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ABSTRACT

Aim To demonstrate that the concept of carrying capacity for species richness (SK)
is highly relevant to the conservation of biodiversity, and to estimate the spatial
pattern of SK for native landbirds as a basis for conservation planning.

Location North America.

Methods We evaluated the leading hypotheses on biophysical factors affecting
species richness for Breeding Bird Survey routes from areas with little influence of
human activities. We then derived a best model based on information theory, and
used this model to extrapolate SK across North America based on the biophysical
predictor variables. The predictor variables included the latest and probably most
accurate satellite and simulation-model derived products.

Results The best model of SK included mean annual and inter-annual variation in
gross primary productivity and potential evapotranspiration. This model explained
70% of the variation in landbird species richness. Geographically, predicted SK was
lowest at higher latitudes and in the arid west, intermediate in the Rocky Mountains
and highest in the eastern USA and the Great Lakes region of the USA and Canada.

Main conclusions Areas that are high in SK but low in human density are high
priorities for protection, and areas high in SK and high in human density are high
priorities for restoration. Human density was positively related to SK, indicating
that humans select environments similar to those with high bird species richness.
Federal lands were disproportionately located in areas of low predicted SK.
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INTRODUCTION

Since the seminal paper by Currie (1991) showing strong rela-

tionships between climate and species richness across North

America, there has been a plethora of research on the spatial

distribution of biodiversity and potential controlling factors. A

wealth of evidence now indicates that species richness within

taxonomic groups exhibits relatively consistent patterns over

time and across continental areas and that most of the variation

in richness is explained by physical and biological factors such as

climate, topography and primary productivity (Cook, 1969;

Kiester, 1971; Currie & Paquin, 1987; Rahbek & Graves, 2001;

Jetz & Rahbek, 2002; Hawkins et al., 2003).

An important hypothesis that emerges from these

continental-scale correlational studies is that any given place has

a fundamental potential to support biodiversity. O’Brien (1998),

for example, noted a consistent relationship between plant

species richness and climatic factors, and speculated that climate

sets a geographical constraint on species richness. Such obser-

vations at large spatial scales were consistent with theoretical

work from decades earlier by ecologists such as Hutchinson

(1959) and MacArthur & MacArthur (1961), suggesting that

usable energy and habitat heterogeneity are important con-

straints on species diversity. Building on these earlier studies,

Brown et al. (2001) termed this property ‘carrying capacity for

species richness’ (SK) and defined it as a ‘steady-state level of
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richness specific to a particular site or local ecosystem, that is set

by resource availability and other local conditions and is main-

tained despite changes in species composition’ (p. 328). They

concluded that species diversity is an emergent property of eco-

systems that is often maintained within narrow limits. Modern

remote sensing and simulation modelling now provide the

ability to quantify many ecosystem properties, including possi-

bly those that limit biodiversity.

Many hypotheses have been offered to determine which bio-

physical factors most limit species richness (see Huston, 1994).

Determining the causation of spatial patterns of richness at

continental scales has proven difficult because experimentation

is not feasible at these spatial scales and nearly all studies are

correlational. Nonetheless, there is now strong consensus that

continental-scale patterns of species richness are driven prima-

rily by kinetic energy (heat), potential energy (food), habitat

heterogeneity and available water (Kerr & Packer, 1997; Waide

et al., 1999; Gaston, 2000; Mittelbach et al., 2001; H-Acevedo &

Currie, 2003; Currie et al., 2004; Pautasso & Gaston, 2005;

Currie, 2006; O’Brien, 2006; Allen et al., 2007; Davies et al.,

2007; Hawkins et al., 2007a; Field et al., 2009).

We suggest that the concept of carrying capacity for species

richness (hereafter SK) is highly relevant to the conservation of

biodiversity. Human activities may alter biodiversity from the SK

set by ecosystem properties, typically reducing the number of

native species. Knowledge of the spatial distribution of SK would

provide a context for assessing the effects of human activities

relative to the biophysical potential of the ecosystem. It would

also enhance prioritizing conservation actions, especially with

regards to locations for protection or restoration. We are

unaware, however, of previous attempts to map SK as a context

for conservation. The increased availability of fine-resolution

data on climate, ecosystem productivity, habitat heterogeneity

and land use makes more feasible the estimation of SK.

The goal of this paper is to quantify the SK of native breeding

landbirds across North America to provide a basis for applica-

tions to conservation. We use a comprehensive set of hypotheses

developed from previous studies of bird richness and biophysi-

cal factors to guide the analyses (Table 1). We also use the most

recent and probably most accurate, remote sensing and simula-

tion modelling products to represent the biophysical factors.

The analysis was done for samples with relatively low-intensity

Table 1 Hypotheses on relationships between biophysical factors and breeding bird species richness for North America or globally. Codes
are not listed for those hypotheses not tested in this study.

Hypothesis Typical predictors Code Expected relationship References

Kinetic energy Temperature (mean annual) aTemp Positive, positive

flattening, unimodal

H-Acevedo & Currie (2003), Davies

et al. (2007), Kalmar & Currie (2007)

Temperature (mean June) eTemp Carnicer & Díaz-Delgado (2008)

Potential evapotranspiration PET Currie (1991), Hawkins et al. (2003)

Inter-annual variation in temperature Not tested Negative H-Acevedo & Currie (2003)

Water Precipitation (mean annual) aPPT Positive, positive

flattening, unimodal

H-Acevedo & Currie (2003), Hawkins

et al. (2003), Kalmar & Currie (2007)

Precipitation (mean June) ePPT Carnicer & Díaz-Delgado (2008)

Evapotranspiration (annual sum) ET Hawkins et al. (2003), Hawkins et al.

(2007a,b)

Precipitation inter-annual variation

(coefficient of variation of annual

precipitation)

Not tested Positive H-Acevedo & Currie (2003)

Potential

Energy

Normalized difference vegetation index

(NDVI; mean annual or mean June)

Not tested Positive, positive

flattening, unimodal

Hurlbert & Haskell (2003), Hurlbert

(2004), Pautasso & Gaston (2005),

Evans et al. (2006), Davies et al.

(2007)

Fraction of photosynthetically active

radiation (FPAR)

Not tested Coops et al. (2009)

Gross primary productivity (mean

annual)

aGPP Phillips et al. (2008, 2010)

Gross primary productivity (June) eGPP Hurlbert & Haskell (2003), Hurlbert

(2004), Huston & Wolverton (2009)

Seasonality (June GPP/annual GPP) sGPP Positive Coops et al. (2009)

Inter-annual variation in GPP %SCV Negative Rowhani et al. (2008)

Habitat

complexity

Elevation variation ElevCV Positive H-Acevedo & Currie (2003), Davies

et al. (2007)

Cover type variation CTV Positive H-Acevedo & Currie (2003), Davies

et al. (2007)

Percentage tree PTree Positive Hurlbert (2004)
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land use in order to minimize the confounding effect of human

activities. We also overlay the distributions of human popula-

tion density and land allocation to gauge the potential for

human influence on SK. In a subsequent paper, we will examine

the type and intensity of human activity that has altered species

richness from the ecosystem SK and use the results to guide

the prioritization of locations for protection and restoration.

Specific objectives are:

1. To test hypotheses on relationships between biophysical

factors and breeding native landbird richness across portions of

North America not heavily influenced by land use.

2. To evaluate various single- and multiple-predictor models to

determine the model that best explains landbird richness across

the continent.

3. To predict SK across North America based on this best model

for native landbirds.

4. To quantify spatial patterns of land allocation and human

density relative to SK.

METHODS

Avian data

Native landbird species richness was derived from species count

data collected by the USGS Breeding Bird Survey (BBS) (Sauer

et al., 2008). BBS survey routes are 39.4 km linear routes that are

randomly located along secondary roads throughout the USA

and Canada. Up to 4000 routes have been sampled since 1966.

See Bystrak (1981) for details of methods.

We used BBS data for the years 2000–04 to coincide with the

years available for predictors derived from the MODIS satellite

sensor and with our previous studies (Phillips et al., 2008, 2010).

Routes that were sampled in one or more years within this time

period were included (Fig. 1). This was done after an analysis

that found that neither estimated nor observed species richness

varied with number of years sampled within or across ecore-

gions (bird conservation regions, BCRs; NABCI, 2000). Land-

use change has been shown to influence both bird diversity at

landscape scales and satellite-derived measures of vegetation

(McKinney, 2002; Zhao et al., 2007). To minimize this human

influence, we used routes that contained fewer than 50% of cells

in urban and built-up, cropland/natural vegetation mosaic, and

cropland classes (Friedl et al., 2002). We confirmed no signifi-

cant effect of land use on bird species richness along these routes

by determining that percentage of BBS route in the human-

dominated land-use class did not contribute significantly to the

best biophysical model.

We excluded aquatic, exotic, raptor and nocturnal bird

species. Aquatic species were excluded because they might be

more strongly limited by hydrology than energy. Additionally we

excluded BBS routes that were located within 10 km of the coast

because they may be dominated by aquatic species and possibly

reduced in richness by proximity to non-terrestrial areas. We

also assumed that non-native species may be more dependent

upon human habitats and we omitted species identified as

non-native to a BCR. Diurnal raptors and nocturnal birds are

known to be inadequately sampled with BBS methods, so these

families of birds were omitted.

The BBS data are known to have various biases (see Link &

Sauer, 1998). However, these data are often used for regional to

continental bird monitoring because they are the most com-

plete and accurate data available. A source of error in using BBS

data to derive species richness is the lack of complete detect-

ability of species that occur along a route (Boulinier et al.,

1998). Nichols et al. (1998) developed a series of estimators

based on capture–recapture theory to account for incomplete

detection among species. We used the comdyn software (Hines

et al., 1999) to estimate route-level avian richness based on a

closed population model that accounts for heterogeneity in

species detection. The comdyn approach requires assumptions

that may not be met on some BBS routes (e.g. closed popula-

tions, equal detection probabilities along routes). Hence, we

analysed both observed and estimated species richness. We

evaluated the correlations between each predictor variable and

observed versus estimated richness using both the Pearson

product moment correlation and the Spearman rank correla-

tion (see Appendix S1 in Supporting Information). We found

that the results for mean estimated bird species richness were

very similar in ordering of the correlates, with the amount of

variation explained being about 18% lower than for mean

observed bird species richness. The scatterplot of estimated and

observed richness indicated that the correlation was stronger

when fewer species were observed and that richness was esti-

mated to be higher when more species were observed (see

Appendix S2). We report the values for mean observed richness

in the Results and those for mean estimated richness are pre-

sented in the Appendices S1 and S2.

Predictor data

The sources of data used to represent the biophysical predictors

(Table 2) were selected to be the best available with regard to

availability across the study area, grain of 1 km or less, repre-

sentative of the period 2000–04, published methods and avail-

ability of accuracy assessments (see Table 2 for the definition of

the predictor data codes). These datasets were derived either by

extrapolating among field measurement sites (aTemp, eTemp,

aPPT, ePPT, ElevCV) or simulation modelling of biophysical

processes using input data from meteorological stations, satel-

lite spectral data and land-cover information (ET, PET, aGPP,

eGPP, sGPP, CTV, PTree). GPP was used because a previous

analysis (Phillips et al., 2008) indicated that it was a better pre-

dictor of bird species richness than other MODIS-derived

indices of plant productivity (i.e. normalized difference vegeta-

tion index, NDVI). ET and PET were obtained as beta versions

of what are likely to become standard MODIS products. His-

toric, evolutionary and geometric hypotheses were not

included because they have generally been found to explain

relatively little additional variation in current species richness

(Hawkins & Porter, 2003; Kerr et al., 2006; Kalmar & Currie,

2007; Currie & Kerr, 2008).

Carrying capacity for species richness
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These data were averaged by month or year over the period

of 2000–04. These averages were then summarized annually

or for the breeding season month of June as means, sums or

coefficients of variation among months consistent with the

hypotheses in Table 1. Inter-annual variation in temperature

and precipitation were not included in the analysis because

adequate data were not available for Canada. Ecologically-

relevant primary productivity (eGPP) (sensu Huston &

Wolverton, 2009) was represented as the sum of GPP for June

Seasonality of primary productivity (sensu Coops et al., 2009)

was defined as June GPP sum/annual GPP sum. Interannual

variation in available energy (%SCV) was quantified as a nor-

malized sum of a monthly change vector of GPP as defined in

Rowhani et al. (2008). This index is higher in locations with

greater interannual variation in timing, duration, and peak

growing season GPP. Cover type variation (CTV) was calcu-

lated as the number of natural vegetation cover classes (e.g.

evergreen forest) represented along the BBS route. We also

included among the predictors an index of moisture calculated

as PPT/PET.

To associate the BBS route with the 1-km raster satellite data,

all raster cell values that overlay the digitized BBS route paths

were summarized as a mean or coefficient of variation of 1-km

cells that intersected the digital path of each BBS route. This

approximately 40-km footprint was the unit of analysis, and this

summary across routes provided a species richness average asso-

ciated with a summarized predictor value for each BBS route.

Thus, each route was considered a sample.

Figure 1 Predicted carrying capacity for species richness (SK) for portions of the study area not significantly influenced by human land
use. Spatial data are in the Lambert azimuthal equal area projection.
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Land allocation data were inadequate for Canada; hence,

analyses of this predictor were done only in the 48 contiguous

US states. Three land allocation classes were derived from the

Conservation Biology Institute database (CBI, 2008): federal

protected (national parks, wilderness areas), other federal and

private. The CBI polygons were converted to 1-km grid cells to

complement the carrying capacity data. Human population

density was derived from the global LandScan database

(LandScan, 2007).

Statistical analyses

Regression-based model selection techniques (Burnham &

Anderson, 1998) were used to test previous hypotheses

(Table 1) and to identify best models predicting landbird rich-

ness. Regression techniques assume that residuals (error terms)

are independent, normally distributed and with constant vari-

ance. We first evaluated if univariate models between the

response variable and each predictor variable were linear or

best fit with a second-degree polynomial. We then examined

X–Y plots for outlier observation and histograms for skew in

the predictor data. Where the predictor data included outliers

or were skewed in distribution, we transformed the predictor

(log10), regressed the response variables on the predictor data

and inspected diagnostic plots (R v.2.9.2) for homogeneity of

variance and normality of the residuals, and leverage of indi-

vidual observations. We dropped the observation with the

highest mean aGPP because it had excessive leverage. We also

log10-transformed %SCV and human population density to

improve normality of the residuals. With these changes all

analyses met the assumptions of homogeneity of variance and

normality of the residuals. Linear and quadratic forms were

evaluated for each predictor and the form resulting in the best

model used in subsequent analyses.

For the assessment of the best overall models (objective 2) all

predictors were considered except those found to be highly cor-

related (r > 0.90). ET was found to be highly correlated with

aGPP (r > 0.98) and was dropped from the analysis.

All analyses were performed in R (v.2.9.2) and Spatial Analy-

sis for Macroecology (sam) (v.2.0) (Rangel et al., 2006). The

models were analysed using ordinary least squares regression

techniques. The Akaike information criterion (AIC) was the

primary criterion for determining best models (Burnham &

Anderson, 1998). The AIC provides an estimate of the distance

Table 2 Description of predictor data used in this study. Additional predictor variables were created from these base data layers.

Hypothesis Theme and source Code Definition

Duration, grain, extent of

source data

Kinetic energy Temperature (WorldClim;

http://www.worldclim.org)

aTemp

eTemp

Average monthly mean annual (aTemp)

and June (eTemp) temperatures (oC)

1950–2000 mean monthly,

1 km, global

Potential evapotranspiration (MODIS;

https://lpdaac.usgs.gov/)

PET Discharge of water from the Earth’s

surface if water supply was unlimited

(kg m–2 s–1)

2000–06 8-day mean sum,

1 km, global

Water balance Precipitation (WorldClim;

http://www.worldclim.org)

aPPT

ePPT

Average monthly mean annual and June

precipitation (mm)

1950–2000 mean monthly,

1 km, global

Evapotranspiration (MODIS;

https://lpdaac.usgs.gov/)

ET Discharge of water from Earth’s surface

from water bodies and vegetation

(kg m–2 s–1)

2000–06 8-day mean sum,

1 km, global

Moisture index PET/PPT Ratio of PET to PPT 2000–06 8-day mean sum,

1 km, global

Potential

energy

Gross primary productivity (MODIS;

https://lpdaac.usgs.gov/)

aGPP

eGPP

Rate of new organic matter production

by photosynthesis, without respiration

costs expressed as average monthly

mean annual and June (gC m–2)

2000–04, 1 km, global

Seasonality sGPP June GPP/annual GPP 2000–04, 1 km, global

Inter-annual variation in GPP %SCV Normalized sum of a monthly change

vector of GPP

2000–04, 1 km, global

Habitat

complexity

Elevation variation (GTOPO30;

http://eros.usgs.gov/)

ElevCV Coefficient of variation in distance in

metres above sea level (m)

Static, 1 km, global

Cover type variety (MODIS;

https://lpdaac.usgs.gov/)

CTV Number of natural cover types present 2002, 1 km, North America

Vegetation continuous fields (MODIS;

https://lpdaac.usgs.gov/)

PTree

PHerb

PBare

Percentage of pixel covered by tree, herb

or bare ground cover

2002, 1 km, global

MODIS, Moderate Resolution Imaging Spectroradiometer; GTOPO30, Global 30 Arcsecond Elevation Data Set.

Carrying capacity for species richness
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between the specified model and some full truth or reality. We

used the difference in AIC values (DAIC) and Akaike weights

of evidence (AIC weights) to assess relative model strength

(Burnham & Anderson, 2002). We interpreted the cumulative

Akaike weights as relative probabilities of importance. However,

AIC only provides a measure of model strength relative to other

models being examined; it does not inform on the overall model

goodness of fit. Hence, we used the coefficient of determination

(R2) as a measure of how much variation in the response vari-

ables was explained by the best model.

Semi-variograms were used to look for spatial dependence of

the residuals, as spatial autocorrelation violates the assumption

of independent residual values in regression analyses (Pinheiro

& Bates, 2000). When spatial autocorrelation was found, the

spatial structure was modelled and included in the models.

When spatial autocorrelation was lacking, we concluded that

after accounting for the predictors used in these models, the

residuals from nearby routes were no more strongly correlated

than those from distant routes, as is commonly found in studies

at such broad spatial scales (Hawkins et al., 2007c).

We used the best model to extrapolate bird species richness

across the study area at the coarsest resolution of the input data

(Objective 3) based on the values of the biophysical predictors.

For predictor variables involving coefficient of variation,

number of categorical classes and percentage of a land-cover

class, a neighbourhood was used to calculate the 1-km cell value.

This neighbourhood analysis was done within a 6 km ¥ 6 km

moving window, which is approximately equivalent to the

area of the BBS route. Areas with human-derived land-cover

types (agriculture, suburban and urban) were excluded from

prediction of SK.

The analyses above were done using a randomly selected 75%

of the BBS routes. To test the predictive accuracy of the extrapo-

lation, the model developed with the 75% of the routes was used

to predicted richness for the 25% routes held back. This pre-

dicted richness was regressed on observed richness for these

routes as a measure of confidence that could be placed in the

model predictions.

To facilitate interpretation of the results we summarized the

predicted SK by BCRs. All cells that were excluded from analysis

due to the impact of human land use were represented as ‘no

data’ cells and therefore had no impact on these calculations.

The relationship between human density and predicted SK

was assessed using the regression-based model selection

methods as described above. Because human density is posi-

tively correlated with human land-cover types and thus loca-

tions of high human density were not included in the prediction

of SK, we analysed the relationship between human density and

predicted carrying capacity at the BCR level. This addressed the

question of whether BCRs with relatively high human density

also had relatively high predicted SK in the portions of them not

altered by human activities.

The distribution of predicted SK among land allocations was

evaluated statistically using a randomly selected sample of 1000

points within each land allocation class. Because these data were

not normally distributed, we used the Kruskal–Wallis test

(Siegel, 1956) to determine if medians differed among the land

allocation classes.

RESULTS

Of the total of 3476 BBS routes, 1326 met the criteria for this

study. These routes were sampled for one or more years during

2000–04, were more than 10 km from the coast and contained

fewer than 50% human-dominated cells.

Objective 1: hypothesis testing

Predictors of potential energy and water balance had stronger

univariate relationships with observed bird species richness than

predictors of kinetic energy and habitat complexity. Moreover,

best models were more often positive quadratic models than

linear models. The two strongest correlates with bird species

richness were aGPP (adj. R2 = 0.67) and ET (adj. R2 = 0.67) both

with quadratic models (AIC = 9309 and 9325, respectively)

(Table 3). Models of intermediate strength included aPPT, eGPP,

pTree and pBare (adj. R2 = 0.52 to 0.55). The weakest models

included aTemp, PET, pHerb (adj. R2 < 0.04).

Objective 2: best model

The best overall model for observed species richness included

aGPP, the aGPP square term, %SCV and PET. The addition

of %SCV and PET to the polynomial aGPP model (best univari-

ate model) increased the variation explained from 68% to

69.5% and decreased the model AIC value from 6931 to 6900.

Table 3 Relationships between mean observed landbird species
richness and each of the predictor variables. Codes are defined in
Tables 1 and 2.

Hypothesis Code Model Adj. R2 AIC

Kinetic energy aTemp Quadratic 0.039 10708

eTemp Quadratic 0.043 10703

PET Quadratic 0.020 10736

Water balance aPPT Quadratic 0.554 9708

ePPT Linear 0.265 10362

ET Quadratic 0.666 9325

PET/PPT Quadratic 0.419 10044

Potential energy aGPP Quadratic 0.667 9309

eGPP Linear 0.540 9736

eGPP Quadratic 0.078 10654

%SCV Linear (negative) 0.432 10015

Habitat complexity Elev Linear 0.138 10563

ElevCV Linear 0.170 10514

CTV Quadratic 0.196 10472

pBare Linear 0.519 9794

pHerb Linear 0.012 10743

pTree Linear 0.531 9762

AIC, Akaike information criterion.
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Semi-variograms indicated that spatial autocorrelation of

residuals was present in the best model. Including the spatial

structure in the best models decreased the AIC value from 6900

to 6809, so spatial structure was included. The best model for

estimated species richness included the same terms as for

observed richness and included spatial structure and had an AIC

of 7628.

The validation of the best model indicated that the model

accuracy was high and it predicted richness well. The correlation

coefficient between predicted values and the holdback data was

0.87. The simple linear regression analysis indicated that 76% of

the variation in the held back data was explained with the pre-

dicted values. The paired t-test indicated that there was no sig-

nificant difference between the observed values and predicted

values of the 25% of data [n = 332, t = 0.48, P (one-tail) � 0.32].

Estimate of the mean error was –0.195 and the 95% confidence

interval included zero (n = 332, t = 0.48, P > 0.629), indicating

high model precision and lack of significant bias.

Objective 3: extrapolation of predicted SK

Northern Canada and Alaska and portions of Mexico were

outside the range of the calibration data and excluded from the

area to which the best model was applied. Predicted SK was

lowest at higher latitudes and in the arid west, intermediate in

the Rocky Mountains, the mixed wood zone of Canada and in

the Mid West of the USA, and highest in the eastern USA, the

Great Lakes region of the USA and Canada, and along the west

coast of the USA (Fig. 1). Summarizing by BCRs, variation in

predicted SK was inverse to mean values, with regions low in

mean predicted biophysical potential having high variation

(Table 4).

Objective 4: relationship with land allocation and
human settlement

The spatial distribution of human population density was

similar to that of predicted SK (Fig. 2). SK was positively related

to population density within BCRs (adj R2 = 0.52). Land alloca-

tion was also non-random relative to SK. Federal protected areas

and other federal lands were both significantly lower in pre-

dicted SK than private lands (protected, W = 719 397, P-value <
0.001; other federal, W = 292 852, P-value < 0.001) (Fig. 3).

DISCUSSION

The hypothesis that ecosystems differ in the number of species

they can potentially support is not widely recognized in modern

ecology. This situation is surprising given that in his classic

paper, ‘Homage to Santa Rosalia or why are there so many kinds

of animals?’, Hutchinson (1959) suggested that available energy

(mediated by the favourability of physical conditions) and

habitat diversity are key factors that limit species richness. This

theme was elaborated on by MacArthur & MacArthur (1961),

Connell & Orias (1964) and MacArthur (1972), among others.

By the early 1980s Brown (1981) stated that the central impor-

tance of energetics to species diversity had largely been ignored.

He attributed this to ecologists subdividing into one of two

schools: ecosystem ecologists who studied whole systems and for

whom species diversity was not of central interest; and evolu-

tionary ecologists who concentrated on the ecological and evo-

lutionary interactions between species.

Building on the earlier work of Hutchinson (1959) and

others, Brown (1981) argued that diversity is best understood by

considering ‘capacity rules’ and ‘allocation rules’. The capacity

rules define the physical characteristics of environments which

determine their capacity to support life (such as energy and

heterogeneity in the physical environment). Allocation rules

involve how available energy is apportioned among species (e.g.

species interactions). The concept of carrying capacity for

species richness emerged from the elaboration by Brown et al.

(2001) on the capacity rules mentioned above. They tested this

SK hypothesis with three primary data sets and a review of pub-

lished studies which tracked species richness over decades to

millennia. They concluded that richness has remained remark-

ably constant over time despite large changes in composition,

and that species diversity is an emergent property of ecosystems

that is often maintained within narrow limits. The mechanism

they proposed to account for this regulation requires relatively

constant levels of productivity and resource availability and an

open system with opportunity for compensatory colonizations

and extinctions.

Progress in satellite monitoring and ecosystem modelling and

the resulting global data sets has fuelled in recent decades a

large number of studies of geographic variation in biodiversity

and potential biophysical drivers (see Table 1). These studies

have largely confirmed that species richness in natural systems

follows consistent patterns of variation geographically which

are strongly correlated with biophysical factors. Observing such

correlations led to speculation that the relationships were

causal. For example, O’Brien (1998) wrote, ‘The most intriguing

aspect of species richness is the existence and persistence

through time of predictable global patterns of increasing

diversity. . . . Although the absolute number of species can

change over time, due to speciation, extinction or dispersal

events, the persistence of predictable patterns tells us that such

events and their consequences are somehow geographically

constrained.’ (p. 379). She hypothesized that one leading con-

trolling factor was climate-based water–energy dynamics result-

ing from the Earth’s sphericity and tilt and how they affect the

distribution, amount and duration of photosynthesis, and sub-

sequent biological activity.

The primary debate in more recent years has been on which

factors most strongly regulate biodiversity. Consensus has

emerged that the leading factors are kinetic energy (heat),

potential energy (food), habitat heterogeneity and available

water (see Introduction). Some studies have found that the rela-

tive influence of these factors on biodiversity varies among

biogeographic realms (e.g. Davies et al., 2007) while others con-

clude that a small set of factors adequately predict species rich-

ness across realms (e.g. Kalmar & Currie, 2007). Nearly all of

these studies have ignored the potential influence of human

Carrying capacity for species richness
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activities on species richness, assuming that human effects were

minor at the spatial scales used in the analyses. The few that have

quantified the human effect have found it to be significant

(Davies et al., 2007; Pidgeon et al., 2007), suggesting that studies

of SK should control for human effects.

For native breeding landbirds across the portions of North

America less impacted by humans we found that aGPP and ET

were the strongest predictors of species richness. GPP is the

production of organic compounds from CO2, principally by

photosynthesis. ET is the sum of evaporation and plant transpi-

ration from the Earth’s surface and is a function of temperature,

water balance and vegetation. Thus, these processes are inter-

dependent and highly correlated (Mu et al., 2007). While several

studies (see Table 1) have emphasized the importance of kinetic

energy in predicting biodiversity, we found aTemp and PET to

be weak predictors. Even in northern regions, where tempera-

ture is probably limiting, we found that GPP explained more

variation in species richness than the kinetic energy variables.

PPT explained relatively high variation in species richness, but

again, not as much as GPP or ET. This was true even in regions

of North America with relatively low PPT. In total, our results

are consistent with the hypothesis that potential energy (e.g.

food resources) is the leading driver of bird species richness in

North America, with habitat complexity, water and kinetic

energy being either proximate (via GPP) or secondary ultimate

contributors. With regard to potential energy, hypotheses that

either ecologically relevant productivity (seasonal) (Huston &

Wolverton, 2009) or seasonality in productivity (Coops et al.,

2009) better explain species richness than annual productivity

were not supported.

Table 4 Predicted carrying capacity for species richness (SK) summarized by bird conservation region (BCR).

BCR name BCR code

Number of

BBS routes SK mean SK CV

Percentage of

BCR in 20%

max SK class

Percentage

of BCR in

private land

Arctic plains and Mountains 3 4 14.9 0.24 0 0

North-western forest 4 51 23.7 0.33 0 0

Northern Pacific rainforest 5 38 37.6 0.35 0.28 17

Boreal taiga plains 6 29 38.3 0.24 0.03 0

Taiga shield and Hudson Plain 7 3 24.5 0.34 0 0

Boreal softwood shield 8 14 39.6 0.18 0.08 0

Great Basin 9 158 29.9 0.3 0.07 27

Northern Rockies 10 155 34.0 0.3 0.06 19

Prairie potholes 11 8 26.0 0.23 0 41

Boreal hardwood transition 12 94 48.3 0.06 0.68 18

Lower Great Lakes 13 5 50.4 0.05 0.89 41

Atlantic northern forest 14 74 49.7 0.04 0.89 24

Sierra Nevada 15 25 43.1 0.21 0.45 23

Southern Rockies 16 150 31.3 0.26 0.03 27

Badlands and prairies 17 40 26.2 0.21 0.01 70

Shortgrass prairie 18 77 28.2 0.16 0 90

Central mixed grass prairie 19 18 36.8 0.11 0 98

Edwards Plateau 20 6 46.5 0.08 0.47 97

Oaks and prairies 21 13 46.4 0.07 0.43 97

Eastern tallgrass prairie 22 9 47.2 0.06 0.45 97

Prairie woodland transition 23 2 50.8 0.05 0.9 93

Central hardwoods 24 15 50.9 0.02 0.99 91

West Gulf coastal plain 25 41 47.7 0.09 0.7 88

Mississippi alluvial valley 26 0 46.0 0.09 0.49 93

South-eastern coastal plain 27 29 46.0 0.11 0.47 92

Appalachian Mountains 28 101 50.7 0.03 0.96 84

Piedmont 29 26 49.7 0.05 0.83 95

New England mid-Atlantic coast 30 4 50.9 0.06 0.91 79

Peninsular Florida 31 2 46.4 0.15 0.52 73

Coastal California 32 23 45.2 0.15 0.43 67

Sonoran and Mojave deserts 33 43 27.9 0.24 0.01 10

Sierra Madre Occidental 34 25 42.0 0.22 0.37 6

Chihuahuan Desert 35 38 33.6 0.22 0.07 22

Tamaulipan brushlands 36 5 43.1 0.1 0.17 40

Gulf coastal prairie 37 0 46.1 0.1 0.47 87

CV, coefficient of variation; BBS, Breeding Bird Survey.
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The best overall model was a small improvement over the

polynomial aGPP model. It included inter-annual variation in

GPP (%SCV) and aPET. Because the contribution of %SCV and

aPET to the overall model is small, an ecological explanation for

their inclusion in the best model is difficult to explain.

Our finding that potential energy was the leading predictor of

breeding bird species richness in North America is consistent

with the findings of previous studies (e.g. H-Acevedo & Currie,

2003; Hurlbert & Haskell, 2003; Hurlbert, 2004; Evans et al.,

2006; Carnicer & Díaz-Delgado, 2008; Rowhani et al., 2008;

Phillips et al., 2010). These findings for North America are not

necessarily expected to apply to other continents nor be the best

predictors globally. Davies et al. (2007) found that topographical

variability and temperature were the most important global pre-

dictors of avian species richness in multipredictor models,

largely due to the high richness of birds in mountain areas in the

tropics. At continental scales, they found that the best models

differed between biogeographic realms, as is expected because

they represent subsets of the global gradients in biophysical

factors. Hence, the factors that regulate SK probably vary

geographically.

Our map of predicted SK across North America indicated that

the locations high in predicted richness were primarily in the

eastern USA, south-eastern Canada and along the west coast of

the USA. Grouping the 1-km mapping units by ecoregion

revealed a strong positive relationship between predicted carry-

ing capacity for bird species richness and human population

density. Davies et al. (2007) also found a positive relationship

between human population density and current species richness

in a global analysis at a 1° resolution. They asserted that this was

Figure 2 Human population density across the study area. Spatial data are in the Lambert azimuthal equal area projection.
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evidence that higher levels of human density and species rich-

ness tend to be favoured by similar kinds of environments. At

finer spatial scales native bird species richness is known to be

negatively related to human density and land-use intensity

(McKee et al., 2004; Scharlemann et al., 2005; Pidgeon et al.,

2007). Thus, actual native species richness is probably depressed

by human activities in the more densely settled portions of

North America, but the magnitude of this depression is cur-

rently not well known. Our finding that protected areas and

other federal lands tend to be located in areas low in predicted SK

and that private lands are biased in location towards areas higher

in SK indicate the substantial challenge of conserving native bird

species in the face of human population expansion and land-use

intensification.

The SK hypothesis makes the simplifying assumption that

the regional pool of species available to colonize a local site is

constant (Brown et al., 2001). Recent studies have quantified

regional versus local contributions to local species diversity

and concluded that both explain variance in local diversity

(Harrison & Cornell, 2008; White & Hurlbert, 2010). Ultimately,

prediction of SK will probably be most accurately done by

including the regional species pool effect in the model.

In the case of breeding birds in North America, White &

Hurlbert (2010) found that regional richness accounted for

additional variation in a model predicting local richness as a

function of local environmental variables; however, the effect

was small relative to the variance explained by the local environ-

mental factors. They also found that inclusion of spatial auto-

correlation in the model still further reduced the variance

explained by regional factors. This suggests that our analysis

based on local factors and including spatial autocorrelation

would be improved, but not greatly so, by also considering

regional species pool effects. White & Hurlbert (2010) further

suggest that analyses based on local data explain the richness of

the core group of species that are actually maintained at the site,

while regional diversity affects the occasional species that dis-

perse in from surrounding regions. Hence, applications of the SK

approach may choose to emphasize core or occasional species

more or less by how local versus regional richness is used in the

modelling.

Scope and limitations

Correlational studies over large geographic areas such as this

one are subject to various limitations. While our results support

the hypothesis that SK is regulated by primary productivity and

climate. These results are necessary, but not sufficient, to infer

causation, due to potential unknown confounding factors.

Nonetheless, Kerr et al. (2007) argue that correlational macro-

ecological studies such as this one have high value for better

understanding broad-scale ecological and human impact ques-

tions. Another limitation is that our best models explain

50–70% of the variance in species richness, leaving 30–50% of

the variation unexplained. This is not surprising because biodi-

versity is known to be influenced by a large number of potential

factors (Huston, 1994). Potential contributing factors not con-

sidered in this study are large-scale historic factors such as tec-

tonic processes, glaciation, past climate change and the

phylogenetic histories of groups influenced by these events (e.g.

Latham & Ricklefs, 1993). Such factors are likely to influence the

regional pool of species and could be better accounted for using

the methods of White & Hurlbert (2010). Fine-scale current

factors also not considered are disturbance, succession and

habitat structure. Measurement error in the predictor and biodi-

versity response variables is also likely to contribute variation to

the results. Even so, the variation explained by our best models
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is high relative to other studies done at the relatively fine

resolution of 1 km (Hurlbert & Haskell, 2003; Hurlbert, 2004;

Carnicer & Díaz-Delgado, 2008). Our maps of predicted SK are

highly relevant to conservation applications, which must rely on

the best available current knowledge and data. Finally, our

results for native landbirds and patterns of SK are likely to vary

among taxonomic groups.

Conservation implications

Knowledge of the current spatial distribution of SK and of

human impacts can provide a strong basis for conservation

planning, particularly for prioritizing locations for protection

and for restoration. At the continental scale, locations of high SK

and low human impact should be high priorities for protection

because they represent continental hotspots for native species.

Our analyses show that such locations are prevalent across

North America, especially in the eastern USA, but largely lie

outside of current protected areas (e.g. Fig. 4). Similar work by

Myers et al. (2000) on the distribution of global hotspots has

heavily influenced the creation of protected areas and other

conservation strategies. Previous efforts to map biodiversity

hotspots in North America were done at county to ecoregion

scales and did not separate the effects of human activities

(Dobson et al., 1997; Ricketts et al., 1999). The relatively

fine spatial scale of our analysis (1 km) allows for conservation

Figure 4 Map illustrating the locations of hot spots of predicted carrying capacity for species richness (SK) (SK � 93% of maximum)
relative to land allocation and land use. Hot spots on private lands may be high priorities for protection through conservation easements or
other means. Spatial data are in Lambert azimuthal equal area projection.
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planning more at the parcel-level scale that is used for conser-

vation easements and other specific strategies. Also, by separat-

ing the effect of ecosystem SK from the effects of human land

use, the relatively natural areas within biodiversity hotspot eco-

systems can be targeted for protection.

Locations of high SK and high human impacts may be high

priories for restoration. By reducing the negative human

impacts, native species richness is expected to move on a trajec-

tory towards the higher natural carrying capacity. The opportu-

nities to benefit native biodiversity through restoration are

especially great in North America because human populations

and land-use intensity are disproportionately high in the areas

of high SK. Many conservation programs have traditionally been

focused on wilderness landscapes where most native species still

persist, such as in the mountainous west and the northern lati-

tudes. The distribution of protected areas towards locations of

lower SK tends to reinforce the perspective that conservation is

most important in the less impacted regions. As important as

conservation of wilderness is, our findings emphasize that con-

servation and restoration can also have high payoffs in areas

such as the Mid Atlantic, Great Lakes and New England regions

that support high human population densities. Considerable

progress has been made in recent years in strategies for conser-

vation that are practical for the private lands that dominate these

areas of high SK. These include: incentive-based initiatives in

which landowners are paid to not develop their lands using

either government funds approved by voters (e.g. open space

bonds) or funds donated to non-governmental conservation

organizations; environmental education programmes to help

citizens minimize negative impacts on nature; and ‘back yard

conservation’ programmes to instruct homeowners on how to

manage their properties to attract native species (Rosenzweig,

2003). Knowledge of the spatial distribution of SK could be used

to motivate such incentive-based conservation among people

living in areas where such efforts are likely to have a particularly

large payoff.

In addition to applications at the continental scale, knowledge

can be used to guide conservation within regions. Local govern-

ment, land trusts and other non-governmental organizations

face prioritizing locations for conservation easements, restora-

tion and development (e.g. the Wildlands and Woodlands

Project in New England, http://www.wildlandsandwoodlands.

org). Predictions of SK and land use at the 1-km scale are very

useful for such analyses. In the Greater Yellowstone ecosystem,

for example, Gude et al. (2007) overlaid maps of potential bird

species richness and other indices of biodiversity with current

and future land use to identify biodiversity hotspots that were

most likely to be developed in the coming decades. The results

have been used to guide locations of conservation easements. SK

is also highly relevant for predicting the effects of future climate

change on biodiversity. Climate change in some parts of North

America is likely to be sufficient to cause change in the SK. Brown

et al. (2001) observed that species richness does not always

remain constant: ‘We expect that richness will be regulated

within relatively narrow limits, only so long as productivity of

the local site remains relatively unchanged and the environmen-

tal conditions remain within the tolerances of a sufficient

number of species in the regional pool.’ p. 329). Knowledge of

the factors regulating SK provides a basis for projecting change in

species richness under future climates (e.g. Currie, 2002;

Lemoine et al., 2007).
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