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Abstract. Many protected areas may not be adequately safeguarding biodiversity from
human activities on surrounding lands and global change. The magnitude of such change
agents and the sensitivity of ecosystems to these agents vary among protected areas. Thus,
there is a need to assess vulnerability across networks of protected areas to determine those
most at risk and to lay the basis for developing effective adaptation strategies. We conducted
an assessment of exposure of U.S. National Parks to climate and land use change and
consequences for vegetation communities. We first defined park protected-area centered
ecosystems (PACEs) based on ecological principles. We then drew on existing land use,
invasive species, climate, and biome data sets and models to quantify exposure of PACEs from
1900 through 2100. Most PACEs experienced substantial change over the 20th century
(.740% average increase in housing density since 1940, 13% of vascular plants are presently
nonnative, temperature increase of 18C/100 yr since 1895 in 80% of PACEs), and projections
suggest that many of these trends will continue at similar or increasingly greater rates (255%
increase in housing density by 2100, temperature increase of 2.58–4.58C/100 yr, 30% of PACE
areas may lose their current biomes by 2030). In the coming century, housing densities are
projected to increase in PACEs at about 82% of the rate of since 1940. The rate of climate
warming in the coming century is projected to be 2.5–5.8 times higher than that measured in
the past century. Underlying these averages, exposure of individual park PACEs to change
agents differ in important ways. For example, parks such as Great Smoky Mountains exhibit
high land use and low climate exposure, others such as Great Sand Dunes exhibit low land use
and high climate exposure, and a few such as Point Reyes exhibit high exposure on both axes.
The cumulative and synergistic effects of such changes in land use, invasives, and climate are
expected to dramatically impact ecosystem function and biodiversity in national parks. These
results are foundational to developing effective adaptation strategies and suggest policies to
better safeguard parks under broad-scale environmental change.
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INTRODUCTION

Protected areas (PAs) are defined as ‘‘areas of land

and/or sea especially dedicated to the protection and

maintenance of biological diversity. . .’’ (Dudley and

Stolton 2008). As such, PAs are cornerstones of the

global strategy for safeguarding nature (Possingham et

al. 2006:510). The rationale for the PA approach is that

restricting human activities within protected areas will

allow natural processes and native species to persist

(Gaston et al. 2008). This approach recognizes that some

native species will likely be reduced on the lands needed

by humans for food, shelter, and other resources, and

thus PAs are set aside as critical strongholds for such

species and their habitats. Since the PA concept began to

be widely applied over the last century, however,

evidence has increased that human activities are altering

the biosphere in the form of climate change, land use

intensification, pollution, spread of invasive species, and

other factors (IPCC 2007). Recognition of human-

induced global change raises questions about the

viability of the core concept of PAs as areas relatively

free of human influence (Caro et al. 2012).

Human impacts on PAs can be conceptualized as

global and regional (Fig. 1). Human-induced global

change may be manifest within PAs as changes in

climate or pollution that directly influence ecosystem

processes and organisms in the PAs. Similarly, human

transport of species outside their native ranges can result

in noxious nonnative species establishing in PAs and

displacing native species. The possible influence on PAs

Manuscript received 16 May 2013; accepted 17 July 2013;
final version received 27 August 2013. Corresponding Editor:
R. L. Knight.

6 E-mail: hansen@montana.edu

484



of regional factors such as land use intensification in the

surroundings is less obvious because it is occurring

outside of PA boundaries. Ecologists have increasingly

learned, however, that the properties of ecosystems and

species populations are dependent on their spatial

dimensions (Chapin et al. 2011) and reducing the area

of an ecosystem can change these properties (Fahrig

2003). The boundaries of few PAs were designated to

ensure ecological completeness (Newmark 1985). Thus

they may exclude portions of the spatial domain of

nutrient flows, organism movements, disturbance re-

gimes, and population dynamics centered on the

protected areas (Shafer 1999). Land use intensification

on surrounding lands may disrupt these flows and alter

ecological processes and biodiversity within PAs (Han-

sen and DeFries 2007). Accordingly, the term protected-

area-centered ecosystem (PACE) has been used to

describe areas wherein human activities may negatively

influence ecological processes and the viability of native

species within the PA (Hansen et al. 2011).

A critical limitation in our current knowledge of PAs

is the rate and ecological consequence of global and

regional change within individual PAs and across

national networks of PAs. Studies to date have found

that land use is intensifying around many protected

areas (DeFries et al. 2005, Wittemyer et al. 2008,

Radeloff et al. 2010, Wade and Theobald 2010, Davis

and Hansen 2011, Leroux and Kerr 2013). Nonnative

plants are known to be widespread within U.S. National

Parks (Allen et al. 2009). Projections for climate change

across the global network of PAs indicate that only 8%

of PAs will maintain current average temperatures

throughout the next century (Loarie et al. 2009).

However, systematic assessments of past change and

projected future change in stressors of PAs and

ecological consequences are lacking in the United States

and internationally. Consequently, knowledge is insuf-

ficient to direct research and management toward those

PAs that are most vulnerable to human-induced change.

Organizations that oversee PAs have increasingly

recognized the need to assess their vulnerability to global

FIG. 1. Conceptual model of a protected area (PA) depicted in the context of regional and global human influences. The PA lies
within a protected-area centered ecosystem (PACE) (see Introduction). The PACE is mapped based on ecological flows, crucial
habitats, effective habitat size, and human edge effects. The still larger zone of interaction (ZOI) includes the region of strong two-
way interactions between the PACE and surrounding human communities, involving ecosystem services, economics, policy, and
social values (DeFries et al. 2010). Both the PA and the human system are influenced by biophysical gradients and land use
gradients. Humans also influence PAs through alteration of global climate and other factors. PA managers are challenged to
consider both regional and global influences in order to develop effective management strategies.
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change. The World Commission on Protected Areas is

developing ways to evaluate climate change impacts

(Dudley et al. 2010). Within the United States, the

Department of Interior (DOI) launched in 2009 new

programs on climate science and management (U.S.

Department of the Interior 2009). Consistent with these

programs, the National Park Service (NPS) published a

climate change response strategy (National Park Service

2010), which states that the NPS ‘‘will conduct scientific

research and vulnerability assessments necessary to

support NPS adaptation, mitigation, and communica-

tion efforts.’’ In the face of global change, an NPS

science advisory panel recommended in 2012 that, ‘‘The

overarching goal of NPS resource management should

be to steward NPS resources for continuous change that

is not yet fully understood, in order to preserve ecological

integrity. . .’’ (Colwell et al. 2012:11). Recognizing that

U.S. National Parks have a history of being managed

individually and within their boundaries, this panel

emphasized that management should encompass a

geographic scope beyond park boundaries, consider

longer time horizons, and evaluate park units as

elements of a national network.

A promising framework for climate adaptation

planning was recently developed by an inter-organiza-

tional committee (Glick et al. 2011) and is consistent

with the NPS climate change strategy (National Park

Service 2010). The four steps of the framework are to (1)

identify conservation targets, (2) assess vulnerability, (3)

identify management options, and (4) implement

management options. The vulnerability assessment in

Step 2 identifies what is at risk and why. Vulnerability is

evaluated in terms of three components. Exposure is the

degree of change in climate and land use, which are key

drivers of ecological processes and biodiversity. Sensi-

tivity is the degree to which species and ecological

processes respond to a given level of exposure, largely

based on the environmental tolerances of organisms.

Exposure and sensitivity determine the potential impact

on the resource of interest. Adaptive capacity is the

ability of a system to adjust to the elements of exposure.

It is the interaction of potential impact and adaptive

capacity that determines vulnerability.

The goal of this study is to systematically apply

elements of the Glick et al. (2011) approach to a network

of U.S. National Parks in order to identify which parks

are undergoing the highest rates of exposure to

individual and cumulative elements of human-induced

change and to demonstrate methods by which vulner-

ability assessments can be operationalized across net-

works of PAs in the United States and globally. The

objectives are as follows: (1) Quantify past exposure of

PAs to land use, climate change, and invasive species

during 1900–present. (2) Project potential future expo-

sure to land use and climate change and potential impact

of climate change to vegetation distributions for the

period 2000–2100. (3) Evaluate how well historical

exposure predicts potential future exposure and the

magnitude of exposure during the full 1900–2100 period.

METHODS

We focused on past exposure to land use, climate

change, and invasive species across the PACEs in and

around 57 U.S. National Park units. Exposure of the

PACEs to land use, invasive species, and climate change

over the last century was quantified by change in

housing density during 1940 to 2010, change in climate

during 1895 to 2009, and the current presence of

nonnative plants. The ecological impacts of this past

exposure is not reported because data are inadequate on

response of species and ecosystems to these changes in

and around U.S. National Parks. Projected exposure to

2100 was evaluated from projected changes in housing

density and climate consistent with the main storylines

of the IPCC Special Report on Emissions Scenarios

(SRES; IPCC 2001). Potential impact of future climate

change was summarized as the percentage of each PACE

projected to undergo a shift in biome type based on

climate. Cumulative exposure to land use, climate

change, and invasive species was represented graphically

to facilitate comparison among PACEs within the

United States. The extent to which projected future

exposure to housing density and temperature is corre-

lated with past exposure is reported, as is change in

exposure for the full 1900–2100 time period. We

conclude by discussing the utility of our assessment for

informing adaptation planning within PACEs and

informing NPS policy.

For this study, we used the PACEs delineated around

the larger U.S. National Park units (national parks,

monuments, and recreation areas; referred to collective-

ly as ‘‘parks’’) in the contiguous United States in our

previous study (Davis and Hansen 2011; see also Table

1, Fig. 2). The selected parks represent a wide

distribution of climate and land use gradients, and are

primarily managed for natural values, biodiversity, and

recreation. Some parks were combined for analysis

because they shared borders or were managed as a single

unit, leading to a total of 49 different analysis units. The

PACEs were delineated based on three ecological

criteria: contiguity of surrounding natural habitat,

watershed boundaries, and extent of human edge effects

(see Davis and Hansen 2011).

Land use, invasive species, and climate 1900–2010

We represented land use as change in housing density

from 1940 to 2010, current land allocation, and

percentage of private land in PACE currently in an

‘‘undeveloped’’ condition. Housing density is one

important measure of land use intensity that is relevant

to ecological impacts (Theobald 2005). Housing density

block data for 2010 was obtained from the U.S. Census.

Housing density (units/km2, 270-m resolution) at a given

decade in the past, Dt, was assumed to be proportional

to the ratio of the number of housing units in a county

ANDREW J. HANSEN ET AL.486 Ecological Applications
Vol. 24, No. 3



Ct (or tract when time t � 1980) to the number of

housing units in 2010, C0, as follows: Dt¼D0 3 (Ct/C0).

A 5-km moving window was used to smooth abrupt

changes that can occur at the edges of counties or tracts.

The historical county and tract data sets are from the

Minnesota Population Center (2011). We additionally

report three metrics from Davis and Hansen (2011),

percentage of PACE in public lands, percentage of

TABLE 1. Land use properties of the protected-area centered ecosystems (PACEs) surrounding the U.S. National Park units
included in this study.

Percentage of PACE

Park
PACE
code

Date of park
establishment

Park area
(km2)

PACE : park
area ratio

In public
land

Undeveloped
private land in 2000

PACE
typology

Arches ARCH 1929 309 29 93 88.9 wildland protected
Badlands BADL 1929 982 15 20 95.3 wildland developable
Big Bend BIBE 1935 3 291 8 20 99.6 wildland developable
Bighorn Canyon BICA 1964 484 33 33 96.1 wildland developable
Big South Fork BISO 1974 496 32 27 56.0 exurban
Big Thicket BITH 1974 359 15 5 63.4 wildland developable
Blue Ridge Parkway BLRI 1936 366 81 15 19.6 exurban
Buffalo River BUFF 1972 389 31 23 64.0 agriculture
Canyon de Chelly CACH 1931 375 18 6 92.3 wildland developable
Colorado River� CORI� 1908–1964 18 295 5 76 93.6 wildland protected
Crater Lake CRLA 1902 736 7 85 92.9 wildland protected
Craters of the Moon CRMO 1924 1 901 9 76 93.8 wildland protected
Death Valley DEVA 1933 13 764 4 79 80.7 wildland protected
Delaware Water Gap DEWA 1965 278 24 20 15.0 exurban
Dinosaur DINO 1915 853 22 74 94.7 wildland protected
El Malpais ELMA 1987 473 17 38 96.1 wildland developable
Everglades, Big Cypress EVER 1934, 1974 9 179 3 62 57.0 urban
Glacier GLAC 1910 4 080 5 80 77.9 wildland protected
Great Basin GRBA 1922 312 21 93 95.7 wildland protected
Great Sand Dunes GRSA 1932 496 18 43 91.1 wildland developable
Great Smoky
Mountains

GRSM 1926 2 098 7 43 15.1 exurban

Guadalupe Mountains GUMO 1966 356 21 44 99.5 wildland developable
Joshua Tree JOTR 1936 3 211 7 74 62.9 wildland protected
Lake Roosevelt LARO 1946 424 39 22 91.3 agriculture
Lassen Volcanic LAVO 1907 434 9 47 92.2 wildland developable
Missouri River MNRR 1978 279 71 6 82.4 agriculture
Mojave MOJA 1994 6 433 3 94 88.9 wildland protected
Mount Rainier MORA 1899 952 6 70 80.2 wildland protected
New River Gorge NERI 1978 285 28 15 42.1 exurban
North Cascades
Complex

NOCA 1968 2 756 6 91 73.8 wildland protected

Olympic OLYM 1909 3 700 5 47 65.1 wildland developable
Organ Pipe Cactus ORPI 1937 1 338 8 43 99.1 wildland developable
Ozark OZAR 1964 333 29 29 82.8 wildland developable
Petrified Forest PEFO 1906 903 11 25 97.3 wildland developable
Pictured Rocks PIRO 1966 298 17 60 82.5 wildland developable
Point Reyes, Golden
Gate

POGO 1962, 1972 617 10 28 32.6 urban

Redwood REDW 1968 468 15 60 82.2 wildland developable
Rocky Mountain ROMO 1915 1 080 8 83 53.6 wildland protected
Saint Croix SACN 1968 396 21 15 66.5 agriculture
Saguaro SAGU 1933 378 48 55 57.2 exurban
Santa Monica
Mountains

SAMO 1978 619 9 33 27.6 urban

Shenandoah SHEN 1926 782 14 16 19.8 exurban
Sleeping Bear Dunes SLBE 1970 284 16 36 22.7 exurban
Theodore Roosevelt THRO 1947 285 30 41 95.8 agriculture
Voyageurs VOYA 1971 829 11 77 80.6 wildland protected
White Sands WHSA 1933 617 17 34 74.3 wildland developable
Yellowstone Grand
Teton

YELL 1872 10 159 3 93 73.3 wildland protected

Yosemite, Sequoia-
Kings Canyon

YOSE 1890 6 521 3 90 66.2 wildland protected

Zion ZION 1909 598 14 69 87.1 wildland protected
Mean 2 140 18 49 72.62

Note: Date of establishment (authorization, proclamation, or initial recognition by originating agency) is from http://www.nps.
gov/applications/budget2/documents/chronop.pdf. All other data are from Davis and Hansen (2011).

� Colorado River parks are Canyonlands, Capitol Reef, Glen Canyon, Grand Canyon, and Lake Mead.
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private land developed, and land use typology, in order

to characterize land use change beyond housing density.

The percentage of each PACE’s area in public vs. private

and private protected ownerships was derived from the

Protected Area Database of the United States, v4.5

(Conservation Biology Institute 2006). This metric is of

interest because unprotected private lands have the

potential to be developed to more intense land uses such

as agricultural, suburban, and urban areas while public

lands and private lands in conservation easements do

not. Undeveloped lands were defined as those with

housing densities lower than exurban densities (,0.063

units/ha) and not in agricultural or commercial classes

as defined for 2001 by Homer et al. (2004). Housing

density, land allocation, and proportion developed were

all used to classify PACEs into categories of land use

change using statistical clustering analysis (Davis and

Hansen 2011). From least developed to most developed,

the classes were wildland protected, wildland develop-

able, agriculture, exurban, and urban.

The percentage of exotic species in the flora was

represented by the proportion of vascular plant species

that were nonnative. These data were derived from the

NPS Inventory and Monitoring Program’s NPSpecies

database. NPSpecies is a compilation of species lists and

evidence records of species occurrence for vertebrates

and vascular plants within national parks. The data are

quality checked and certified by subject-matter experts.

In addition to reporting numbers of native and

nonnative vascular plant species, we used analysis of

variance and the Tukey HSD multiple range test to

determine if the proportion of vascular plants that were

nonnative differed among land use typology classes.

Because NPSpecies data are only collected within park

boundaries, our analyses deal with the portion of the

PACE that is within a national park.

For change in climate over the period 1895–2009, we

drew on Haas (2010), who analyzed the PRISM climate

data set (Daly et al. 2002). PRISM produces a 4-km

resolution surface of monthly climate values annually

across the United States, spatially interpolated with

weather data from meteorological stations. Haas (2010)

used this data to estimate 100-year trends in mean

annual temperature, mean annual precipitation, and a

moisture index derived from precipitation and potential

evapotranspiration. The annual averages across each

PACE for the period 1895–2009 were calculated and

used to derive rates of change on a per 100-year basis.

These trends were estimated with the MM-estimate

regression method, which calculates robust standard

errors using a bootstrapping method. A separate linear

regression was fit for each PACE with P , 0.05 the

cutoff for statistical significance.

Land use, climate, and biome shifts 2010–2100

Future land use was represented as housing density.

We used data from a study (Bierwagen et al. 2010) that

projected housing density to 2100 under five scenarios

consistent with the main storylines of the IPCC SRES

(IPCC 2007). The SRES describe population, socioeco-

nomic, and technological trajectories for broad regions

of the world. The scenarios modeled by Bierwagen et al.

(2010) varied in assumptions about fertility, domestic

migration, international migration, household size, and

travel time from urban areas. A county-level spatial

interaction model was used to represent domestic

migration within the context of a cohort-component

population-growth model. The forecasted populations

in turn drove the number of housing units required in a

county. The Spatially Explicit Regional Growth Model

(SERGoM; Theobald 2005) then distributed the housing

units to 1-ha areas based on past land-use patterns and

travel time along roads from urban areas. We calculated

the average housing density within PACEs among these

scenarios and report the data for 2030, 2060, and 2090.

Projections of climate and potential shifts in vegeta-

tion for the coming century were derived from Rehfeldt

et al. (2012). That study used 1.75 million data points to

relate the geographic distribution of 46 biome types

across North America to current climate variables. They

then projected potential biome locations based on

climate into the future according to the SRES scenarios,

using three general circulation models for the decades

surrounding 2030, 2060, and 2090. We used the

downscaled future climate projections and potential

biome maps from this study because of the coverage of

the United States, the rigorous methods, the classifica-

tion accuracy, comparability of results with other

studies, and the relevance of the biome classification to

vegetation types in national parks and PACEs. We

report averages of projected future average annual

temperature and precipitation for the models and

scenarios used by that study. These runs differed in

projected average temperature increases from 1980–

1999 to 2090–2099, with a range of 1.8–4.08C. Averag-

ing among these future scenarios is simply one way of

representing the possible future condition that avoids

extreme low or high projections. Moreover, the project-

ed vegetation response to climate change was represent-

ed by Rehfeldt et al. (2012) as the consensus among

these climate models and scenarios. We calculated the

proportion of PACE expected to change in biome type

(based on climate suitability) between 2010 and 2100.

Cumulative exposure

The relative magnitude of past change in climate, land

use, and invasive species for each PACE was calculated

as the percentage of the highest value among the PACEs

for each variable. These percentages were summed to

represent the relative magnitude of the combined

exposure to these three components of global change.

We illustrated combined exposure and potential impact

into the future by depicting the position of each PACE

in the space defined by projected change in housing

density 2010 to 2030 and by the percentage of the PACE

projected to undergo a biome shift by 2030.
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We compared rates of change in housing density for

the period 1940–2000 with that projected for 2000–2090

by subtracting the density at the start of each period

from the density at the end of the period and dividing by

the number of years of the period (e.g., [units/km2 in

2000 – units/km2 in 1940]/60 yr¼ units�km�2�yr�1). The
projected future rates were regressed on past rates to

determine the slope of the relationship between past and

future rates. The relationship was also summarized with

correlation analysis. Similar analyses were done for

average annual temperature and average annual precip-

itation. Units for rates of temperature change were 8C/

100 yr and for precipitation were mm/100 yr.

RESULTS

Exposure 1900–2010

Housing density within PACEs increased on average

by 741% from 1940 to 2000 to a mean of 19 units/km2

(Table 2). By 2000, an average of 27% of the private

lands that covered 51% of PACEs had been developed

(converted to agriculture, suburban, or urban; Table 1).

Individual PACEs differed substantially from these

averages (Fig. 3). The median increase in housing

density was 224%, which indicates that some PACEs

increased well above the average and most PACEs

changed less than the average. The North Cascades

PACE, for example, decreased in home density since

1940. This PACE is primarily public lands (91%) and

74% of private lands remained undeveloped in 2000.

Similarly, the Great Basin PACE in Nevada is only 7%

private land, 96% of which remained undeveloped in

2000, and housing density remained low in 2000 (0.03

units/km2). The Shenandoah PACE near Washington,

D.C., in contrast, was heavily subjected to human land

use. This PACE is 84% private lands and 80% of these

private lands were developed in 2000. Housing density

increased by 405% during 1940–2000 to a density of 22

units/km2. Santa Monica Mountains near Los Angeles,

California, had 421 housing units/km2 in 2000 and an

increase of 199% since 1940. The percentage of PACEs

in each land use change typology category in 2000 were

wildland protected (35%), wildland developable (33%),

agriculture (10%), exurban (16%), and urban (6%; Table

1).

Nonnative species represented 13.6% of the vascular

plant flora on average within the parks included in the

FIG. 2. U.S. National Parks units included in this study. Protected-area centered ecosystems (PACEs) surrounding the park
units are color-coded by land use typological membership. Classification criteria were wildland protected, .65% public; wildland
developable, ,65% public, .60% undeveloped private, ,16% agriculture private; agricultural, ,65% public, .60% undeveloped
private, .16% agriculture private; exurban, ,65% public, ,60% undeveloped private, ,15% private dominated by exurban or
urban; urban, ,65% public, ,60% undeveloped private, .15% private dominated by urban. Park units are listed in Table 1. From
Davis and Hansen (2011).
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study (Table 2). Some parks had less than 5%

nonnative plant species (e.g., Guadalupe Mountains,

Great Sand Dunes, and Joshua Tree; all in the

southwest deserts of the United States; Fig. 3). In

contrast, nonnative plant species make up 28% of the

vascular flora in the Everglades and Big Cypress parks

near Miami, Florida, and 32% in the Point Reyes and

Golden Gate parks near or in San Francisco, Cal-

ifornia. Presence of nonnatives was related to the land-

use groupings above. Wildland PACEs had the lowest

percentage of nonnatives within parks (11%) and urban

PACEs the highest (29%; Fig. 4). The percentage of

nonnative plants was significantly higher in parks in

urban PACEs than all other groups, and significantly

higher in parks in exurban PACEs than parks in the

wildland groups.

PACEs warmed by an average of 1.08C/100 yr since

1895 (Table 2). The highest rates of warming (1.48 to

TABLE 2. Change in housing density and climate during the past century within PACEs and current presence of nonnative
vascular plants in parks.

PACE
code

Housing
units, 2000
(no./km2)

Change in
housing units,
1940–2000 (%)

Nonnative
species
(no.)

Native
species
(no.)

Nonnative
proportion of

total species (%)

Temperature change,
1895–2007
(8C/100 yr)

Precipitation
change 1895–2007

(mm/100 yr)

Moisture index
change 1895–2007

(mm/100 yr)

ARCH 0.38 1628 58 402 12.6 1.3 0 �1.84
BADL 0.59 27 68 345 16.5 1.1 67.7 0.23
BIBE 0.31 81 92 1270 6.8 1.0 0 0
BICA 0.78 351 111 626 15.1 0.9 0 �1.48
BISO 6.96 169 100 981 9.3 0 0 0.05
BITH 13.33 423 131 1186 9.9 0 250.2 0.90
BLRI 25.19 281 275 1328 17.2 0 0 0
BUFF 5.66 224 221 1132 16.3 0 158.7 0
CACH 1.60 566 107 709 13.1 1.1 0 0
CORI� 3.50 9806 312 2490 11.1 1.4 0 �1.43
CRLA 0.33 �47 43 528 7.5 1.0 0 0
CRMO 0.36 55 88 581 13.2 1.1 0 0
DEVA 0.90 125 53 793 6.3 1.4 44.5 0
DEWA 38.60 250 375 1021 26.9 1.1 0 0
DINO 0.52 803 74 626 10.6 1.1 0 0
ELMA 0.86 3265 32 488 6.2 1.0 0 0
EVER 56.56 2853 382 974 28.2 0.9 0 �1.48
GLAC 0.89 247 129 1039 11.0 1.4 0 0
GRBA 0.03 �33 60 673 8.2 0.7 0 0
GRSA 0.78 35 24 563 4.1 0 0 0
GRSM 17.73 501 339 1280 20.9 0 0 0
GUMO 0.13 55 11 969 1.1 0.7 0 �2.14
JOTR 8.68 1836 24 484 4.7 0.6 0 0
LARO 4.08 273 119 500 19.2 0.9 0 0
LAVO 2.41 223 41 720 5.4 0.9 0 0
MNRR 4.21 157 84 411 17.0 0.7 84.2 0
MOJA 0.41 424 84 820 9.3 0.8 0 0
MORA 3.78 �21 145 775 15.8 0.8 0 0
NERI 13.78 81 206 978 17.4 0 0 0
NOCA 0.60 �70 227 1173 16.2 1.2 0 0
OLYM 11.16 325 226 967 18.9 0.5 0 0
ORPI 0.22 816 61 623 8.9 1.3 0 0
OZAR 4.66 111 75 803 8.5 0 132.2 0
PEFO 0.49 231 54 428 11.2 1.4 0 0
PIRO 1.19 78 119 773 13.3 1.0 67.2 0
POGO 179.14 143 379 808 31.9 1.4 0 0
REDW 3.90 296 219 599 26.8 0.7 0 0
ROMO 2.41 194 83 918 8.3 1.4 0 0
SACN 17.14 181 169 1289 11.6 1.2 0 �1.69
SAGU 35.15 8018 99 1138 8.0 0.8 105.0 0.07
SAMO 421.20 199 306 836 26.8 1.4 0 0
SHEN 21.67 405 348 1040 25.1 0.4 82.0 0
SLBE 8.99 236 221 875 20.2 0 163.6 0.14
THRO 0.63 124 62 455 12.0 1.5 0 0
VOYA 1.25 �45 141 870 13.9 0.9 49.3 0
WHSA 1.86 1948 15 287 5.0 0.8 53.4 0
YELL 0.45 213 219 1651 11.7 1.1 0 0
YOSE 1.36 33 253 1734 12.7 1.0 0 �0.31
ZION 1.70 1172 97 645 13.1 1.8 0 �0.48
Mean 18.95 741 146 869 13.6 0.9 25.7 �0.2

Notes: For climate, data are statistically significant trends during 1895 to 2007; nonsignificant trends are denoted with 0. Climate
data are from Haas (2010).

� Colorado River parks are: Canyonlands, Capitol Reef, Glen Canyon, Grand Canyon, and Lake Mead.
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1.88C/100 yr) occurred in the Southern Rockies and

Colorado Plateau region in PACEs including Zion,

Rocky Mountain, Petrified Forest, and Lake Mead (Fig.

3). No significant warming occurred in several PACEs,

mostly in the eastern United States such as Great Smoky

Mountains, Blue Ridge Parkway, and Ozark. Precipita-

tion increased significantly in 22% of the PACEs, largely

in the midwest United States. The moisture index

revealed that 17% of the PACEs increased in water

balance while 3% decreased, and 80% were unchanged.

Combining the relative magnitude of changes in

climate, land use, and invasive species revealed the wide

variation in exposure to these elements among the

PACEs (Fig. 3). Individual PACEs had relatively high

rates for one, two, or all three elements of exposure.

Three PACEs, Santa Monica Mountains, Point Reyes-

Golden Gate, and Delaware Water Gap had normalized

rates of change more than five times those in Great Sand

Dunes and other western interior PACEs.

Exposure and potential impact 2000–2100

Projected increases in housing density from 2000

averaged across PACEs and four IPCC SRES scenarios

was 42% by 2030, 125% by 2060, and 255% by 2090

(Table 3). Several PACEs, largely in the midwest United

States, had projected housing density increases of less

than 10% in 2090 (Fig. 5). In contrast, PACEs largely in

the southwestern United States were projected to

increase in housing density by 90–600% by 2030 and

450–4300% by 2090.

Projected future temperature trends averaged among

the climate models and IPCC scenarios indicated that

PACEs may warm by 0.9 to 2.48C (mean ¼ 1.768C) by

2030 (Table 3). By 2090, mean annual temperatures are

projected to be 2.58–4.58C (mean¼ 3.78C) warmer than

present. PACEs with the highest projected warming

rates are in the southwest deserts and western moun-

tains. Projected temperature increases by 2030 in these

locations are up to twice as great as in PACEs in the

eastern and midwestern United States (Fig. 5). Mean

annual precipitation is projected to increase in all but

FIG. 3. Relative change in housing density 1940–2000, change in temperature 1900–2000, and percentage of total vascular
plant species that was nonnative based on data from 2010. Values are normalized to the value of the PACE with the highest level of
change. For housing density, negative values were changed to 0 and percent change is expressed as log(xþ1), where x is the percent
change in housing density, to reduce skew due to a few PACEs with very high levels of increase in housing density. The inset is a
legend showing the x- and y-axes on the bar graphs that are depicted in the map.

FIG. 4. Percentage of vascular plant species that are
nonnative within each type of protected-area centered ecosys-
tem (PACE). The two wildland classes differ significantly from
the exurban and urban classes (ANOVA, N ¼ 48 sites, F4,44 ¼
10.68, P , 0.001).
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four PACEs by 2030, most substantially in the eastern

and upper midwestern United States. Projections for

2090 indicate a reduction in precipitation in 13 PACEs,

with the greatest reductions in the southwest deserts and

the greatest increases in other parts of the United States.

On average, 30% of the area within PACEs are

projected to experience climates unsuitable for current

biomes by 2030 and 40% by 2090 (Table 3). Some 15

PACEs, mostly in the upper midwestern and eastern

United States, are projected to experience climate-

related biome shifts in less than 5% of their areas by

2090 (Fig. 5). In contrast, 14 PACEs in the mountain

and southwestern United States are projected to

experience unsuitable climates for their present biome

types across 50–86% of their areas by 2030 and up to

96% by 2090. It is places with high projected climate

change and places with topographic complexity where

climate-driven biome shifts are projected to be most

TABLE 3. Projected future change in housing density, climate, and biome suitability.

PACE
Code

Change in housing units (%) Change in temperature (8C) Change in precipitation (mm)

2000–2030 2000–2060 2000–2090 2000–2030 2000–2060 2000–2090 2000–2030 2000–2060 2000–2090

ARCH 6.39 12.78 19.61 1.88 2.72 3.68 11.34 49.79 42.34
BADL 5.39 11.79 18.22 1.72 2.91 4.36 5.47 8.63 �5.18
BIBE 3.18 8.36 14.29 1.66 2.31 3.11 �1.55 64.69 82.95
BICA 0.99 1.98 2.97 1.77 2.81 3.73 14.05 39.72 32.90
BISO 1.41 3.03 4.65 1.60 2.49 3.69 21.95 131.67 125.81
BITH 12.4 33.5 63.99 1.73 2.56 3.44 13.91 �110.96 5.85
BLRI 5.95 13.13 22.12 1.46 2.26 3.54 35.87 141.89 138.00
BUFF 1.88 3.78 5.68 1.96 2.94 4.04 1.96 �48.73 23.72
CACH 22.27 52.71 84.34 2.06 2.72 3.70 18.55 55.08 63.04
CORI� 120.47 340.45 666.82 2.42 3.36 4.21 11.38 74.04 92.93
CRLA 2.13 4.26 6.39 2.07 3.27 4.28 �6.28 �83.21 �200.65
CRMO 14.6 32.82 52.34 1.94 3.23 4.05 3.69 18.34 6.14
DEVA 132.17 400.35 840.04 2.22 3.42 4.16 6.54 56.42 69.71
DEWA 44.24 134.08 303.91 1.26 2.44 3.76 51.66 81.40 151.82
DINO 6.6 13.34 20.49 1.93 2.79 3.82 4.42 48.11 22.89
ELMA 9.81 20.88 32 2.13 2.59 3.60 19.37 49.39 59.92
EVER 59.1 179.12 374.84 0.91 1.63 2.50 �16.23 11.72 �21.23
GLAC 19.06 38.12 57.18 1.45 2.95 3.72 22.96 19.49 31.60
GRBA 7.67 24.28 46.26 2.08 3.16 4.09 4.44 94.19 87.38
GRSA 21 44.26 68.15 2.24 2.55 3.82 4.62 37.83 21.29
GRSM 12.53 26.88 43.07 1.85 2.59 3.79 20.98 143.63 157.65
GUMO 10.48 30.93 51.48 1.87 2.23 2.98 �5.85 68.97 82.31
JOTR 89.99 243.06 452.08 1.78 2.74 3.36 13.26 73.75 134.26
LARO 11.18 28.94 55.21 1.73 3.32 4.24 8.74 �29.74 �47.76
LAVO 10.13 23.91 40.75 2.13 3.46 4.39 1.93 �65.50 �166.89
MNRR 2.13 5.41 9.68 1.75 3.02 4.65 18.87 �29.87 �24.58
MOJA 608.78 1993.59 4227.69 1.36 2.41 3.09 12.10 105.89 173.37
MORA 44.91 114.41 215.43 1.79 3.09 4.05 27.30 �192.47 �312.18
NERI 0.12 0.35 0.62 1.49 2.38 3.68 37.60 134.16 112.45
NOCA 24.13 49.71 76.25 1.71 3.09 4.07 42.20 �145.70 �215.11
OLYM 16.36 38.14 67.7 1.64 2.48 3.50 28.05 �341.14 �441.58
ORPI 189.04 579.81 1190.01 1.67 2.45 3.04 13.17 9.20 143.58
OZAR 0.47 0.98 1.49 1.82 2.90 4.07 15.04 �17.99 43.07
PEFO 18.83 57.37 108.5 2.05 2.64 3.60 20.52 41.40 59.13
PIRO 0 0 0 1.24 2.33 3.52 28.14 16.84 70.56
POGO 14.44 38.97 77.31 1.52 2.53 3.25 22.67 �58.39 �183.89
REDW 5.41 10.82 16.23 1.93 2.98 4.00 2.22 �139.54 �316.09
ROMO 121.88 333.05 667.46 2.03 2.64 3.92 10.64 48.97 20.76
SACN 28.96 78.58 153.78 1.52 2.61 3.97 23.31 �4.06 37.59
SAGU 37.54 105.08 208.01 1.77 2.39 3.12 30.96 35.00 131.71
SAMO 27.78 76.12 144.86 1.63 2.69 3.34 6.69 9.06 �3.86
SHEN 26.5 68.63 127.23 1.37 2.34 3.67 38.22 107.20 106.63
SLBE 9.39 20.2 33.34 1.32 2.38 3.45 34.79 �4.05 54.66
THRO 0.78 1.66 2.54 1.46 2.74 3.85 15.88 9.47 22.88
VOYA 0 0 0 1.35 2.43 3.58 21.25 18.91 62.76
WHSA 21.4 54.86 97.28 1.98 2.28 3.13 14.32 47.45 60.38
YELL 30.03 60.87 91.71 1.85 3.01 3.89 18.23 64.13 36.87
YOSE 107.12 349.02 752.08 2.08 3.68 4.46 13.51 �26.11 �87.60
ZION 110.93 389.84 882.57 2.04 3.01 3.91 15.67 130.91 134.72
Mean 42.41 125.6 255.08 1.76 2.73 3.73 15.89 15.30 13.82

Notes: Housing density projections were based on the average of four IPCC future growth scenarios (A1, A2, B1, and B2).
Climate change projections were based on the average of seven climate change model scenarios as downscaled by Rehfeldt et al.
(2012). Biome suitability is the proportion of each PACE that is projected to undergo a shift in biome suitability based on
consensus among six climate models scenarios by Rehfeldt et al. (2012).

� Colorado River parks are: Canyonlands, Capitol Reef, Glen Canyon, Grand Canyon, and Lake Mead.
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prevalent (e.g., Glacier, Greater Yellowstone, and

Rocky Mountain in the Rocky Mountain region and

Petrified Forest in the southwestern deserts).

Combined potential exposure to land use change and

potential impact of climate change can be represented as

the magnitude of projected climate-driven biome shift

and projected changes in housing density by 2030 (Fig.

6). Some PACEs are expected to experience little change

in either metric (e.g., Painted Rocks, Voyagers, Theo-

dore Roosevelt, Organ Pipe Cactus). Others are high in

either housing density (e.g., Delaware Water Gap, Great

Smoky Mountains, Saguaro) or potential climate impact

(e.g., Petrified Forest, Great Sand Dunes), and a few

PACEs are high in both land use intensity and potential

climate impact (e.g., Point Reyes/Golden Gate, Santa

Monica Mountains, Rocky Mountain).

Past and potential future exposure

The average rate of change in housing density

(units�km�2�yr�1) among the four IPCC scenarios in

the coming century was highly correlated with the actual

rate of change during 1940–2000 (correlation coefficient

¼ 0.97). The slope of the relationship between change in

units/km2/year during 1940–2000 and 2000–2090 was

0.82, indicating that on average projected future change

in home density is 82% of the past rate. PACEs with

projected future rates well below the past rate include

those with relatively fast rates of increase in the past

(Santa Monica Mountains, Point Reyes/Golden Gate,

Shenandoah, Blue Ridge, Great Smoky Mountains; Fig.

7). PACEs projected to increase more rapidly in housing

density in the future than in the past include Everglades

and Delaware Water Gap, both near major cities, and

several PACEs in the south and west United States, such

as Joshua Tree, Colorado River, Zion, Death Valley,

Mojave Desert, Rocky Mountain, Yosemite, and Mount

Rainier. The magnitude of change in housing density

during the 1940–2090 reference period can be represent-

ed as number of PACEs in recognized land use classes at

the beginning of the time period (Table 4). The number

of PACEs with undeveloped and very low housing

density levels dropped from 38 to 22 during this period,

the number in the exurban class increased from 4 to 18,

and the number of PACEs in the urban/suburban class

increased from 1 to 3.

Unlike housing density, there was virtually no

relationship between change in temperature in the last

century and projected change in the coming century

(correlation coefficient ¼ 0.07). All PACEs were

projected to increase in temperature during 2000–2100

(by 2.58–5.88C), regardless of change during 1895–2007

(Fig. 8). Total past and projected change in temperature

for 1900–2100 ranged from þ3.78C in the Everglades

and Big Cypress PACE to 6.1 in the Zion PACE. A total

of 27 PACEs had total projected changes of .58C for

this period.

Given that relatively few PACEs experienced signif-

icant changes in annual precipitation in the past century,

total past and projected future change 1900–2100 was

mostly a result of projected change in the coming

century (Fig. 9). The total change ranged from�490 to 0

mm per 100 yr for 11 PACEs largely on the West Coast

to 0 to þ257 mm per 100 yr for 38 PACEs scattered

widely across the United States.

DISCUSSION

The results revealed that these U.S. parks and

surrounding PACEs have, on average, undergone

relatively high rates of exposure to regional and global

change during the last century. Housing density, one

measure of land use intensity, increased by nearly 750%

TABLE 3. Extended.

Biome suitability change (proportion)

2000–2030 2000–2060 2000–2090

0.54 0.56 0.56
0.00 0.00 0.00
0.40 0.43 0.50
0.45 0.60 0.66
0.00 0.00 0.00
0.07 0.10 0.20
0.00 0.01 0.01
0.03 0.03 0.03
0.50 0.53 0.69
0.39 0.51 0.56
0.26 0.62 0.64
0.56 0.71 0.64
0.15 0.20 0.20
0.00 0.00 0.00
0.61 0.65 0.65
0.27 0.31 0.33
0.57 0.56 0.61
0.57 0.81 0.88
0.56 0.64 0.70
0.70 0.79 0.73
0.01 0.02 0.01
0.31 0.31 0.33
0.39 0.56 0.56
0.17 0.24 0.26
0.26 0.29 0.36
0.09 0.09 0.09
0.30 0.54 0.46
0.29 0.51 0.46
0.01 0.01 0.01
0.57 0.60 0.63
0.22 0.22 0.40
0.00 0.00 0.00
0.05 0.05 0.05
0.88 0.88 0.88
0.00 0.00 0.00
0.69 0.87 0.96
0.39 0.42 0.55
0.65 0.77 0.86
0.12 0.17 0.12
0.23 0.29 0.33
0.52 0.55 0.63
0.01 0.01 0.01
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.34 0.00
0.40 0.49 0.49
0.43 0.60 0.89
0.34 0.46 0.49
0.63 0.74 0.83
0.30 0.37 0.39
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during 1940–2000. Of the 51% of PACE area that is

private land, nearly 28% has been converted to

agriculture, exurban, suburban, or urban land uses.

Nearly 14% of the vascular plant flora within the parks

is comprised of nonnative species. Average annual

temperature has warmed 1.08C/100 yr since 1895. This

level of exposure to human-induced change raises

important and still outstanding questions as to whether

these parks are functioning as ‘‘natural’’ systems.

The central assumption of the PA approach to

conservation is that restricting human activities within

protected areas will allow natural processes and native

species to persist (Gaston et al. 2008). We know

relatively little, however, about the magnitude of human

influence that results in loss of ecological function and

native species. Increasing human densities and land

development can influence PAs through reducing

ecosystem size, changing flows of materials and distur-

bances, reducing crucial habitats, and increasing nega-

tive human edge effects (Hansen and DeFries 2007). The

net results of such changes include fragmentation of

natural habitats (Piekielek and Hansen 2012), reduction

in connectivity with other PAs (Berger 2004), loss of

essential natural disturbance regimes (Baker 1992),

destruction of population source habitats (Hansen

2011), and extinction of native species. For example,

prior study of western parks found that a substantial

amount of the variation in native species extinction rate

was explained by human density in the surrounding area

(Parks and Harcourt 2002). These studies indicate that

some U.S. parks have undergone ecological degradation

since establishment, partially due to exposure to the

types of human influences documented here.

U.S. National Parks and PACEs will likely be further

challenged by human-induced change in the coming

century. The projections summarized in this study

suggest that housing densities will continue to increase

in PACEs, at about 82% of the rate of past decades. The

rate of climate warming in the coming century is

projected to be 2.5–5.8 times higher than that measured

in the past century. A potential impact of this change in

climate is that some 40% of the area within PACEs will

experience climates unsuitable for current biomes by

2090.

The ecological responses in the parks in the coming

century will reflect the combined exposure of the past

decades and future decades. The magnitude of change in

measured or projected PA exposure for the 200 years

from 1900 to 2100 is dramatic. Home density across

PACEs increases from 7.4 units/km2 in 1940 to 48.3

units/km2 in 2090. Whereas 5 PACEs had home

densities in the exurban or urban/suburban classes in

1940, 21 are projected to be in these classes by 2090.

Mean annual temperature increases on average 58C. To

put this into context, the change in mean July

temperature across North America since the end of the

last ice age 14 000 years ago varied ;58C (Viau et al.

2006). Globally, projected temperature increases by

2100 exceed those observed during the past 11 300 years

(Marcott et al. 2013).

While these average rates of exposure to human-

induced change and potential impact are sobering, they

mask important variability among PACEs. Some

PACEs have decreased or changed little in housing

density since 1940, have relatively few nonnative

vascular plant species, and/or have changed little in

climate since 1900. While all PACEs are projected to

warm in the coming century, increased moisture and

other factors result in future climate conditions that

continue to be suitable for current biomes in most

PACEs east of the Rocky Mountains. Other PACEs

have changed and are projected to change substantially

in one or all of these factors. For example, Point Reyes-

Golden Gate near San Francisco, California, has a

projected increase in housing density of 247% from 1940

to 2100, an increase in mean annual temperature of

4.58C for 1900–2100, a decrease in mean annual

precipitation of 204 mm for 1900–2100, and 96% of

the PACE is projected to have climate unsuitable for

current biome vegetation by 2090. Such variation among

PACEs is a result of geographic variation in land use,

climate change, and sensitivity of ecosystems.

Patterns of land use are known to vary with proximity

to resources, markets, past development, and natural

amenities (Huston 2005). Within the United States,

Euro-American settlement was initially associated with

areas high in natural resources (e.g., farm lands) and

transportation corridors, and thus focused on the

seacoasts, the eastern United States, and eventually the

Midwest (Huston 2005). Improvements in transporta-

tion technology during ca. 1850–1950, fueled expansion

of settlement into the interior United States along rail

lines and highways and to locations with airports.

Changes in job opportunities, improved transportation,

and increased wealth lead to rapid growth of cities,

expansion of suburbs, and a decline in population

density in many rural areas during 1950–1970 (Brown et

al. 2005). Since 1970, a ‘‘rural rebound’’ has been in

place where locations high in natural amenities have

attracted rapid exurban expansion and growth of small

cities. Accordingly, PACEs in the eastern United States

and West Coast, experienced rapid land use intensifica-

tion during 1940–1970 while those in the High Plains,

Rocky Mountains, and Desert Southwest generally

remained low in human development. Since 1970 and

especially in the 1990s, rural and wilderness PACEs with

high natural amenities have undergone rapid increases in

exurban development. The future projections for hous-

ing density based on the average of the SRES suggest

that the southwest United States will be the region of

highest increases.

Rates of climate change vary with latitude, distance

from oceans, and topography (IPCC 2007). The

ecological impacts of this past climate change are known

to vary geographically across the United States. Climate

warming and drying has been particularly pronounced
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FIG. 5. Relative change in projected housing density, temperature, and percentage of PACE undergoing a shift in biome type
suitability for 2000–2100. Housing density and temperature are normalized as in Fig. 3. Housing density is the average of the
predictions of four scenarios (Bierwagen et al. 2010). Temperature is based on the average of six climate models and scenarios
(Rehfeldt et al. 2012) and biome suitability is under the consensus of six climate models and scenarios (Rehfeldt et al. 2012). The
inset is a legend showing the x- and y-axes on the bar graphs that are depicted in the map.

FIG. 6. Distribution of PACEs in bivariate space of housing density vs. biome shift projected for 2030. Scenarios are described
in the Fig. 5 legend. Housing density has been transformed as log([no. houses/km2]þ 1). PACE codes appear in Table 1.
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within western states, resulting in increased frequency of

severe fires, widespread forest pest outbreaks, and

drought-induced forest mortality (Westerling et al.

2006, Allen et al. 2010). These factors in combination

have led to large scale forest die-off especially in the

southwestern deserts, the Rocky Mountains, and the

Sierra Nevada (Breshears et al. 2005). Some keystone

tree species are at risk of extinction in the United States

due to these changes. Mature whitebark pine (Pinus

albicaulis) has undergone very high levels of mortality in

the past decade in the Greater Yellowstone Ecosystem

and was recently designated as a candidate listing as a

threatened or endangered species (U.S. Fish and

Wildlife Service 2011). This species provides a critical

food source for the grizzly bear (Ursus arctos), which

was recently relisted as endangered, in part because of

concern of the loss of whitebark (U.S. Fish and Wildlife

Service 2010). Piñon pine (subgenus Ducampopinus),

saguaro cactus (Carnegiea gigantea), and Joshua tree

(Yucca brevifolia) have all experienced high mortality in

multiple western parks (Saunders et al. 2009). Future

projections of climate change relative to the climate

associations of biomes suggest that PACEs throughout

the western United States will undergo the largest loss in

area of climates suitable for current biomes.

Cumulative and synergistic effects

The elements of human-induced change, including

land use, exotic species, and climate, often do not

influence ecological systems in isolation. Their effects

may be cumulative or synergistic. Cumulative effects are

changes to the environment that are caused by an action

in combination with other past, present and future

human actions (e.g., Canadian Environmental Assess-

FIG. 7. Rates of change in housing density (HD, units�km�2�yr�1) projected for 2000–2090 relative to observed rates during
1940–2000 for PACEs included in the study. The y-axis was constrained to a maximum value of 1.5 units�km�2�yr�1 to better
display differences among most PACEs. The actual values for the SAMO PACE were 3.9 units�km�2�yr�1 for 1940–2000 and 3.2
units�km�2�yr�1 for 2000–2090.

TABLE 4. The number of PACEs in each of four categories of housing density in 1940 and projected for 2090 under the average of
four IPCC scenarios.

Category
Housing density

(units/km2)
Number of PACEs
in class in 1940

Number of PACEs projected
for class in 2090

Undeveloped/very low density 0–3.1 38 22
Rural 3.1–6.3 6 6
Exurban 6.3–145 4 18
Urban/suburban .145 1 3

Note: Housing density categories are from Davis and Hansen (2011).
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FIG. 8. Rate of change in average annual temperature (TEMP, 8C/100 yr) during 1895–2007 and the projected rate for 2000–
2090 for PACEs included in the study.

FIG. 9. Rate of change in average annual precipitation (mm/100 yr) during 1895–2007 and projected rate for 2000–2090 for
PACEs included in the study.
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ment Agency 1999). Accordingly, the effects of change

in land use, exotic species, and climate on PAs may be

additive. For example, reductions in habitat area for a

species often reflect the additive effects of habitat loss

due to climate change and due to land use intensification

(Jetz et al. 2007). Accordingly, future analyses of U.S.

National Parks and PACEs could best quantify changes

in habitat area by overlaying losses due to changes in

climate suitability and land use intensification.

Synergistic effects are those where the effects of two

elements of exposure are greater than their additive

effects due to interactions between them (e.g., Rosa and

Seibel 2008). For example, a meta-analysis of habitat

fragmentation (Mantyka-Pringle et al. 2012) found that

the negative effects of fragmentation were exacerbated

in places of climate-change induced drought stress,

resulting in elevated loss of biodiversity. Another

example of synergy is where the abilities of species to

adapt to climate change is reduced by land use impacts.

Habitat loss and fragmentation may increase species

susceptibility to climate change by limiting their ability

to track climate variations across the landscape.

Synergies are also expected among climate change, land

use, and biotic invasions. Both climate and land use

change may favor biological invasions and enhance

negative impacts on ecosystem processes and native

species as is the case with cheatgrass (Bromus tectorum)

invasion in the Great Basin (Bradley 2010). Quantifying

the combined exposure of PACEs to change in land use,

nonnatives, and climate is important to identify which

PACEs may be most vulnerable to cumulative and

synergistic effects.

Among the PACEs included in this study, Point

Reyes-Golden Gate, Santa Monica Mountains, and

Delaware Water Gap had the highest combined

exposure to land use intensification, nonnative plants,

and temperature increase over the past century. The

Santa Monica Mountains PACE, for example, is

surrounded by the greater Los Angeles, with some

72% of the PACE being developed in 2000. Nearly one-

quarter of the vascular plants are not native. Temper-

ature has warmed by 1.458C in the past century.

Housing density within this PACE is projected to

rapidly increase and more than 50% of the PACE is

projected to experience a climate unsuited to current

biomes by 2030. Potential cumulative effects include loss

of species’ habitats due to conversion to housing, shifts

in climate that exceed species tolerances, and competi-

tive effects of invasive species. Potential synergistic

effects include reduced adaptive capacity to disperse to

newly suitable habitats due to constraints imposed by

urban development, and decreased vigor or fitness due

to pollution. Such cumulative and synergistic effects are

likely to be most prevalent in the PACEs that have the

greatest observed and projected exposure to land use

and climate change over the past and in the coming

century. Among these PACEs with high exposure are

several iconic wilderness PACEs in the Rocky Moun-

tains and desert southwest such as the Rocky Mountain

PACE and the Colorado River PACE and more urban

FIG. 10. Illustration of three possible cases of the extent to which current ecosystem conditions in a place differ from historic
conditions and from projected future conditions. Circles denote the range of variability for each time period. Also shown is the
expected management criteria for each case. Abbreviations are HRV, historic range of variability and DFC, desired future
conditions.
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coastal PACEs including the Everglades and Big

Cypress, Santa Monica Mountains, and Point Reyes

and Golden Gate PACEs.

Scope and limitations

This study aimed to demonstrate the value of

conducting vulnerability assessments of PAs as a guide

to management under human-induced change. For

logistical reasons, this analysis dealt with only a subset

of the vulnerability assessment approach of Glick et al.

(2011). We primarily examined exposure (to land use,

climate, and exotic species). Potential impact was only

represented as potential biome shifts based on vegeta-

tion sensitivity to climate change.

Future analyses should further consider sensitivity of

native species and ecological processes, adaptive capac-

ity, and vulnerability to change in land use, climate, and

invasives. It is our hope that this study makes an

important contribution that will motivate more com-

plete vulnerability assessments for U.S. National Parks,

their surrounding PACEs and protected areas globally.

This important work will lay the basis for climate

adaptation strategies aimed at maintaining ecological

condition of parks under global change.

Additional elements of exposure are relevant to

particular PAs. These include air and water pollution,

infrastructure development in addition to housing (e.g.,

roads), and direct human impacts such as those relating

to poaching, pets, or recreation. Such additional elements

of exposure may also appropriately be considered as

criteria for delineating PACEs. The airsheds of sources of

air pollution, for example, could be mapped as a basis for

mapping PACEs (see Hansen et al. 2011).

More generally, careful attention to designation of

PACEs will improve vulnerability assessments. The

PACE concept is important because it provides a basis

for identifying the areas outside PAs that are relevant to

ecological integrity within the PAs and thus should be

included in vulnerability assessments. Criteria for

mapping PACEs should be carefully selected and

research directed at testing the assumptions underlying

these criteria. Additionally, sensitivity analyses could be

done to determine how, for example, exposure varies

with assumptions about the criteria and resulting PACE

boundaries (Hansen et al. 2011).

A key limitation to assessment of vulnerability to past

and future change is the uncertainty associated with

estimates of exposure, potential impact, and vulnerabil-

ity (Glick et al. 2011). Each of the data sets used in

vulnerability assessments have levels of error associated

with them. Models that link these data sets have outputs

with errors that are multiplicative of those in the

individual data sets (see Huntley et al. 2010). Thus,

uncertainty in vulnerability assessment may be high.

Resource managers are increasingly cautious about

uncertainty and methods to include uncertainty in

decision making have been developed (Peterson et al.

2003). In the case of this study, few of the data sets used

had been validated nor error level quantified. The data

sets used for exposure over the past century are all based

on empirical observations (e.g., census surveys of

homeowners, climate data collected at meteorological

stations) with stringent quality control procedures.

However, some level of error is introduced into these

data sets when they are interpolated across landscapes.

The scenarios used for projections into the future are not

meant to approximate future realities, which are

unknowable. Rather, they are meant to represent

plausible possible futures to facilitate discussion and

planning (IPCC 2007). Moreover, the several climate

models used in these projections differ in assumptions

and outputs (IPCC 2007). We elected to average among

scenarios and models to represent a midrange of their

projections. While future vulnerability assessments of

PAs should attempt to quantify and minimize uncer-

tainty, resource management decisions will have to be

made in the face of this uncertainty.

Management philosophy and approach

PA managers face a difficult challenge in selecting

approaches that are both compatible with agency goals

and likely to be effective under global change. The

guiding policy for the newly formed NPS was to

maintain parks in an ‘‘absolutely unimpaired form’’

and ‘‘faithfully preserve them for posterity’’ (National

Park Service 2012:4). Consequently, many NPS manag-

ers operate under a philosophy of Ecological Process

Management or Historic Range of Variation (HRV),

wherein the goal is to maintain landscape patterns and

ecological processes within the range of variation in

place prior to Euro-American influence (Boyce 1998,

Keane et al. 2009). Active management is used only

where needed to restore lost ecological patterns or

functions. Reintroducing an extirpated keystone preda-

tor would be an example of this type of management

philosophy as was done with the reintroduction of the

gray wolf (Canus lupus) into Yellowstone National Park.

An alternative view is that ecosystems have been or

will be so altered by humans that current and future

conditions will have little resemblance to ‘‘natural’’

historical conditions (Hobbs et al. 2010). Consequently,

the goal of management should be to promote ecological

integrity and resilience under future changing conditions

(Colwell et al. 2012). This approach advocates designing

future ecosystems based on ecological principles and

using active management such as translocation of

species to achieve ecological objectives.

Our results suggest that vulnerability assessment

provides a foundation for tailoring management to

individual PAs by quantifying magnitude of change in

an ecosystem through time (Fig. 10). In systems

undergoing little change, historic, current, and future

ecosystem conditions may substantially overlap. In this

case, adaptation strategies may not be needed because of

little change and HRV may be most appropriate.

Management to keep the system within the historic
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range is feasible and desirable. An example may be

Olympic National Park on the Pacific Coast of the

Northwest United States. Past and projected future

climate change in this PACE is low to moderate due to

the moderating influence of the Pacific Ocean. The large

and long-lived rain forest trees species that dominate

this PACE have high adaptive capacity and resiliency to

shifts in climate and disturbance. Managers in this

region are more focused on maintaining beneficial

natural disturbance regimes within HRV than they are

about the effects of climate change.

In fast changing ecosystems, current conditions may

differ entirely from historic conditions and be on a

trajectory to entirely new ecosystem states in the future

(Fig. 10). Active management to create desired future

conditions (DFC) may be the only viable management

approach in this case. While the need for management

may be high to avoid ecological degradation, the

feasibility of such strategies may be low, the costs high,

and the risk of unintended consequence high. In the

Santa Monica Mountains PACE near Los Angeles,

management to retain pre-EuroAmerican disturbance or

ecological conditions will be either futile ecologically

and/or socially unacceptable. Instead, managers there

must decide what ecological conditions and ecosystem

services they wish to achieve under future global change

and develop active management strategies to produce

and maintain these conditions and services.

Perhaps the most typical situation for parks in the

United States is one where past, present, and future

ecosystems overlap moderately (Fig. 10). In this case,

analogs for ecosystems under future climate may already

exist in particular biophysical settings. The key man-

agement goal in such landscapes may be to maintain/

restore the mechanisms that promote resilience under

changing conditions (Moritz et al. 2011). Such strategies

are under development in and around the Lake

Roosevelt PACE in the eastern Washington Cascades

where topographic complexity and moderate climate

change result in ecosystems in small watersheds lying

along a gradient from historic to projected future

conditions.

Policy implications

The results of this study support Colwell et al.’s.

(2012) recommendation that the NPS steward its

resources for continuous change that is not yet fully

understood, to preserve ecological integrity. While some

of the parks we studied experienced relatively little

change in exposure to land use, climate and exotic

species, other PACEs have undergone dramatic change

in exposure, with projected increases in rates of change

and subsequent ecological consequences. Two major

policy implications emerge from this work: (1) PA

managers can best develop PA-specific adaptation and

management strategies to maintain desired ecological

conditions by conducting vulnerability assessments

across networks of PAs, and (2) adaptation planning

and management of PAs under global change can best

be done if explicit ecological goals are specified by

guiding policy documents.

In the case of the NPS, policies and programs are

largely in place that could facilitate vulnerability

assessments. The NPS Inventory and Monitoring

program (Fancy et al. 2009) was created to build

regional networks of parks in support of monitoring

natural resources consistently. More recently, the NPS

Climate Change Strategy (National Park Service 2010)

identified the need to conduct climate vulnerability

assessments across all NPS units. A detailed framework

for conducting such assessments (based on Glick et al.

2011) is under development with the NPS Intermountain

Region (Whittington et al. 2013). While all three

components of vulnerability pose scientific and logistic

challenges, some components can be evaluated using

existing data. Past exposure to land use, climate,

invasive species, and possibly pollution can be recon-

structed from historical data sources (this paper).

Forecasts of potential future exposure are increasingly

available from downscaled climate and land use models.

Climate and land use observations and projections can

be used to compare recent change with past and possible

future change. The components of vulnerability that

involve ecological response to exposure (sensitivity and

adaptive capacity) often can only be quantified through

scientific study that can be expensive and difficult.

Fortunately, this science is increasingly available,

including data on forest mortality and projections of

vegetation response to climate change (e.g., Rehfeldt et

al. 2012).

The NPS Inventory and Monitoring Program can

greatly inform vulnerability assessment. The program

currently monitors climate, human drivers, and conser-

vation context through NPScape (Monahan et al. 2012),

which utilizes many of the data sets analyzed here.

Existing Inventory and Monitoring Program products

could be further integrated with results generated by

other divisions in the NPS to include additional PACE-

level analyses of exposure, sensitivity, and adaptive

capacity that are the basis for understanding vulnera-

bility. Analysis and reporting of data on vulnerability

across the network of parks would identify those units

with similar threats, opportunities, and management

solutions. The knowledge derived from these assess-

ments would provide managers of individual parks with

information that is vital to crafting management

strategies for their parks in the context of other parks

with similar vulnerabilities.

Vulnerability assessments are best done in the context

of explicit conservation goals that can be used as a

benchmark for comparison to current conditions and to

guide management actions. Parks Canada (Parks

Canada Agency 2008), for example, implemented a

nationwide program for setting goals for ecological

integrity across their park units and reporting at five-

year intervals the condition of the park units relative to
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these goals. An independent scientific review of the U.S.

NPS recommended a similar program be developed in

order to better achieve the overarching goal of

stewarding NPS resources to preserve them unimpaired

under future change (Colwell et al. 2012). In accordance

with this recommendation, the NPS has initiated State

of the Parks reports that evaluate condition and trends

in park resources relative to ‘‘reference conditions’’

(available online).7 How best to define these reference

conditions in terms of ecological integrity, execute these

State of the Parks reports in the context of vulnerability

assessments, and institutionalize the reports and assess-

ments across the NPS system remains under discussion.

NPS and other PA management agencies face very

real challenges with very limited resources (National

Park Service 2010). Results of this study can facilitate

global change adaptation by PA managers by (1)

identifying trends in climate, land use, and other

stressors already affecting their unit; (2) describing

projected trends in the magnitude of stressors into the

future; and (3) identifying other units facing similar

challenges. The complexity and scale of global change

requires collaborations unlike those typical of the past,

and studies like this are necessary to promote partner-

ships and prepare PA managers to be effective stewards

into the future.
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