAP
LFgrass Life form: grass SYNMAP
LFshrub Life form: shrub SYNMAP
LFtree Life form: trees SYNMAP
LFurban Life form: urban SYNMAP
LLmixed Tree leaf longevity: mixed SYNMAP
LLeverg Tree leaf longevity: evergreen SYNMAP
LLdecid Tree leaf longevity: deciduous SYNMAP
LTbroad Tree leaf type: broad SYNMAP
LTmixed Tree leaf type: mixed SYNMAP
LTneedle Tree leaf type: needle SYNMAP

Physical environment SRTM Elevation (meters) SRTM
bio1 Annual mean temperature WorldClim
bio2 Mean diurnal range (mean of monthly values) WorldClim
bio3 Isothermality WorldClim
bio4 Temperature seasonality WorldClim
bio5 Max temperature of warmest month WorldClim
bio6 Min temperature of coldest month WorldClim
bio7 Temperature annual range WorldClim
bio8 Mean temperature of wettest quarter WorldClim
bio9 Mean temperature of driest quarter WorldClim
bio10 Mean temperature of warmest quarter WorldClim
bio11 Mean temperature of coldest quarter WorldClim
bio12 Annual precipitation WorldClim
bio13 Precipitation of wettest month WorldClim
bio14 Precipitation of driest month WorldClim
bio15 Precipitation seasonality WorldClim
bio16 Precipitation of wettest quarter WorldClim
bio17 Precipitation of driest quarter WorldClim
bio18 Precipitation of warmest quarter WorldClim
bio19 Precipitation of coldest quarter WorldClim

vegetation properties (15 variables), and canopy structure
(9 variables). We considered structure metrics separately
because they have been the subject of much interest in the
context of three-dimensional habitat heterogeneity, as opposed
to the two (horizontal) dimensions represented by the other
variables, but also because they were derived from a satellite

sensor that provides samples as opposed to wall-to-wall
coverages (images). These variables are listed in table 2 and
are described in more detail below. Because our focus was
on physical environment and vegetation, we did not consider
detailed predictors of human impact such as housing density,
roads or impervious cover. These factors have been well
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examined by other studies and been shown to sometimes
have strong local effects on bird communities (Beaudry et al
2013, Pidgeon et al 2007, Suarez-Rubio et al 2013).

2.1.4. Physical environment variables. We used the World-
Clim data set, which is comprised of global climate map layers
representing conditions for the years 1950 to 2000 at 1 km spa-
tial resolution (Hijmans et al 2005). We used all variables, rep-
resenting precipitation, temperature, annual bioclimatic trends
(e.g., annual precipitation), seasonality (e.g., annual range in
temperature) and extreme or limiting environmental factors
(e.g., temperature of the coldest month) (table 2).

Topographic information was derived from the Shuttle
Radar Topography Mission (SRTM) collection 4 data set (Farr
et al 2007). The spatial resolution of the SRTM data within the
coterminous United States is 30 m. We note that because the
SRTM data set is derived from interferometric radar imaging,
it does not represent true ground surface topography for
areas with vegetative cover but rather values that convolve
canopy volumetric scattering with surface elevation. For
our purposes these distinctions are not critical, particularly
since vegetation properties (including canopy height) were
independent predictors.

2.1.5. Vegetation property variables. Vegetation cover type
information was derived from SYNMAP (Jung et al 2006), a
global land cover map at 1 km spatial resolution that defines
vegetation functional groups by life form class, tree leaf type,
and tree leaf longevity (table 2). We calculated the proportional
amounts of each cover variable, categorized as a particular
vegetation functional group, within a 100 m buffer surrounding
each BBS route (i.e. 200 m across).

MODIS Enhanced Vegetation Index (EVI) is a spec-
tral vegetation index responsive to canopy reflectance, light
absorption and photosynthetic capacity (Huete et al 2002). We
calculated EVI from MODIS canopy reflectance products that
have been corrected for variability in solar and viewing angles
(Ju et al 2010). These data sets are 1 km resolution, as are
the other MODIS products we used here, spanning the years
on which we focused (2004–2006). For our analyses, EVI
was averaged throughout the growing season to reduce issues
with cloud cover. Growing season start, end and duration were
derived from the MODIS phenology products (Ganguly et al
2010).

The amount of tree canopy cover within each 500 m
cell across the study domain was derived from the MODIS
vegetation continuous fields (VCF) products (Hansen et al
2005) for the years 2003 to 2005. We used VCF collection 4
(C4), version 3, and averaged the values temporally over the 3
year period to match the BBS observations while incorporating
interannual variability.

Aboveground live forest biomass of the United States and
Alaska was based on a map produced by the United States
Forest Service (USFS) that used a combination of FIA (Forest
Inventory and Analysis) plot data and MODIS reflectance
values at 250 m resolution (Blackard et al 2008).

We also used the MODIS-based net primary productivity
(NPP) product, derived from a simplified light use efficiency

model using other MODIS products including canopy light
absorption and incident radiation (Running et al 2004). We
used the collection 5.1 product covering the years 2004 to
2006, at a resolution of 1 km. We used MODIS NPP rather
than gross primary production (GPP), as per earlier studies
(e.g. Coops et al 2009, Phillips et al 2010), because the two
variables were highly correlated (r = 0.9) and NPP was of
more relevant to previous work on productivity—diversity
relationships (e.g. Mittelbach 2010, Cusens et al 2012).

2.1.6. Canopy structure metrics. Satellite-based lidar data
from GLAS were used to derive metrics for vegetation canopy
structure. We used GLAS data from shortly after launch
in 2003 through 2008. The GLAS laser has an ellipsoidal
footprint of approximately 65 m, spaced about 172 m apart
along the orbital track. We used the L1A Global Altimetry
(GLA01) and the L2 Global Land Surface Altimetry (GLA14)
data sets, from which we extracted vertical waveform data,
signal beginning, signal end, noise metrics, and other variables.
Waveform characteristics from each GLAS shot were analyzed
and quality screened (appendix A) to derive a series of metrics
that characterize the vertical distribution of canopy elements
(leaves, branches, boles). These metrics are summarized in
table 2, but some of the more relevant ones include vegetation
canopy height (CH), the height of the median amount of
energy returned (HOME), and a measure of how the observed
waveform diverges from a Gaussian shape after reflectance
from the surface (complexity). Specifics on the derivation of
these metrics, based on airborne lidar data, are provided in
Goetz et al (2010).

2.2. Geospatial data processing

To construct predictor variable data sets that describe the
average conditions for each BBS route, we established a
200 m buffer around the routes (roughly equivalent to BBS
observer detection limits) and spatially intersected them with
each predictor variable (figure 2). The mean value of the
predictor variables was then extracted and uniquely associated
with each route. In the case of discrete predictor variables
(e.g. the SYNMAP variables), each BBS route was ascribed
the value of the percent of area within the surrounding buffer
that was categorized as some particular vegetation functional
group. As part of the derivation of the various lidar metrics,
we performed extensive screening to remove shots that did
not produce adequate waveforms for characterizing canopy
structure (appendix A). We then extracted all shots located
within the 200 m buffer and calculated the mean value of the
various structure metrics for each route. Routes in which there
were fewer than ten GLAS shots were excluded from further
analysis to avoid inadequately capturing spatial variability.

2.2.1. Random Forests. In Random Forests, we used 500
trees, each built using bootstrapped samples of the data and
a randomly selected set of input variables, with an internal
unbiased estimate of the generalization error produced (see
appendix A). We performed each of these analyses in the
R language for statistical computing (R Development Core
Team 2009). Only routes where data from each predictor
variable was available were used for further analysis. The
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Figure 2. Maps showing BBS routes and GLAS shots overlaid on a sample of some of the predictor variables.

performance of the resulting ensemble of trees was cross-
validated using 20% of the data set randomly selected and
reserved for this purpose. The reserved data were used to calcu-
late standard coefficient of determination (R2) values denoting
variance explained by the predictions. Variable importance, as
measured by the percent increase in mean square error, was
calculated and displayed as partial dependency plots for each
predictor variable. Each plot graphically depicts how bird rich-
ness (on the y-axis) would be expected to respond to changes
from each predictor variable (on the x-axis), independent of
all other variables. The Random Forests models for each guild,
and in aggregate, were then used to generate maps across the
US at 1 km spatial resolution.

2.2.2. Comparisons with USDA Forest Service bird distribution
maps. To independently assess the validity of our predictions
of species richness spatial distribution patterns, we compared
our 1 km resolution maps with those from Matthews et al
(2011) 20 km resolution maps (henceforth referred to as the
USFS data set). They evaluated 147 breeding bird species
across the eastern United States (Matthews et al 2007, 2011).
We selected bird species they modeled with ‘high reliability’,
including 53 species with habitat types that matched the
breeding habitat guilds considered in our analysis. We note
that Matthews et al (2011) only considered BBS data east of
the 100th meridian from 1981 to 1990, whereas the BBS data
we used span the entire contiguous US from 2004 to 2006
(inclusive).

The spatial data for each bird species in our maps were
reclassified from predicted incidence values (the proportion
of routes with species present on a scale from 0 to 1) to pres-
ence/absence cells. Species richness values (i.e. the number
of bird species per cell) were generated for each guild and
results were resampled to 20 km resolution to match the cell
size and spatial extent of the USFS data set. Relative species
richness was calculated for both data sets, multiplying each
by 100 and dividing by the maximum species richness value
present. We also compared the predicted habitat center for each
guild, i.e. the latitude and longitude of the geographic center
of each distribution, weighted by species richness. Lastly, we
explored spatial correlations between the mapped data sets,
showing where they agreed best and least. More specifics on
the methodological approach are described in appendix A.

3. Results

3.1. Predictor variable correlations

The predictor variables most strongly correlated with bird
species richness varied by guild type (figure 3). For total
species richness vegetation property variables generally had
the greatest predictive capability, followed by physical envi-
ronment (e.g. temperature, precipitation) and canopy structure
(see also appendix figure C.1). By guild, vegetation property
variables typically had the highest correlations with species
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Figure 3. Correlation bar plots between predictor variables and species richness, for all birds and by guild. White bars indicate a negative
and gray a positive correlation. Only significant correlations are shown (p < 0.05).

richness, with the exception of scrub birds (figure D.1). Con-
sidering environmental variables alone (see table 2), those
most highly correlated with bird richness were also distinct
for each guild. Temperature variables were most strongly cor-
related with forest bird richness, while precipitation variables
were the strongest environmental correlates of open woodland
bird richness (figure 3).

The correlation between vegetation properties, structure
and bird richness were generally positive for the forest bird
guild and negative for non-forest guilds (e.g. grassland).
Conversely, the percent of grassland surrounding the route
(lfgrass) showed a strong positive correlation for grassland
bird richness whereas there was a negative correlation for
forest birds (figure 3). Forest bird richness has the strongest
correlations with the percent tree cover and also with EVI,
percent area with mixed leaf longevity, and percent area with
mixed leaf type. Open woodland bird richness was most
correlated with EVI, percent area covered by deciduous trees,
and percent area covered by broadleaf trees (figure 3). Scrub
bird richness was most strongly correlated with bioclimatic
variables rather than vegetation properties, although this result
was probably influenced by the small range of scrub bird
richness (between 0 and 11 species) in the BBS data set.

3.2. Prediction models

A combination of vegetation property and physical environ-
ment (i.e. climate variables) variables were the most influ-
ential predictors of species richness (figure 4). Bird species

richness was predicted only moderately well for all guilds
(R2
= 0.34) but the predictive models were strong for forest

birds (R2
= 0.85) and moderately strong for the other guilds

(R2
= 0.60–0.75). The most important variables for predicting

forest bird richness were VCF and percent of BBS route
area forested (LF tree). Grassland bird species richness was
also well predicted by VCF and percent area forested, based
primarily on strong inverse correlations of these predictions
with richness. Open woodland species richness was most
dependent on climatic variables, but also on biomass and VCF.
Scrub bird models were the least robust, and only climate
(primarily temperature) variables were important predictors.

Further partitioning the data set for forest birds and re-
running random forest models for only those routes with high
productivity (NPP > 550 gC m−2 yr−1) and high vegetation
canopy cover (VCF > 50%) (figure E.1) allowed us to assess
which predictor variables were most important for conditions
that are more characteristic of densely vegetated, high pro-
ductivity environments (figure 5). While climate variables
were the most important predictors of forest bird richness
in these environments, canopy structure metrics were also
correlated (figure F.1). Compared to the entire set of forest
birds, the species richness values were higher and restricted to
a somewhat smaller range, but the cross-validated predictive
models were still robust (R2

= 0.75 for both) (figures 5(a), (e)).
The partial dependency plots in figure 5 show how

predictor variables co-vary with the response variable (species
richness) across their respective ranges. Notably, forest bird
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Figure 4. Cross validation results (upper panels: a, c, e, g, i) for the RandomForest models comparing reserved data values (X -axis) with the
predicted model values (Y -axis). Variable importance plots (lower panels: b, d, f, h, j) show the percent increase in mean square error
(%IncMSE), where higher values indicate model predicted values more similar to those observed.

species richness in high productivity areas increased with
biomass and canopy vertical complexity, particularly above the
20th percentile of both variables, but declined above the∼20th
percentile for all the selected climate variables. Similar results
were observed for species richness in areas with high canopy
cover (figure 5 lower panels), with declining richness above
the ∼20th percentile for all climate variables and particularly
rapid increases in richness up to the 40th percentile of biomass
and the 50th percentile of vertical complexity values.

Additional partial dependency plots for all the guilds are
presented in figure G.1. Notable trends include the systematic
increase in forest bird richness with each of the most important
predictor variables, the converse relationship for grassland

birds (richness declines with increases in about half of the key
predictors), and distinctly hump-shaped relationships for both
open woodland and scrub birds (with highest species richness
at mid-range values of the predictors). These observations were
particularly evident for the canopy structure variables (right set
of panels in figure G.1).

3.3. Bird species distributions and comparisons with USDA
Forest Service maps

Maps of species richness derived from the BBS-route-based
models (figure 6 right), and the continuous maps derived from
the models being applied to the stack of spatial data layers

8
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Figure 5. Cross validation results for forest birds in environments of high productivity (panel a) and high vegetation cover (panel e).
Variable importance plots (panels b, f) are as in figure 4. Partial dependency plots (panels c, d, g, h) show the dependency of species richness
(y-axis) on varying levels of the predictor variables independent of all other predictors.

(figure 6 left), both show coherent spatial patterns and strong
regional gradients that vary by guild type. The route-based
models and the continuous predictions show similar spatial
patterns of richness, although the continuous maps reveal
considerable spatial variability across the domain, with the
highest total richness levels in the eastern US, particularly
at higher latitudes. This pattern is even more pronounced for
forest birds. High richness of open woodland birds spanned

much of the eastern US as well, but was more widely
distributed across the region. Grassland species richness, as
expected, was particularly high in the west-central US We did
not create maps of scrub birds owing to the less robust models
for that guild.

Our predicted patterns of relative species richness cor-
relate reasonably well with those of Matthews et al (2011).
Overall, the weighted mean center of the species richness

9
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Figure 6. Maps of species richness for all birds (top) and for three guild types (forest, woodland, grassland birds). The maps on the left
represent the modeled distribution of species richness continuously across the study domain, each developed from the route-level models
shown on the right and the suite of geospatial data layers (table 2).

spatial distributions (see section 2.2.2) for our study and
Matthews et al (2011) was geographically close for each guild
type (figure H.1). They were closest for the open woodland
guild (9.3 km) and farthest for the grassland guild (179.3 km).
There was, however, considerable variability in the spatial
correlation patterns. In both, forest bird richness was greatest
around the Great Lakes, New England and the Appalachian

Mountains. The spatial pattern comparison was least similar
for grassland birds, with predictions from the USFS data set
being high in the mid-western states and those from ours being
concentrated further west. Both maps predicted the highest
relative richness of open woodland species in the central
eastern US, but the USFS data set predicted a larger expanse
of high values.
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4. Discussion

Our results show the various data sets (table 2) used in our
analyses can inform models that robustly predict the spatial
patterns of bird species richness across large areas, in this
case the conterminous USA. While previous studies report
similar findings at national (Coops et al 2009, Culbert et al
2013, Pidgeon et al 2007, Rittenhouse et al 2012) and regional
scales (Allen and O’Connor 2000, Donovan and Flather 2002),
we anticipated the influence of canopy structure captured in
the lidar data sets would have greater predictive capability
than we observed. This expectation was based on increasing
evidence, using lidar-derived canopy structure measurements,
that structure is an important predictor of species richness at
local to regional scales (Bradbury et al 2005, Clawges et al
2008, Goetz et al 2010, 2007, Hill et al 2004, Lesak et al
2011, Seavy et al 2009, Swatantran et al 2012). Instead, our
national scale estimates of forest bird guild species richness
were most strongly influenced by tree canopy cover (i.e. VCF)
and tree life form distribution (LFtree). Interestingly, we show
robust predictions of forest bird richness even in areas of
high productivity and high canopy cover, where we might
expect some predictor variables to saturate in their sensitivity
to increasing species richness, and canopy structure to become
an important determinant of niche diversity. In these areas of
high productivity and canopy cover, however, climate variables
became important predictors (figure 5), indicating they capture
additional information beyond even integrative variables like
net primary production. In the case of woodland birds, a
unimodal shape of the partial dependency plots reflects greatest
species richness at intermediate vegetation cover, biomass
and canopy structure values. This finding is consistent with
greater landscape habitat diversity in more open woodland
areas relative to, e.g. densely forested or open grasslands areas,
and expectations of different woodland bird species utilizing
differing vegetation types and densities.

The predicted patterns of relative species richness from
our models were generally similar to those Matthews et al
(2011) mapped for the eastern US, even though very different
approaches were used to generate the maps produced by both
studies. There are several differences worth noting. First,
although both studies considered climate, elevation, and tree
species properties as predictor variables, the other predictors
differed substantially between the two studies. In particular,
our predictions considered unique vegetation properties (e.g.
biomass, productivity) and canopy structure metrics (e.g.
canopy height, vertical complexity). We note these were
aggregated to coarser resolution (20 km) for comparison with
the Matthews et al (2011) maps. In addition, the BBS data
sets used in this study and the USDA Forest Service maps
were collected more than a decade apart. We expected this
to adversely impact the comparison insofar as the time lag
might contribute to changes in bird species richness and/or
the predictor variables, but the overall similarities between the
relative richness maps was an encouraging confirmation of the
utility of our higher resolution predicted richness distribution
maps (figure 6). This was particularly true given we used
only what Matthews et al (2011) deemed their highest quality

species predictions (appendix B), and in the context of the
strength of our BBS route-based Random Forests models
(figure 4).

These points noted, the strength of any predictor variable
is fundamentally related to the scale at which the metric is
most ecologically relevant. Our models tended to characterize
forest vegetation type, cover and climate as the most important
large area predictors of bird species richness, despite the
considerable influence of canopy structure at more local scales.
However, the inability of sample sets of 70 m GLAS lidar shots
to fully characterize entire 40 km BBS routes complicates
these interpretations. Canopy structure can undergo significant
changes over the length of the route, and averaging all shots
intersecting a route probably does not represent conditions of
the entire route. A more direct analysis of bird observations
within the footprint of the GLAS shots would better capture
the attributes of bird species richness that are dependent
on canopy structure and related habitat heterogeneity, but
the BBS data were not collected with that intent (i.e. data
are aggregated for all stops along the length of the routes).
This does not mean that very large-scale studies of habitat
structure with lidar are impractical, but it is important to
note that GLAS lidar are samples (not wall-to-wall images).
Despite that, we found meaningful correlations between GLAS
structure metrics and bird species richness when compared in
a pairwise manner (figures E.1, F.1). Moreover, the partial
dependency plots (figure G.1) show reasonable and expected
associations of structure metrics with forest birds (positively
co-varying), woodland birds (richness peaking at intermediate
values of structure metrics) and even grassland birds (nega-
tively co-varying). Previous work with airborne lidar shows
more densely sampled lidar structure metrics are useful for
predicting not only richness but habitat use, thus future studies
of the relative importance of species richness predictors might
explore the effect of spatial averaging of structural variability
that accompanies increasing lidar footprint size, as well as sam-
pling density and terrain-influenced height estimation errors in
medium to large footprint lidar systems. Such studies would
be best designed in the context of potential next generation
space-borne lidar systems relevant to vegetation and ecosystem
studies.

Acknowledgments

We thank Steve Matthews (USDA Forest Service) for provid-
ing his maps of bird species distribution for the eastern United
States, Kevin Guay for assistance with statistical comparisons,
and the BBS staff and volunteers for making their data widely
available. This work was supported by the NASA Applied
Sciences (Biodiversity) program managed by Woody Turner
(grant NNX09AK20G).

Appendix A. Additional information on
methodological approach

Lidar metric derivation. In deriving lidar metrics, we elimi-
nated shots that did not produce adequate waveforms (e.g. shots
with excessive atmospheric attenuation including clouds),
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Table B.1. Bird species with high model reliability from the USDA Forest Service Climate Change Bird Atlas (www.nrs.fs.fed.us/atlas/bird)
(Matthews et al 2007). Guild classifications were based on the Cornell Lab of Ornithology habitat type classifications.

Common name Scientific name Guild

Tufted Titmouse Baeolophus bicolor Forest
Purple Finch Carpodacus purpureus Forest
Veery Catharus fuscescens Forest
Black-billed Cuckoo Coccyzus erythropthalmus Forest
Black-throated Blue Warbler Dendroica caerulescens Forest
Yellow-rumped Warbler Dendroica coronata Forest
Magnolia Warbler Dendroica magnolia Forest
Pine Warbler Dendroica pinus Forest
Wood Thrush Hylocichla mustelina Forest
Red-bellied Woodpecker Melanerpes carolinus Forest
Rose-breasted Grosbeak Pheucticus ludovicianus Forest
Black-capped Chickadee Poecile atricapillus Forest
Ovenbird Seiurus aurocapillus Forest
Red-breasted Nuthatch Sitta canadensis Forest
Brown-headed Nuthatch Sitta pusilla Forest
Yellow-bellied Sapsucker Sphyrapicus varius Forest
Winter Wren Troglodytes troglodytes Forest
Nashville Warbler Vermivora ruficapilla Forest
Red-eyed Vireo Vireo olivaceus Forest
White-throated Sparrow Zonotrichia albicollis Forest
Northern Bobwhite Colinus virginianus Grassland
Bobolink Dolichonyx oryzivorus Grassland
Horned Lark Eremophila alpestris Grassland
Savannah Sparrow Passerculus sandwichensis Grassland
Ring-necked Pheasant Phasianus colchicus Grassland
Dickcissel Spiza americana Grassland
Common Ground-Dove Columbina passerina Scrub
Common Yellowthroat Geothlypis trichas Scrub
Yellow-breasted Chat Icteria virens Scrub
Painted Bunting Passerina ciris Scrub
Clay-colored Sparrow Spizella pallida Scrub
Field Sparrow Spizella pusilla Scrub
White-eyed Vireo Vireo griseus Scrub
Cedar Waxwing Bombycilla cedrorum Open woodland
Chuck-Will’s Widow Caprimulgus carolinenis Open woodland
Northern Cardinal Cardinalis cardinalis Open woodland
American Goldfinch Carduelis tristis Open woodland
Hermit Thrush Catharus guttatus Open woodland
Yellow-billed Cuckoo Coccyzus americanus Open woodland
Yellow Warbler Dendroica petechia Open woodland
Gray Catbird Dumetella carolinensis Open woodland
Blue Grosbeak Guiraca caerulea Open woodland
Baltimore Oriole Icterus galbula Open woodland
Orchard Oriole Icterus spurius Open woodland
Loggerhead Shrike Lanius ludovicianus Open woodland
Red-headed Woodpecker Melanerpes erythrocephalus Open woodland
Song Sparrow Melospiza melodia Open woodland
Indigo Bunting Passerina cyanea Open woodland
Summer Tanager Piranga rubra Open woodland
Chipping Sparrow Spizella passerina Open woodland
Carolina Wren Thryothorus ludovicianus Open woodland
House Wren Troglodytes aedon Open woodland
American Robin Turdus migratorius Open woodland
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Figure C.1. Boxplot of the correlation (absolute value) between
predictor variables and species richness, by variable class, for the
model predicting richness of all birds (i.e. aggregated guilds).

specifically shots where the amplitude of the raw waveform
does not exceed twice the noise threshold. We also excluded
shots in which the waveform contained less than two distinct
peaks (an indication that the top of the vegetation canopy
was not detected), as well as shots in areas with substantial
topographic relief, where canopy height estimation was
problematic (Lefsky et al 2007). A total of 48,133 GLAS

shots remained post screening, which was less than half of the
total number of shots acquired and processed.

Random Forests models. We subsequently applied the lidar
(i.e. structural information), physical environment, and vege-
tation properties metrics in Random Forests to assess predictor
variable importance. In Random Forests, data are partitioned
using a series of hierarchical binary splits on the predictor
variables, with the goal of maximizing explained variance in
the response variable (in our case bird species richness). A
different bootstrapped random sample of the data for each
tree is used to optimally split among the various predictors,
improving performance by iteratively aggregating the results.
Predictors are selected randomly, which acts to increase the
accuracy of the model while reducing the influence of variable
selection order and, in the process, minimize overfitting (Cutler
et al 2007). The combined effects of the predictor variables
were assessed using the mean prediction of many individual
regression trees.

Generation and comparison of relative richness maps. Species
presence/absence thresholds were optimized by Matthews et al
(2011), who found an optimal incidence value (IV) cutoff at
0.05 (i.e. grid cells with IV < 0.05 were reclassified as zero,
indicating species absence). We subsequently explored the
regional correlations between our model predictions (figure 5)
and those of Matthews et al (2011) through maps of spatial

Figure D.1. Dotplots showing the correlation range of the ten strongest predictor variables by bird guild and organized by predictor variable
class. Open dots indicate negative correlation and solid dots positive correlation. An empty line indicates no predictor variables in that class
were among the ten most important for predicting species richness.
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Figure E.1. Maps showing the location of BBS routes with high NPP (left panels) and high VCF (right panels) for all routes where forest
birds were dominant in terms of species richness (top panels) or simply present (bottom panels). Colors indicate magnitude of forest bird
species richness.

Figure F.1. Boxplots showing the relationship between species richness of all birds (top panels) and forest birds (bottom panels) relative to
selected canopy structure variables in areas of high NPP. The forest bird richness panels correspond to the routes in figure E.1 where forest
birds were dominant.

correlation, which we created by writing a moving window
script that derived a regression model for the cell values (from
both data sets) within the same 5× 5-cell window and created
a new map with the correlation coefficient in the window
centroid. The window iterated across both data sets, producing
maps of the spatial correlation between the data sets. The

moving window assigned null values in regions where identical
richness values (in either or both data sets) populated a 5 × 5
window because the standard deviation in these cases was
zero. Relative species richness was calculated for both data
sets, multiplying each by 100 and dividing by the maximum
species richness value present. We also compared the predicted
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Figure G.1. Partial dependency plots for each bird guild type, with the most important predictors shown at left and canopy structure metrics
at right.

habitat center for each guild by calculating the mean center of
spatial distribution, weighted by species richness (using the
Mean Center tool).

Appendix B

See table B.1.

Appendix C

See figure C.1.

Appendix D

See figure D.1.
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Figure H.1. Relative richness maps from bird species model outputs of this study (left images) and Matthews et al (2011) (middle images),
and the correlation between the two data sets (right images). Green dots in the relative richness maps indicate the mean geographic center of
distribution (MCD) for all birds and each guild type. White areas within the eastern US in the correlation maps indicate null value regions
(see appendix A).

Appendix E

See figure E.1.

Appendix F

See figure F.1.

Appendix G

See figure G.1.

Appendix H

See figure H.1.
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