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Abstract

Context Connectivity has become a top conservation

priority in response to landscape fragmentation. Many

methods have been developed to identify areas of the

landscape with high potential connectivity for wildlife

movement. However, each makes different assump-

tions that may produce different predictions, and few

comparative tests against empirical movement data

are available.

Objectives We compared predictive performance of

the most-used connectivity models, cost-distance and

circuit theory models. We hypothesized that cost-

distance would better predict elk migration paths, while

circuit theory would better predict wolverine dispersal

paths, due to alignment of the methods’ assumptions

with the movement ecology of each process.

Methods We used each model to predict elk migration

paths and wolverine dispersal paths in the Greater

Yellowstone Ecosystem, then used telemetry data

collected from actual movements to assess predictive

performance. Methods for validating connectivity mod-

els against empirical data have not been standardized,

thus we applied and compared four alternative methods.

Results Our findings generally supported our hypothe-

ses. Circuit theory models consistently predicted wolver-

ine dispersal paths better than cost-distance, though cost-

distance models predicted elk migration paths only

slightly better than circuit theory. In most cases, our four

validation methods supported similar conclusions, but

provided complementary perspectives.

Conclusions We reiterate suggestions that alignment

of connectivity model assumptions with focal species

movement ecology is an important consideration

when selecting a modeling approach for conservation

practice. Additional comparative tests are needed to

better understand how relative model performance

may vary across species, movement processes, and

landscapes, and what this means for effective connec-

tivity conservation.

Keywords Cervus elaphus � Circuit theory � Cost-

distance � Gulo gulo � Least cost path � Wildlife

corridor

Electronic supplementary material The online version of
this article (doi:10.1007/s10980-016-0347-0) contains supple-
mentary material, which is available to authorized users.

M. L. McClure (&) � A. J. Hansen

Department of Ecology, Montana State University,

P.O. Box 173460, Bozeman, MT, USA

e-mail: meredith@largelandscapes.org

Present Address:

M. L. McClure

Center for Large Landscape Conservation,

P.O. Box 1587, Bozeman, MT, USA

R. M. Inman

Greater Yellowstone Wolverine Program, Wildlife

Conservation Society, 121 Trail Creek Rd., Ennis, MT,

USA

123

Landscape Ecol (2016) 31:1419–1432

DOI 10.1007/s10980-016-0347-0

Author's personal copy

http://orcid.org/0000-0001-6341-3433
http://dx.doi.org/10.1007/s10980-016-0347-0
http://crossmark.crossref.org/dialog/?doi=10.1007/s10980-016-0347-0&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10980-016-0347-0&amp;domain=pdf


Introduction

As humans continue to fragment natural habitats,

conservation efforts have increasingly focused on

maintaining connectivity among remaining habitat

fragments, in many cases on grand scales (e.g.,

Yellowstone to Yukon Conservation Initiative, Great

Eastern Ranges Initiative, Terai Arc Landscape,

Mesoamerican Biological Corridor). This conserva-

tion focus has been bolstered by consensus that

landscape connectivity will also be crucial for miti-

gating the impacts of climate change on biodiversity

(Heller and Zavaleta 2009). In the mountain west of

the United States, where land use expansion is eroding

habitats for remaining wilderness-dependent species

(i.e., those that generally avoid human-modified

landscapes) such as elk, grizzly bears, and wolverine,

conservation practitioners and wildlife managers often

rely on models to identify areas with high potential

connectivity (e.g., Craighead et al. 2001; Bates and

Jones 2007; Montana Fish Wildlife and Parks 2011).

Many modeling approaches have been developed for

this purpose, but they differ in their formulation and

assumptions and may also differ in their ability to

identify important areas for conserving connectivity.

Selecting the most appropriate model for a given

application is expected to help ensure that limited

resources are wisely invested and that the best

opportunities for connectivity conservation are not

lost to continued land use expansion. However,

comparative empirical tests of alternative modeling

approaches are currently limited (Poor et al. 2012;

LaPoint et al. 2013; Cushman et al. 2014).

The term connectivity has come to encompass

many concepts, but is most often defined as ‘‘the

degree to which the landscape facilitates or impedes

movement’’ (Taylor et al. 1993). When applied to

movements of animals, this includes daily resource

acquisition, seasonal migration, dispersal from natal

ranges, and range shifts in response to disturbance

such as climate change (Frankel and Soule 1981;

Dingle 1996). Landscape connectivity for animal

movement is not only species-specific, but also

process-specific. A landscape supporting migration

of one species may not support migration of another

due to differences in habitat requirements and scale of

habitat use (e.g., Sawyer et al. 2005). Similarly, a

landscape supporting dispersal of a given species may

not support daily travel among resources by the same

species due to differential sensitivity to landscape

features driven by the behavioral states underlying

different movement processes (Ims 1995). This speci-

ficity is important when selecting a method for

modeling connectivity because each method makes

unique assumptions about the way in which animals

perceive and move through the landscape. Conse-

quently, each method may be more appropriate for

modeling connectivity for some species and processes

than it is for others.

The two most popular methods for modeling

connectivity are cost distance models and circuit

theory models (Rainey 2012). Cost distance models

(least cost corridor models; e.g., Walker and Craig-

head 1997; Adriaensen et al. 2003; Coulon et al. 2008)

are designed to minimize the tradeoff between travel

distance among habitat patches and exposure to

unsuitable habitat. Least cost paths offer the shortest

cumulative cost-weighted distance between a source

and destination across a surface representing land-

scape resistance to movement and are considered

optimal travel routes. More broadly, the connectivity

value of each cell in a landscape can be defined as the

cost-weighted distance of the least costly path passing

through it. Cost distance models assume that paths

with the lowest cost-weighted distance offer the best

chance for successful movement. Importantly, an

implicit assumption that animals have complete

knowledge of the landscape must be made if we are

to predict that animals are most likely to select and use

paths with the lowest cost-weighted distance. Cost

distance models are most useful for identifying

complete corridors between a source and destination

that are most likely to support successful movement.

Circuit theory models (McRae 2006; McRae et al.

2008) apply concepts related to flow of charge through

an electrical circuit to the movement of individuals

through a landscape. They differ from cost-distance

models in that they explicitly incorporate the assump-

tion that greater redundancy in travel routes between a

source and destination enhances flow between them.

Cells in a landscape are treated as electrical nodes

connected to neighboring cells by resistors, with

resistance values defined, as in cost-distance models,

by a model of the landscape’s resistance to movement.

When current is passed through the circuit from a

source location to a destination location, current

values at each cell in the landscape represent the

probability of a random walker passing through the
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cell as it moves from the source to the destination.

Higher current densities are found at ‘pinch points’,

where many potential paths condense to pass through a

narrow area because few alternative paths are avail-

able. Total connectivity is predicted to increase with

the number of available routes between a source and

destination. Unlike cost distance models, circuit

theory models assume that animals have no knowl-

edge of the landscape beyond their immediate sur-

roundings as defined by adjacent map cells. Circuit

theory models are most useful for identifying pinch

points, which are most critical to protect because they

would disproportionately impact connectivity

between a source and destination if movement through

them was impeded.

In this study, our objective was to use telemetry

data from migrating elk (Cervus elaphus) and dis-

persing wolverines (Gulo gulo) in the Greater Yel-

lowstone Ecosystem (GYE) to test the ability of cost

distance and circuit theory models to predict observed

animal movement paths. We sought to determine

which model most accurately predicts actual move-

ments and whether relative performance varies with

movement process (i.e., migration vs. dispersal). We

hypothesized that cost distance models would better

predict elk migration movements because elk migra-

tion paths are passed down through generations, route

fidelity is high, and strong selection pressure is

expected to drive elk to follow paths offering the best

chance of arriving at seasonal home ranges in optimal

condition (Boyce 1991; Irwin 2002). In contrast, we

hypothesized that circuit theory models would better

predict wolverine dispersal movements because land-

scapes encountered by juveniles venturing outside

their natal range are entirely novel. Since good model

performance may be defined differently across users

and contexts, we used four validation metrics that

capture different aspects of model performance and

together give a more complete picture of the models’

predictive ability and utility. We conclude by dis-

cussing model predictions as they relate to focal

species’ movement ecology and the information needs

of conservation practitioners. This study is the first to

evaluate the performance of multiple connectivity

models using empirical data from multiple animal

movement processes. Comparative evaluations are

critical to better understanding how the link between

movement ecology and connectivity model formula-

tion affects model performance, and what this means

for selection of appropriate methods for use in

conservation practice.

Methods

Study area

The study elk population is located in the western

portion of the GYE and moves between summer

habitats in the Madison Range and winter habitats in

the Madison Valley (Fig. 1b; 111�1705300W,

44�5401500N). The wolverines studied originated in

the GYE and moved in and surrounding the GYE

(Fig. 1a; 109�4902300 W, 43�1604200N), which lies at

the southern periphery of their current global distri-

bution (Inman et al. 2012).

The GYE encompasses approximately

108,000 km2 of the Rocky Mountains across the states

of Montana, Idaho, and Wyoming (Fig. 1). It includes

the Yellowstone Plateau and 14 surrounding mountain

ranges, with elevations ranging from 1400 to 4200 m.

Precipitation increases with elevation and ranges from

32 to 126 cm per year (NOAA 2007). Snow most often

falls as dry powder, and, at high elevations, may be

present for at least 9 months of the year, reaching

depths of more than 350 cm. Low elevation valleys are

generally characterized by short-grass prairie and

sagebrush communities, and lower elevation forests

are typically dominated by lodgepole pine (Pinus

contorta) or Douglas fir (Pseudotsuga menziesii), with

Engelmann spruce (Picea engelmannii), subalpine fir

(Abies lasiocarpa), and whitebark pine (Pinus albi-

caulis) increasing at higher elevations (Despain 1990).

Forest communities are typically interspersed with

grass, forb, and shrub meadows. Above the alpine tree

line, alpine tundra or talus fields are present.

The GYE is centered on Yellowstone and Grand

Teton National Parks and is composed primarily of

public lands, including wildlife refuges, national

forests, and Bureau of Land Management holdings. It

is ringed by interstate highways (I-90, I-15) and crossed

by several smaller United States highways (US-89, US-

14, US-191, US-20). Most human settlements are found

along these routes and generally consist of smaller

towns (i.e., populations\10,000). There is significant

agricultural land use in the valleys to the west and north

of the GYE, including the Madison Valley where the

study elk population is found. More intensive human
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impacts are found in areas surrounding the GYE,

including larger human settlements (e.g., Billings, MT

and Salt Lake City, UT) and extractive land uses (e.g.,

natural gas drilling).

Areas of analysis for elk and wolverine were

defined by placing 5 and 200 km buffers, respectively,

on minimum convex polygons containing all teleme-

try relocations available to this study. These buffers

gave models reasonable ‘‘room to roam’’ and avoided

imposing boundary effects on model predictions.

Focal species

Elk are highly adaptable mixed feeders, foraging on a

variety of grasses, forbs, and shrubs (Cook 2002). Elk

migrate seasonally between winter and summer

ranges, primarily in response to shifting quality and

accessibility of forage across the landscape driven by

seasonal changes in vegetation and snow conditions

(Irwin 2002). Migration distances of 2.4–150 km have

been observed, and movements may span anywhere

from several days to 8 weeks, with movement rates

and use of stopover sites influenced by weather

conditions (Skinner 1925), rates of vegetation green-

up (Dalke et al. 1965), hunting pressure (Grigg 2007),

and other biological requirements such as calving

(Irwin 2002).

Wolverines are intrasexually territorial (Inman

et al. 2012 and references therein), and natal dispersal

moves juveniles out of maternal home ranges in search

of new territories. Territory establishment is con-

strained to high, alpine areas that exist in island-like

fashion (Copeland et al. 2010; Inman et al. 2013), but

dispersal may take wolverines through low elevation

areas that are not suitable for residence. Dispersal

events are often preceded by exploratory movements

beyond the maternal home range (Vangen et al. 2001;

Inman et al. 2012). Dispersal distances of hundreds of

Fig. 1 Areas of analysis for wolverine (a light grey) and elk (b hatched) in and surrounding the Greater Yellowstone Ecosystem (dark

grey), which encompasses Yellowstone and Grand Teton National Parks (stippled). The extent of (b) is outlined in (a)
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kilometers have been observed, and have taken some

individuals beyond GYE boundaries (Vangen et al.

2001; Inman et al. 2009).

Datasets

Our validation datasets consist of previously collected

GPS and VHF telemetry data. Elk data were collected

through a collaboration between Montana Fish, Wild-

life and Parks and Montana State University (K.

Hamlin and R. Garrott, Principal Investigators; Grigg

2007). A total of 45 adult female elk (C. elaphus) were

fitted with GPS collars during the winters of 2005 and

2006. Collars were worn for approximately 1 year,

and locations were recorded every 30 min. During this

period, most collared individuals in this partially

migratory population completed one round trip migra-

tion between winter ranges in the valley and summer

ranges in the Madison range to the east. Although the

collared individuals can be considered to have

migrated as part of a herd, their migration paths are

not as uniform as in some other migratory elk

populations (e.g., the Dome Mountain population in

Yellowstone National Park). Instead, they were

observed to divide among four major drainages as

they passed through the Madison range, and each

individual’s path was unique at fine scales. Migratory

movements were isolated from home range move-

ments as described by Rainey (2012). Approximately

75 % of migratory relocations were used to fit

seasonal habitat suitability models (Rainey 2012),

leaving 1354 relocations from 12 individuals in the

spring and 1617 relocations from 10 individuals in the

fall for connectivity model validation in this study

(Table 1).

Wolverine telemetry data were collected during

2001–2009 as part of a basic ecological study (Inman

et al. 2012). Eight wolverines fitted with VHF

implants (5 males, 3 females) were identified as

dispersers. Four of these individuals (3 males, 1

female) were also fitted with GPS collars. VHF

implants provided data for up to 3.5 years with a

target relocation interval of 10 days. Actual relocation

intervals ranged from several hours to several weeks,

with some months-long gaps present for some indi-

viduals. GPS collars collected data for 3–12 months,

with actual relocation intervals ranging from 1 h to

1 week. Some individuals completed a single long-

distance dispersal movement, while others made

multiple exploratory trips before either completing a

successful move or remaining in their natal territory

for the remainder of their tracking device’s lifespan.

Because exploratory movements outside the natal

range are understood to be important precursors to

dispersal, all multi-day movements outside the

mother’s territory demonstrating directionality were

considered dispersal-related movements, including

both departure and return trips. Dispersal-related

movements were isolated from movements within

maternal home ranges as described by Rainey (2012)

and yielded a total of 390 relocations representing 18

movement paths of 8 individuals for connectivity

model validation in this study (Table 2).

Modeling resistance to movement

Both cost-distance and circuit theory models run on a

raster map estimating resistance to movement of the

focal species across the landscape. Resistance is

typically defined as the inverse of habitat suitability

(Chetkiewicz and Boyce 2009). Habitat suitability

may be estimated using a variety of methods, from

expert scoring of the relative value and weight of

categorical habitat attributes (e.g., Adriaensen et al.

2003; Larue and Nielsen 2008) to statistical models

relating species occurrence point data to underlying

landscape covariate values (e.g., Aarts et al. 2008;

Coulon et al. 2008).

In this study, habitat suitability for spring and fall

elk migration was modeled by fitting seasonal logistic

discrimination functions (Keating and Cherry 2004;

Pearce and Boyce 2006) to a subset of the Madison

herd migration GPS collar dataset (29 females; Rainey

2012; see Supplementary Material). The models

indicated that high suitability (low resistance) for

spring migration was associated with low elevation,

mild to moderate North- and West-facing slopes,

intermediate vegetation greenness, low snow cover,

low to moderate forest edge density, low to moderate

road density, and open cover types on public lands

(Rainey 2012). In fall, habitat most suitable for

migration is associated with moderate elevations,

mild to moderate slopes, low vegetation greenness,
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moderate snow cover, low to moderate forest edge

density, low road density, and forest or shrub cover on

forest service lands.

Inman et al. (2013) modeled wolverine habitat

suitability using VHF telemetry data from non-dis-

persing individuals throughout the GYE. 2257 VHF

telemetry relocations from 18 individuals (12 females,

6 males) were used to develop a logistic discrimination

function (Keating and Cherry 2004; Pearce and Boyce

2006; see Supplemental Material). High suitability

(low resistance) was associated with areas at high

elevation with steep terrain, deep snow, low road

density, low human population density, and which

were closer to high elevation talus, tree cover, and

areas with snow cover through April 1 (Inman et al.

2013). Although relocations collected during dispersal

movements were not available to inform a dispersal-

specific wolverine suitability model, wolverines are

expected to preferentially disperse through primary

habitat as identified by this model when available.

Landscape resistance maps for each focal species

were calculated as the inverse of suitability such that

highly suitable cells present low resistance to move-

ment. This linear transformation method was selected

because it is the most common among previously

published analytical connectivity studies in which

empirical data were used to derive a habitat suitability

model (Zeller et al. 2012). These resistance surfaces

served as the input maps for both cost-distance and

circuit theory models.

Modeling connectivity

We selected telemetry relocations immediately pre-

ceding and following isolated migration and dispersal-

related movement paths as the endpoints to be

connected by cost distance and circuit theory models.

Cost distance and circuit theory models were then used

to predict each path in the validation datasets. Cost

distance models were implemented using ESRI

ArcMap Spatial Analyst tools, and circuit theory

models were implemented in CircuitScape (McRae

and Shah 2009).

Model validation

Several methods have been developed that validate

connectivity model predictions by quantifying how

well they align with telemetry data (Driezen et al.

2007; Pullinger and Johnson 2010; Poor et al. 2012).

However no standard methodology has been estab-

lished. We applied four validation metrics that

together provide complementary measures of predic-

tive success that are meaningful from both statistical

Table 1 Movement

parameters for (a) spring elk

migration (n = 12 paths)

and (b) fall elk migration

(n = 10 paths)

Mean SD Median Range

(a)

Start date 31-May 19.2 days 25-May 5-May–22-Jul

End date 5-Jun 20.5 days 29-May 11-May–14-Aug

Duration (days) 5.56 9.35 2 1–49

Distance (km) 25.21 20.74 19.44 0.69–82.48

(b)

Start date 30-Oct 28.9 days 23-Oct 16-Sep–25-Jan

End date 4-Nov 32.7 days 31-Oct 17-Sept–31-Jan

Duration (days) 6.67 11.35 3 1–57

Distance (km) 26.68 21.06 22.46 0.46–84.9

Table 2 Movement

parameters for wolverine

dispersal-related

movements (n = 18 paths)

Mean SD Median Range

Start date 11-Mar 53.72 days 10-Mar 21-Dec–8-Jul

End date 19-Apr 68.12 days 8-Apr 11-Jan–1-Sep

Duration days) 59.08 81.84 13.88 1.97–228

Distance (km) 114.46 120.47 72.24 12.49–548.55
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and practical perspectives. These were (1) value at

observed points, (2) random path comparison, (3)

distance only model comparison, and (4) 95th per-

centile corridor.

Value at observed points

First, we sought to identify a metric that provides an

objective, straightforward answer to the question:

How well does the model agree with the data? We

assume that if a model predicts movements well, most

relocations will lie in map cells with high predicted

connectivity values. Due to differences in the range

and distribution of values generated by cost distance

and circuit theory models, we first rescaled the

predictive maps generated by each model to per-

centiles. We then determined the percentile value of

each cell containing a telemetry relocation.

We compared values from cost distance and circuit

theory models using a mixed effects linear regression

model, which was fitted using the nlme package

(Pinheiro et al. 2013) in R Core Team (2013).

Percentile values were treated as the response variable,

model (cost distance versus circuit theory) was treated

as a categorical fixed effect, and relocations nested

within individuals were treated as random effects. This

model estimates the relative performance of each

model while accounting for the nested structure of the

data. It also provides an estimate of variance in

performance among individuals and avoids biases due

to unequal sampling among individuals.

Random path comparison

Our second metric was designed to answer the

question: Do observed movements align with model

predictions better than expected by chance? This is the

most common general approach to connectivity model

validation (e.g., Driezen et al. 2007; Cushman et al.

2014). For each model, we compared the percentile

values of cells containing observed telemetry reloca-

tions to percentile values of cells containing points

from randomized paths.

Random paths can be generated in a variety of ways.

We chose an approach that produced paths with

ecologically reasonable travel distances while minimiz-

ing subjective assumptions about what constitutes a

plausible path. We first defined a sampling area as the

circle circumscribing the start and end points of the

observed path. This circle was then buffered by the

maximum observed distance between consecutive

relocations in the observed path. Random points were

generated within the buffered circle, which we treat as

samples from an otherwise unspecified path connecting

migration start and end points in the same way that

relocations are samples from a continuous migration

path. The number of sampled points in each random path

equaled the number of relocations in the observed path.

For each individual, 99 random paths were generated.

We then found the mean percentile value intersected by

the observed path and by each random path, and

identified the rank of the observed path mean in the

distribution of random path means for each individual.

Distance-only model comparison

We next asked how much information each model

provides to guide conservation action compared to

distance-only models, which assume that animals are

most likely to simply travel in a straight line without

regard to habitat quality. We generated distance-only

models by running cost-distance and circuit theory

analyses on uniform resistance maps in which all cells

were assumed to have equal suitability. We then

compared differences between percentile values

assigned to each point by our predictive models and

distance-only models using a mixed effects model as

described above.

95th percentile corridor

Lastly, we calculated an easily interpretable metric

with direct relevance for conservation practitioners: If

we were to designate a wildlife corridor as the portion

of the landscape that is predicted to experience the

highest rates of movement, how much of the target

movement process would the corridor protect? As in

Poor et al. (2012), we defined corridors as the most

traversable 5 % of the landscape by selecting all cells

with values above the 95th percentile. For each

individual, we then determined the percentage of

observed relocations that fell within 95th percentile

corridors. We compared cost distance and circuit

theory models using ratio estimation for unequal size

cluster samples (Lohr 2010). Individuals were con-

sidered primary sampling units, and relocations nested

within individuals comprised the secondary sampling

units. This approach allowed calculation of standard
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errors on percentages that were appropriate to the

sampling design.

Results

Elk

Cost-distance and circuit theory models produce

generally similar predictions of elk migration paths

(Fig. 2a–h). They tend to highlight the same areas as

offering the highest potential connectivity, and they

often highlight similar alternative paths that elk may

instead follow (e.g., Fig. 2d, h). Some differences

between the models’ predictions can be seen in the

more diffuse patterns often produced by circuit theory

models, particularly as potential paths approach the

midpoint between the source and destination, where a

greater variety of alternative paths is identified

compared to cost distance models’ tendency to

highlight a more uniform cluster of potential travel

routes directly surrounding the least cost path. Six of

the eight measures of model performance (four

validation metrics in each of two seasons) suggest

that cost-distance models outperform circuit theory

models in predicting migration paths (Table 3). How-

ever, this trend is weak. Most tests either do not carry

statistical significance or indicate that model perfor-

mance differs by a very narrow margin, and two of

eight tests indicate the reverse pattern in performance.

Mean values assigned to elk migratory relocations by

cost-distance models were higher (better) than those

assigned by circuit theory models both in spring

(98.57 ± 0.615 SE vs. 98.35 ± 0.628 SE;

p = 0.0152) and in fall (98.30 ± 1.056 SE vs.

97.13 ± 1.062 SE; p\ 0.001). Because ranks of

observed paths among random paths were highly

skewed toward the top rank of 1, we report the

percentage of observed paths receiving the top rank

rather than mean ranks across individuals. In spring,

cost-distance models assigned more observed paths the

best rank of 1 than did circuit theory models (100 vs.

75 %). In fall, both models assigned 90 % of observed

paths the top rank. Spring cost-distance models assigned

elk relocations higher (better) mean percentile values

than did a distance-only model, while circuit theory

models assigned lower values (6.34 ± 0.853 SE higher

vs. 1.79 ± 0.943 SE lower; p\ 0.001). In fall, both

cost-distance and circuit theory models were

outperformed by distance only models (0.58

points ± 0.577 SE vs. 1.34 ± 0.581 SE lower;

p\ 0.001). 95th percentile corridors predicted by

cost-distance models and circuit theory models did not

differ significantly in the number of elk relocations

captured in spring (80.3 % ± 13.42 SE vs. 82.2 %

± 7.63 SE; p = 0.895) or in fall (74.4 % ± 9.85 SE vs.

73.9 % ± 9.85 SE; p = 0.354).

Wolverine

In contrast, while cost-distance and circuit theory models

suggest some of the same wolverine dispersal routes as

potentially important, overall their predictions of poten-

tial connectivity for wolverines differ considerably

(Fig. 2i–p). When wolverines cross areas of low suit-

ability, cost-distance models tend to favor long, cir-

cuitous paths that track highly suitable habitat, while

circuit theory models highlight small ‘‘stepping stone’’

patches of suitable habitat amidst highly resistant areas

and predict high probabilities of movement through these

patches as many possible paths converge on them (e.g.,

Fig. 2l, p). All four validation metrics indicate that circuit

theory models outperform cost-distance models in pre-

dicting dispersal-related movements of wolverines

(Table 4).

Cost-distance models assigned wolverine relocations

lower (worse) mean percentile values than did circuit

theory models (90.63 ± 1.671 SE vs. 97.88 ± 0.658;

p\ 0.001). However, this finding should be interpreted

with some caution due to the skewed distribution of the

individual random effect estimates. Cost distance-

models assigned fewer observed paths the top rank

among random paths than did circuit theory models

(66.7 vs. 72.2 %). Cost-distance models were outper-

formed by distance-only models, while circuit theory

models performed better than distance-only models

(6.427 ± 1.0278 points lower vs. 1.64 ± 0.7023 points

cFig. 2 Model predictions for a representative subset of four elk

migration paths from cost-distance (a–d) and circuit theory (e–

h), and for a representative subset of four wolverine dispersal

paths from cost-distance (i–l) and circuit theory (m–p), with the

boundary of Yellowstone National Park shown for reference.

Start- and endpoints of migration and dispersal paths (turquoise

points), relocations along observed paths (black points), and the

least cost path predicted by cost-distance models (turquoise

line) are shown. Surfaces are displayed using a histogram-

equalized color ramp based on the visible map extent
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higher; p\ 0.001). Finally 95th percentile corridors

predicted by cost-distance models captured fewer

wolverine relocations than did those predicted by circuit

theory models, though this difference was not significant

at the a = 0.05 level (55.64 % ± 14.867 vs.

86.92 % ± 6.974; p = 0.107).

Discussion

To our knowledge, this was the first study to simul-

taneously test predictions of multiple connectivity

models against multiple movement processes using

multiple validation metrics. Our hypotheses were

generally supported, but some uncertainty remains in

relative model performance. While circuit theory

models clearly predicted wolverine dispersal move-

ments better than cost-distance models, cost-distance

models were only slightly and inconsistently better

than circuit theory models in predicting elk migration

movements. This may have been because elk generally

traveled shorter distances than wolverines, providing

less opportunity for paths predicted by cost-distance

and circuit theory models to deviate. Elk habitat

Table 3 Validation results for predictions of (a) spring elk migration paths (n = 1372 relocations from 12 paths) and (b) fall elk

migration paths (n = 1617 relocations from 10 paths)

Test Test metric Cost-distance

(SE)

Circuit theory

(SE)

Mean

difference

p value

(a)

Value at observed

points

Mean percentile value at observed points 98.57 (0.615) 98.35 (0.628) 0.22 0.015

Random path

comparison

Percentage of paths with top rank among

random paths

100 % 75 % 25 % N/A

Distance-only

comparison

Percentile points above distance-only model 6.34 (0.852) -1.79 (0.943) 8.13 \0.001

95th percentile

corridors

Percent relocations in corridor 80.3 (14.42) 82.2 (7.63) 1.90 0.895

(b)

Value at observed

points

Mean percentile value at observed points 98.3 (1.056) 97.13 (1.062) 1.17 \0.001

Random path

comparison

Percentage of paths with top rank among

random paths

90 % 90 % 0 % N/A

Distance-only

comparison

Percentile points above distance-only model -0.58 (0.577) -1.34 (0.581) 0.76 \0.001

95th percentile

corridors

Percent relocations in corridor 74.4 (9.91) 73.9 (9.85) 0.50 0.354

Table 4 Validation results for predictions of wolverine dispersal-related paths (n = 390 relocations from 8 paths)

Test Test metric Cost-distance

(SE)

Circuit theory

(SE)

Mean

difference

p value

Value at observed

points

Mean percentile value at observed points 90.6 (1.67) 97.8 (1.91) 7.2 \0.001

Random path

comparison

Proportion paths with top rank among

random paths

66.7 % 72.2 % 5.5 % N/A

Distance-only

comparison

Percentile points above distance-only model -6.42 (1.03) 1.65 (1.43) 8.1 \0.001

95th percentile

corridors

Percent relocations in corridor 55.6 (14.87) 86.9 (6.97) 31.3 0.107
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models also predicted a much more uniform distribu-

tion of resistance values than did the wolverine habitat

model, which instead predicted a sharp distinction

between core habitat areas and nonhabitat. This meant

that both connectivity models predicted similar, fairly

straight elk migration paths because little deviation

from a straight line was needed for elk to remain in

good habitat.

Our results, though based on a single example of

migration and a single example of dispersal, reinforce

the idea that it may be important to match a

connectivity model’s assumptions and formulation

with characteristics of the focal species and movement

process of interest when selecting an approach for use

in conservation planning. The observed tendency of

cost-distance models to better predict elk migration

paths, though weak, agrees with the results of Poor

et al. (2012) showing that cost-distance models

outperformed circuit theory models in predicting

pronghorn migration routes. Together, these findings

suggest that the cost-distance model’s assumption of

perfect knowledge of the landscape may be a better fit

to ungulate migration processes than circuit theory’s

assumption of no knowledge of the landscape,

although circuit theory models may offer complemen-

tary information for mapping pinch points within

corridors identified using cost-distance models. This

makes sense given that migration paths are passed

down through generations, route fidelity from year to

year is high, and ungulates are likely to experience

strong selection pressure to follow optimal routes

offering the best chance of reaching seasonal home

ranges in good condition. Note, however, that ‘herd

knowledge’ and multi-generation route fidelity may

result in historical migration paths becoming subop-

timal as landscapes change over time. Particularly in

these cases, migratory relocation data are likely to be

better used to directly delineate migration routes for

conservation than to develop a model to serve this

purpose. Although extrapolation of migratory reloca-

tion data to areas where data are not available in order

to model migration routes may be informative, this

should be undertaken with considerable caution given

historical influences on migration path selection as

well as potential differences in landscape

characteristics.

Similarly, our findings strongly suggest that circuit

theory models’ assumption of no knowledge of the

landscape provide a better fit for wolverine dispersal

through new landscapes than cost-distance models’

assumption of complete knowledge, a pattern that may

apply to other dispersers as well. Several recent studies

have used empirical data to validate circuit theory

models (LaPoint et al. 2013; Braaker et al. 2014; Koen

et al. 2014). However, they did not use dispersal data

and only one study compared performance with cost-

distance models, finding that circuit theory models

predicted fisher movements among core habitat blocks

within their home ranges better than cost-distance

models (LaPoint et al. 2013). Together, this study and

our findings suggest that circuit theory may have

greater general applicability to a variety of movement

processes, even when animals have knowledge of the

landscape, than cost-distance models. However, rela-

tive model performance in our study may have been

driven in part by the sharp contrast in resistance

between primary habitat and non-habitat for wolver-

ines. Further testing of circuit theory models against

dispersal data from other species in other landscapes

with different habitat requirements is needed.

Results from our four validation metrics were

generally consistent, but some differences also

emerged. The potential for obtaining different results

from different metrics has important implications for

choosing a validation approach. We suggest either

using multiple metrics or carefully selecting the metric

that best addresses the question or objective at hand.

Some metrics are more appropriate from a statistical

perspective, while others are better suited to practical

interpretation. For conservation applications, we sug-

gest that comparing connectivity model predictions to

a distance-only model and determining the percentage

of relocations that fall within a defined corridor are the

most relevant and interpretable metrics. Comparing

multiple criteria for defining a corridor (e.g., 95th

percentile versus 99th percentile as in Poor et al. 2012)

may be useful for understanding how corridor extent

affects the proportion of the movement of interest that

is protected, as well as how sensitive the validation

results are to corridor extent. Note that the most used

metric in previous validation studies is comparison

with random paths, which offers perhaps the least

direct practical relevance for conservation

practitioners.

We show that elk and wolverine generally moved

through areas of the landscape predicted to offer the

highest potential connectivity by cost-distance and

circuit theory models, respectively, and that most
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portions of each path would be protected by a corridor

defined as the most traversable portions of the

landscape. Both models generally (but not always)

outperform distance-only models, and their predic-

tions align better with observed paths than random

paths. But whether a model is good enough to be

useful for conservation planning depends on the focal

species, the movement process, and the conservation

objective. A model is likely to be useful in helping to

focus future research and monitoring efforts in the

most promising areas, but not for making a final

decision concerning the boundaries of a corridor to be

designated and protected on the ground. Dispersal

paths are more spatially variable than migration

routes, so criteria for acceptable model performance

based on validation against dispersal data may need to

be relaxed relative to criteria based on validation

against migration data. Greater precision may be

needed to identify corridors for species with very

specific habitat requirements than for generalist

species. We suggest that practitioners should clearly

define their information needs and set realistic expec-

tations for connectivity model predictive performance.

While our results indicate that a good match

between connectivity model assumptions and focal

species movement ecology is likely to be important,

conservation practitioners and managers are rarely

interested in maintaining connectivity for only a single

species. Connectivity models are often applied in a

non-species specific way, making general assumptions

about habitat characteristics that are likely to be

suitable for many species (e.g., low degree of human

modification or intact forest cover). These models

have rarely been tested against empirical data repre-

senting occurrence or movement of particular species

(but see Koen et al. 2014). Limited preliminary

comparisons of multi-species and species-specific

model predictions suggest some promise in these

approaches, at least for some species guilds (Ament

et al. 2014; Krosby et al. 2015), and new methods may

be particularly appropriate for predicting landscape

connectivity for multiple species and processes (e.g.,

Cushman and Landguth 2012; Theobald et al. 2012;

Pelletier et al. 2014). Empirical validation of novel

methods, especially when used to predict connectivity

for multiple species, is needed (e.g., Koen et al. 2014).

Until the performance of these approaches is better

understood, multiple species-specific models should

be fitted and overlaid as data and other resources allow

(e.g., Washington Wildlife Habitat Connectivity

Working Group 2010; Montana Fish Wildlife and

Parks 2011), with careful thought given to the method

chosen for each.

We emphasize that any connectivity model is only

as good as the resistance surface on which it is based.

In this study, we use a single resistance surface derived

from empirical movement data for each species (and

each migration season) to drive connectivity models.

Previous studies have consistently shown that resis-

tance surfaces derived from empirical data produce

better connectivity model predictions than resistance

surfaces parameterized by expert opinion (Clevenger

and Wierzchowski 2002; Pullinger and Johnson 2010;

Poor et al. 2012), and a recent study showed that sites

at which black bears crossed roads were predicted

more accurately by connectivity models run on a

resistance surface developed from movement data

than one developed from genetic data (Cushman et al.

2014). However, the transformation used to derive

resistance maps from suitability values is expected to

be an important parameter in the modeling process that

may affect the quality of corridor predictions (e.g.,

Koen et al. 2012; Braaker et al. 2014; Mateo-Sánchez

et al. 2015), along with other decisions such as the

selection of habitat covariates for modeling resistance,

the scale at which habitat selection is modeled, and the

habitat suitability model structure employed. We

expect that deeper understanding of what drives

resistance of a landscape to movement of a focal

species, how resistance of a given landscape varies

depending on the focal species’ movement process or

behavioral state, and how our formulation of resis-

tance and connectivity models affect predictions of

potential connectivity will yield greater success in

defining corridors. Sensitivity analyses exploring the

impacts of the many decisions made in the connectiv-

ity modeling process are needed to quantify uncer-

tainty in connectivity model predictions and to

highlight which decisions have the greatest impacts

on model performance (e.g., Rayfield et al. 2009;

Koen et al. 2012; McClure & Hansen in prep.).

Conclusion

Connectivity modeling approaches too often appear to

be selected based on popularity or ease of use. We urge

users of connectivity models to more critically and
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explicitly examine the links between model assump-

tions and the movement processes they are intended to

represent. Choosing the right tool for the job is crucial

in developing connectivity conservation strategies that

are transparent and justifiable to stakeholders, and to

ensuring that limited conservation resources are

directed toward places that are the most likely to

successfully support critical wildlife movement

processes.

Ultimately, connectivity models are just one step in

a much larger process of planning and implementing

connectivity conservation on the ground. Connectivity

models alone do not provide simple solutions to the

problem of how best to conserve and manage

connected landscapes. Rather, they are tools capable

of providing useful information to a planning process

that is uniquely defined by the agencies or organiza-

tions involved, land tenure across the target landscape,

budgetary restrictions, sociopolitical context, and

other considerations. The accuracy of connectivity

model predictions is one factor among many that will

affect the success of connectivity conservation, albeit

an important one. We expect the value of connectivity

models to conservation planning processes to increase

with improved understanding of their strengths,

shortcomings, and variability across the diverse

circumstances under which they are used.
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