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Erratum

Evaluating the species energy relationship with the newest measures of ecosystem
energy: NDVI versus MODIS primary production
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Ecosystem energy has been shown to be a strong correlate with biological diversity at continental scales. Early
efforts to characterize this association used the normalized difference vegetation index (NDVI) to represent
ecosystem energy. While this spectral vegetation index covaries with measures of ecosystem energy such as
net primary production, the covariation is known to degrade in areas of very lowvegetation or in areas of dense
forest. Two of the new vegetation products from theMODIS sensor, derived by integrating spectral reflectance,
climate data, and land cover, are thought to better approximate primary productivity than NDVI. In this study,
wedetermine if the newMODIS derivedmeasures of primary production, gross primary productivity (GPP) and
net primary productivity (NPP) better explain variation in bird richness than historically used NDVI. Moreover,
we evaluate if the two productivity measures covary more strongly with bird diversity in those vegetation
conditions where limitations of NDVI are well recognized.
Biodiversity was represented as native landbird species richness derived from the North American Breeding
Bird Survey. Analyses included correlation analyses among predictor variables, and univariate regression
analyses between each predictor variable and bird species richness. Analyses were done at two levels: for all
BBS routes across natural landscapes in North America; and for routes in 10 vegetation classes stratified by
vegetated cover along a gradient from bare ground to herbaceous cover to tree cover.We found that NDVI, GPP
and NPP were highly correlated and explained similar variation in bird species richness when analyzed for all
samples across North America. However, when samples were stratified by vegetated cover, strength of
correlation betweenNDVI and bothproductivitymeasureswas low for sampleswith bare ground and for dense
forest. TheNDVI also explained substantially less variation in bird species richness than the primary production
in areas with more bare ground and in areas of dense forest. We conclude that MODIS productivity measures
have higher utility in studies of the relationship of species richness and productivity and that MODIS GPP and
NPP improve on NDVI, especially for studies with large variation in vegetated cover and density.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Early biogeographers observed that the primary pattern in global
biodiversity is a reduction in the number of species from the tropics to
the poles (Fisher 1961; MacArthur 1972). Since then, numerous
hypotheses have been proposed to explain the spatial patterns of
species richness. While there is likely no single factor that explains
species richness patterns, there is growing consensus that latitude is a
surrogate and that much of the pattern can be explained by some
measure of available energy (Wright, 1983; Gaston, 2000; Pimm &
Brown, 2004). Many possible mechanisms have been proposed to
explain how ecosystem energy might constrain species diversity

(Willig et al 2003; Evans et al., 2005), including that energy influences
rates of evolution (Rohde, 1997; Allen et al., 2002; Rohde, 1992; Evans
and Gaston, 2005b; Hawkins et al., 2007), or that energy influences
thermoregulatory load (Turner et al., 1987), or that energy limits the
number of individuals in a population and thus influences extinction
rates (Wright, 1983). Uncertainty in the precise causal mechanism of
the species energy relationship and lack of continental-scale energy
data has lead to uncertainty in how to best represent available energy.

Initial studies of species energy relationships used a number of
climate variables to represent energy, including potential and actual
evapotranspiration (Currie, 1991; Kerr, 2001; Hawkins, Porter, & Diniz-
Fahlo, 2003), ambient temperature (Turner et al., 1987; Acevedo and
Currie, 2003), precipitation (Van Rensburg et al., 2002; Chown et al.,
2003), and water-energy balance (Hawkins, Field, et al., 2003). Spatially
continuous energy data was usually generated by collecting empirical
data and interpolating between points to create contour lines that
represented a continuous surface (Currie and Paquin,1987). Collectively,
these studies found significant relationships between climate variables
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and biodiversity. However, because the casual mechanism was not
understood, these studies raised questions as towhethermore complete
measures of ecosystem energy, such as primary production, would
better explain patterns of diversity (Hawkins, 2004).

In the last few decades, the utility of remote sensing technology to
map ecosystem energy has increased substantially (Turner et al., 2003).
Vegetation indices, such as the normalized difference vegetation index
(NDVI), a strong correlate with photosynthesis and biomass, historically
have been used as a surrogate for ecosystem productivity or general
ecosystem energy. A new suite of satellite products have recently been
developed that are thought to improve on NDVI by quantifying
ecosystem primary production. These satellite-derived products use
simulation models parameterized with spectral, climate, and land use
data to estimate primary productivity, vegetation duration, and biomass
(Running, 2002). The purpose of this paper is to evaluate the merits of
the two productivity measures in the suite, GPP and NPP in predicting
avian diversity compared to historically used NDVI.

1.1. Initial satellite-based measures of energy

Early use of satellite spectral data to generatemeasures of ecosystem
energy focused prominently on NDVI. Mechanically, NDVI is a spectral
transformation thatdescribes the reaction of twoelectromagnetic bands
(i.e., the absorption of the red and the reflectance of thenear-infrared) to
healthy green photosynthesizing vegetation. Functionally, the ratio of
these bands has been found to covary with a number of vegetation
characteristics including the fraction of photosynthetically active
radiation (fPar) (Dye and Goward, 1993; Sellers et al., 1994), leaf area
index (LAI) (Shabanov et al., 2005) and total green biomass (Chong et al.,
1993; Sellers et al., 1994).

Many species energy studies used NDVI generated from the
Advanced High Resolution Radiometer (AHVRR) to represent primary
production, photosynthesis, ecosystem energy (Paruelo et al., 1997;
Fraser, 1998; Baily et al., 2004; Evans et al., 2006) and NDVI has shown
to be a strong correlate with biodiversity of many taxonomic groups
(Whiteside & Harmsworth, 1967; Abramsky & Rosenzweig, 1984;
Owen, 1988; Hoffman et al., 1994; Kerr & Packer, 1999; Hawkins,
Porter, et al., 2003; Hawkins et al., 2005) in many geographic regions,
and at many spatial scales. In our review, comparable studies of
AVHRR NDVI and breeding bird species richness found statistically
significant relationships with a wide range in variation explained (14–
51%) (Currie, 1991; Hurlbert & Haskell, 2003; Evans & Gaston, 2005a).

The creation of NDVI revolutionized our ability to detect subtle
differences in vegetation canopy and has been used extensively in
many disciplines (Kerr & Ostrovsky, 2003). While NDVI is a useful
measure of many vegetation properties and has many worthwhile
applications, there are important limitations to using it as a surrogate
for ecosystem energy across all vegetated surfaces (Goward et al.,
1991). NDVI was developed to recognize subtle differences in agri-

cultural field crops (Rouse et al., 1973) and yet has been applied across
the gradient in vegetation cover from bare ground to dense grasslands
and forests. It is well recognized that NDVI would be less accurate at
representing productivity in places with some bare soil or dense
vegetation (Huete, 1988). As the fraction of vegetation cover drops
from 100% to 0%, NDVI becomes increasingly sensitive to soil
properties (i.e., backscatter) and less representative of vegetation
characteristics (Richardson & Wiegand, 1977; Gao et al., 2000). In
dense vegetation, NDVI is unable to detect differences in vegetation
canopy at the upper portion of NDVI values due to saturation effects
(Box et al., 1989). Backscatter and saturation, and other forms of
systematic error (Kerr & Ostrovsky, 2003), motivated remote sensing
scientists to seek methods to better represent vegetation productivity
across the gradient in vegetation cover.

1.2. Latest generation of satellite-based energy measures

In 1999, the Terra satellite, supporting the Moderate Resolution
Imaging Spectroradiometer (MODIS) sensor, was launched to provide
advances in capturing properties of the land surface including more
comprehensive measures of vegetation production, vegetation dura-
tion, and vegetated cover (Running et al., 2004). The MODIS sensor is
one of the few sensors with improved atmospheric correction and
cloud screening (Cohen & Justice, 1999). The two MODIS datasets
designed to represent primary production, GPP and NPP, are derived
from the same spectral bands as NDVI, but they also incorporate
information on land cover, climate, and vegetation characteristics to
derive measures of above-ground gross and net primary production.
The vegetation continuous fields (VCF) measures percent of plant
lifeform at subpixel resolution and is intended to provide a continuous
gradient from bare ground to forested cover, as an alternative to
categorical land cover classifications (Hansen et al., 2003). An
additional vegetation index is also included in the MODIS suite of
products. The Enhanced Vegetation Index (EVI) is a slight derivation
from NDVI as it includes one additional spectral band, but no other
peripheral data. All of these products, NPP, GPP, VCF and EVI are
designed to improve on NDVI by addressing the noted weaknesses in
NDVI attributed to backscatter and saturation.

1.3. Ecosystem energy and bird species richness

Given the limitations inherent with NDVI, we predict that MODIS
GPP and NPP more accurately represent actual primary production
and will therefore have a stronger relationship with bird biodiversity
in the lower and upper portions of the vegetation cover gradient
(Fig. 1). Because NDVI limitations are not expected to manifest at
intermediate levels of vegetation cover, we predict all measures of
ecosystem energy to have similar patterns of covariation with bird
diversity along the mid-domain of the vegetation gradient.

Fig. 1. Predicted relationships between bird species richness and two measures of ecosystem productivity (NDVI and MODIS productivity measures) across a gradient in vegetation
cover. Due to limitations in NDVI in low vegetation (soil backscatter effects) and dense vegetation (saturation effects), we predict that the strength of the species/energy relationship
between NDVI and primary production will be most different in these areas (red arrows).
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Alternatively, since NDVI is the basis of the GPP and NPP algorithm,
there might be significant data redundancy between the two. If there
is significant data redundancy, NPP and GPP might not carry more
information about ecosystem energy than NDVI, and wewould expect
that NDVI and the productivity measures would be highly correlated.
This will limit the advantages of using productivity over NDVI for
assessing species energy relationships.

Our goal for this study was to evaluate the relationship between
bird richness and NDVI versus GPP and NPP products across North
America. The specific questions were:

1) To what extent do GPP and NPP covary with NDVI and thus contain
information redundant with NDVI?

2) Does GPP and/or NPP explain more variation in bird diversity than
does NDVI?

3) Does GPP/NPP covary more strongly with bird diversity in those
vegetation types where NDVI is known to have limitations (i.e.,
areas with high proportion of bare soil and areas with dense forest
cover)?

2. Methods

Our general approach was to compare relationships between bird
richness and MODIS products, NDVI, GPP and NPP, across a wide
ranging gradient of vegetation cover. The goal was to determine if NPP
and GPP had stronger relationships with bird species richness than the
vegetation index, NDVI. To highlight if differences were a result of the
NDVI limitations, the analyses were performed for all Breeding Bird
Survey (BBS) routes, and then for routes in 10 classes stratified by
vegetated cover across a gradient from bare ground to herbaceous
cover and dense forest.

2.1. Predictor data

MODIS datasets were gathered from the Earth Observing System
Data Gateway and were summarized as annual averages for the years
2000 through 2004 at a spatial resolution of 1 km. We used the
12 month average for all three predictor variables. There is not
consensus on the best temporal measure of energy, as some studies
have found annual measures stronger predictors (Wright 1983; Currie,
1991) and some found that seasonal measures of energy to be stronger
predictors (Hurlbert & Haskell, 2003). In this study, we found that
annual averages explained more variation in breeding bird species
richness than breeding season averages (Phillips et al., in preparation).
The NDVI is collected at 250 m spatial resolution, so we resampled
NDVI to 1 km using nearest neighbor distance, to be the same spatial
resolution as the 1-km resolution GPP and NPP data.

NDVI is created directly from reflective data collected from the
MODIS sensor. Temporal composites are available at 16 day intervals,
as best pixels (i.e. cloud free) are selected at this interval. NDVI is a
normalized ratio of the near-infrared and red bands (Table 1).

The productivity products, GPP and NPP, represent above-ground
productivityandwere developed to represent the conversionof sunlight
to organic material. GPP is created by estimating photosynthetically
active radiation (PAR) from reflective satellite data, modifying those
values with MODIS land cover, estimating potential growth with
modeled temperature and vapor pressures deficit climate data, and
adjusting the conversion efficiency estimate. This process concludes
with an estimation of plant production daily, and is summarized to
reflect the rate of primary production for an8-day period (Runninget al.,
1999). This calculation does not account for the maintenance and
respiration costs of plants, so does not represent actual energy available
to birds. The NPP product represents plant production after main-
tenance and respiration costshavebeen subtracted, so shouldbeabetter
representation of plant material available to birds than GPP. It is
calculated by subtracting the estimated respiration costs that plants use

for maintenance from the modeled GPP. Plant respiration varies with
vegetation type, so LAI is used to estimate plant respiration. NPP is
provided as an annual average, and is the most complex measure of
energy availability of the MODIS suite of products.

Validation efforts for the MODIS products, including NPP and GPP
measures, are complex and ongoing, and are done by comparing GPP
measures at flux towers and plot-level measurement of NPP over the
surrounding landscape and then ‘scaling up’ the results of these
empirical observations to the 1-km spatial resolution (Morisette et al.,
2003). Validation at nine sites distributed in a wide range of biome
types globally suggests that NPP and GPP are representative of general
trends in the magnitude of NPP and GPP associated with local climate
and land use, but overestimate production in both low and highly
productive areas (Turner et al., 2006). It is suggested that the error is a
result of the ‘scaling up’ from fine scale data collection to the 1-km
spatial resolution of the MODIS pixel.

MODIS EVI is a variation on NDVI that is collected and available at
the same temporal and spatial resolution as NDVI. EVI includes a set of
coefficients to increase the clarity of the vegetation signal, minimizing
noise from the atmosphere and soils. EVI is intended to minimize
operational noise in the vegetation signal by applying a soil back-
ground correction and an atmosphere resistance term. Both of these
improvements to the EVI are intended to minimize soil backscatter
and increase the signal sensitivity in high biomass regions addressing
signal saturation.We briefly explore the utility of EVI in species energy
relationship, yet the EVI comparison is not the focus of this paper.

2.2. Biodiversity data

Native land bird species richness (USGS PatuxentWildlife Research
Center, 2006) was derived from species count data collected by the
USGS Breeding Bird Survey (BBS) (Sauer et al., 2005). BBS survey routes
are 39.4 km linear routes, randomly located along secondary roads
throughout the US and Canada. The BBS data has been collected every
Mayor June since 1966with a trained surveyor recording every species
observed at 50, 3-minute point counts spaced at 0.8 km intervals along
the route. The survey begins in the morning, recording birds that are

Table 1
Description and details of MODIS data products used in this study

Scientific
product

Spatial
resolution before
resampling
(meters)

Method of calculation References

Normalized
difference
vegetation
index

250, 500, 1000 Near infrared− red/Near
infrared+red

Huete et al.
(2002)

Gross primary
production

1000 MODIS land cover, LAI/fPar;
non-MODIS min temp and VPD;
estimate of PAR conversion
efficiency

Running et al.
(2004),
Heinsch et al.
(2003)

Net primary
production

1000 MODIS land cover, LAIa/fParb;
non-MODIS minimum
temperature and VPDc; estimate
of PAR conversion efficiency —

maintenance respiration
estimates

Running et al.
(2004),
Heinsch et al.
(2003)

Vegetation
continuous
fields

500 MODIS bands 1–7 to calculate
proportional estimates for
vegetative cover types: woody
vegetation, herbaceous and bare
ground

Hansen et al.
(2003)

Land cover 1000 Algorithm including MODIS
products: water mask, bands
1–7, EVI, snow cover, land
surface temperature, VCF

Friedl et al.
(2002)

a Leaf area index.
b Fraction of photosynthetically active radiation.
c Vapor pressure deficit.
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seen or heard within 400 m from the point stop. There are N4000 BBS
routes that provide species count and relative abundance data at the
landscape scale (see Bystrak, 1981 for methodology details).

We used BBS data for the years 2000–2004 to coincide with the
years available for MODIS products. Routes that were sampled one or
more yearswithin this time periodwere included. Selection criteria for
routes also included consideration of land use. Land use change has
been shown to influence bird diversity at landscape scales (Flather,
1996; Hansen et al., 2002; McKinney, 2002) and this land use effect
could confound the relationship between richness and productivity. To
minimize this human influence we subset routes into heavily human-
dominated routes, and more natural vegetation routes. We selected
routes that were less than 50% human land use class, defined with the
MODIS land cover product and the 17 classes in the International
Geosphere-Biosphere Programme classification scheme (Running
et al., 1994). Routes containing greater than 50% of cells with land
use classified as urban and built-up, cropland/natural vegetation
mosaic, and cropland classes were excluded.

We excluded aquatic, exotic, raptor, and nocturnal species. Aquatic
species were excluded because they might be more strongly limited by
hydrology than energy. Additionally we excluded BBS routes that were
located within 5 km of the coast because they are dominated by aquatic
species. We also assumed that nonnative species may be more
dependent upon human habitats and we omitted Partners in Flight
species that are identified as nonnative to a particular Bird Conservation
Region. Raptorial and nocturnal birds are known to be inadequately
sampled with BBS methods, so these families of birds were omitted.

The BBS data are known to have various biases (Link & Sauer,1998).
Primary among thesewith regards to species richness are the roadside
location of survey routes. Potential biases of the roadside survey are
that habitats along roads are not representative all habitats across the
study area and that particular bird species avoid or are attracted to
roads. Despite this roadside bias, BBS data are often used for regional
to continental bird monitoring because they are the most complete
and accurate data available.

A source of error in using BBS data to derive species richness is the
lack of complete detectability of species along a route. This results
because all observers have some chance of missing species during the
counts and this chance is well known to differ among observers and
routes (Boulinier et al., 1998). Nichols et al. (1998) developed a series
of estimators based on capture–recapture theory to account for
incomplete detection among species. We use the COMDYN software
(Hines et al., 1999) to estimate route-level avian richness based on a
closed population model that accounts for heterogeneity in species
detection. The avian richness response variable used in our analysis
was the mean of annual richness estimates for each year that a route
was run in the 2000–2004 period.

To associate the BBS route to the 1-km raster satellite data, all raster
cell values that overlay the digitized BBS route pathswere summarized
such that each BBS route had an average summary predictor value. This
summary across routes provided a species richness average associated
with an predictor variable average for each BBS route, such that each
route was considered a sample.

2.3. Assigning routes to classes of vegetation lifeform cover

Routes were assigned to vegetation classes based on percent
vegetated cover by lifeform (bare, herbaceous, tree) from the MODIS
VCF product (Hansen et al., 2003). The spatial resolution of these data
was originally 500 m and was resampled, using the nearest neighbor
transformation, to 1-km to be compatible with the other predictor
datasets.

VCF is calculated using the red, near-infrared, and blue bands of the
electromagnetic spectrum, and is intended to represent land cover as
a continuous variable rather than classified as a limited number of
land cover classes (Hansen et al., 2003). Each VCF pixel represents the
percentage of the pixel (0–100%) occupied bare ground, herbaceous
vegetation, and woody vegetation, as three discrete continuous
variables (Schwarz et al., 2002). The accuracy of this layer has been
evaluated in some areas using both field collected data and finer-

Fig. 2. Routes were classified across a 3-dimensional vegetation cover gradient, ranging from bare ground to herbaceous cover to tree cover. Routes consisting of cells with
combinations of bare/herbaceous and herbaceous/tree were common. Routes with combinations of bare/tree did not exist (note bare/tree axis).
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resolution satellite imagery and has shownmixed results. In the semi-
arid southwest US region, VCF is shown in two separate studies to
have a negative bias in estimating vegetated cover, with increasing
underestimation of cover as vegetation increased (White et al., 2005),
however in Britain VCF tended to overestimate tree cover (Disney &
Lafont, 2004). Efforts to validate the accuracy of the VCF products are
ongoing both empirical observations and finer-resolution remote
sensing products (Hansen et al., 2003).

We created a three dimensional gradient with each axis represent-
ing a lifeform that enabled us to partition routes according to a
vegetated surface class gradient (Fig. 2). Some routes were highly
heterogeneous in vegetated cover. Our goal was to examine bird/
energy relationships among BBS routes that were relatively homo-
geneous in vegetated cover along the route. Thus, we excluded routes
that had a standard deviation of vegetated cover greater than 70% of
maximum standard deviation for all routes.

The average values for vegetated cover along routes ranged from
0–100% bare, 0–93% herbaceous and 0–76% tree cover. Routes were
classified into 10 life form classes with class definition varying slightly
to insure adequate sample sizes. The minimum sample size per class
was 46 routes and the maximum was 258 routes. We recognize that
this is a large difference in sample sizes, however our focus was not on
comparing models across vegetation cover classes, but rather on the
explanatory power of predictors within cover classes. Thus unequal
sample sizes across the vegetation cover gradient did not affect our
evaluation of ecosystem energy measures.

When classifying the routes across the vegetated gradient of VCF,
routes that were characterized by bare ground and herbaceous cover
occurred more frequently (n=1038) than routes that were dominated
by herbaceous and tree cover (n=484). Routes thatwere dominated by
combinations of tree cover and bare ground did not occur, as non-

vegetated lands and forest do not naturally occur within the size of a
pixel. Analysis was therefore confined to the bare to herbaceous
gradient and herbaceous to tree gradient.

2.4. Statistical analyses

To determine the degree of correlation and redundancy between
NDVI, GPP and NPP (Objective 1), we examined the degree of
correlation between the variables across all routes. The correlation
coefficient will indicate similarity and the potential for the productiv-
ity measures to provide information regarding the richness–produc-
tivity relationship beyond NDVI. The degree of correlation between
GPP, NPP, and NDVI, was subjectively compared using Pearson's
correlation coefficient.

To determine if GPP and NPP provided more explanatory power
than NDVI (Objective 2), bird species richness was regressed
individually against the three predictor variables. Linear regression
models were developed, using both linear and polynomial functions,
and coefficient of determination, and statistical significance were
reported.

To test the limitations of the NDVI across the vegetated surface
gradient (Objective 3), correlation analyses and regression analyses
were performed for routes in each of the 10 classes, stratified by the
vegetated surface. The degree of correlation and best regression
models were determined for each vegetated surface class with the
same process and statistics previously described for the analysis of all
routes.

Akaike's Information Criterion (AIC) was the primary criterion for
determining bestmodels (see Burnham&Anderson,1998). AIC provides
an estimate of the distance between the specified model and some full
truth or reality. “Best” models are those that best approximate the true

Fig. 3. The 1390 Breeding bird survey routes that were included in the analysis were distributed across North America.
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model in a parsimonious manner. Thus AIC is useful for selecting from
among several competing models. However, AIC only provides a
measure of model strength relative to other models being examined,
but does not inform on the overall accuracy of the model. Hence, we
used the coefficient of determination (R2) as a measure of how much
variation in the response variables was explained by the best model.

Regression techniques assume that residuals (error terms) are
independent, normally distributed, and with constant variance. Semi-
variograms were used to look for spatial dependence, but showed little
increase with distance (Pinheiro & Bates 2000). The lack of relationship
indicates that after accounting for the predictors used in these models,
the residuals from nearby routes were nomore strongly correlated than
those from distant routes as is commonly found in studies at such broad spatial scales (Hawkins et al., 2007). Spatial correlation occurred at a

scale finer than was measured with these data, or has been removed
though use of these predictors. We inspected the normality of the
residuals of the best models using and found the Normal Q–Q plots
provided support for normality for species richness. Homogeneity of
variance was confirmed with spread-location plots, which showed no
trend in the absolute residuals over the fitted values. Statistical
significance was assumed for tests with P values of b0.01.

3. Results

Of the 3476 total routes that had adequate richness data, a subset
of 1390 routes met our criteria for analysis (Fig. 3). These routes were
sampled for one or more years, contained less than 50% of cells
classified as human-dominated land uses, were greater than 5-km
from the coast, and cells constituted less than 70% of maximum
standard deviation in VCF.

3.1. Objective 1: strength of correlation among predictor variables

When all 1390 routes are analyzed together, NDVI, GPP and NPP
were all highly correlated. GPP and NPPweremore strongly correlated
with each other (r=0.948) than NDVI was with GPP (r=0.946) or
slightly less, NPP (r=0.914). Scatterplots of the three variables showed
that correlation was not consistent across all values (Fig. 4). The
correlation between NDVI and GPP indicated a curvilinear relationship
such that the correlation was less at the lower and higher values. This
pattern would occur if NDVI was underestimating production in low
and high values, or if GPP was estimating production in these values
(Fig. 4, middle). The scatter of NDVI on NPP showed strong correlation
in the lower values of each with increasing scatter as both NDVI and
NPP values increased (Fig. 4, top). Interestingly, GPP and NPP were
highly correlated in lower values, and increasingly less correlated as

Fig. 4. Scatterplots showing the correlation between, NDVI/NPP and NDVI/GPP, and
NPP/GPP (respectively from top to bottom).

Table 2
Statistical output for comparison of linear and polynomial univariate models of bird
richness and the four MODIS predictor variables

Variable Model Adjusted r2 AIC ΔAIC Model equation

NDVI Linear 0.395 −1149.10 331.53 1.35+0.69(X)
NDVI Polynomial 0.510 −1458.71 21.92 0.99+2.71(X)−2.29(X2)
EVI Linear 0.378 −1109.66 370.97 1.34+1.29(X)
EVI Polynomial 0.492 −1389.97 90.66 0.92+5.41(X)−8.40(X2)
GPP Linear 0.363 −1077.33 403.30 1.44+0.02(X)
GPP Polynomial 0.524 −1480.63 0.00 1.22+0.098(X)−0.004(X2)
NPP Linear 0.358 −1065.21 415.42 1.39+0.05(X)
NPP Polynomial 0.504 −1424.80 55.83 1.11+0.19(X)−0.01(X2)

Fig. 5. Scatterplot and predicted quadratic line, showing the unimodal relationship
between bird richness and GPP.
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values increased (Fig. 4, bottom). A systematic lack of correlation was
also apparent in the lower values.

3.2. Objective 2: relationships between predictors and bird species richness

The regression analysis indicated that across all BBS routes the
quadratic models for all variables were better than linear models
(based on AIC). This pattern indicates that species richness increased
with increasing values, then either flattens or decreases for middle
and upper values, creating either a unimodal or positive decelerating
relationship. The coefficient of determination did not differ greatly
among the variables, however GPP had the strongest relationshipwith
bird richness across all routes (R2=0.52), with NDVI (R2=0.51) and NPP
(R2=0.50) slightly less (Table 2 and Fig. 5).

3.3. Objective 3: variation in correlation and strength of relationship
across vegetation classes

When routes were stratified across the vegetation cover gradient,
there were substantial differences in the correlation and strength of
the relationship between bird richness, NDVI and the productivity
variables (Table 3).

NDVI was highly correlated with both GPP and NPP in herbaceous
cover classes. However, in vegetation classes characterized by sparse
and dense vegetated cover, NDVI and both GPP and NPP showed
substantial lack of correlation, especially in classes characterized with
partial bare ground cover (Fig. 6, lines and right axis). NPP was least
correlated with NDVI in the three classes with least vegetated cover
(r=0.14, 0.59, 0.63 respectively) and the most dense vegetated tree
cover (r=0.73 and r=0.67 respectively). Interestingly, the two
productivity measures, GPP and NPP, were highly correlated for all
classes, with a pattern of slightly decreasing correlation as vegetated
cover increased. NDVI and EVI were highly correlated for all classes
and were slightly less correlated in the two classes dominated with
bare ground and tree cover being (r=0.82 and r=0.72 respectively).

All three predictor variables showed similar trends in variation in
the strength of the bird richness relationship when considering all 10
vegetated cover classes (Fig. 6, bars and left axis). The general trend
was that all predictors explained more variation in the herbaceous
classes, less in the lightly vegetated classes and large variation in the
forested classes. However, as mentioned earlier, the coefficients of
determination are not directly comparable among vegetation cover
classes because of differences between classes in the ranges of
variation in the predictor and response data and in the sample sizes.
The explanatory power in the four vegetation classes that are
characterized with bare ground and little herbaceous cover, showed
a generally weak relationship with all predictors, ranging from
R2=0.02–0.0.13. Vegetation classes that were characterized by

Table 3
Vegetation class number, class description, percent of each lifeform, sample size, and
coefficient of determination (R2) of the regression relationship between bird richness
and each MODIS predictor variable, NDVI, GPP and NPP

Vegetated
surface
class

Vegetated surface
description

Percent of cover N NDVI
(R2)

GPP
(R2)

NPP
(R2)

%bare/%herbaceous/
%tree

1 Dominant bare ground 80–100/0–20/0–10 46 0.02 0.12 0.10
2 Bare/herbaceous 60–80/20–40/0–10 69 0.10 0.13 0.11
3 Herbaceous/bare 30–60/40–60/0–10 141 0.6 0.13 0.10
4 Herbaceous/bare 20–40/60–80/0–10 258 0.03 0.03 0.01
5 Dominant herbaceous 0–20/80–100/0–10 73 0.38 0.36 0.37
6 Dominant herbaceous 0–10/70–90/10–30 110 0.34 0.37 0.39
7 Herbaceous/tree 0–10/50–70/30–40 112 0.36 0.44 0.39
8 Herbaceous/tree 0–10/40–60/40–50 159 0.30 0.40 0.36
9 Tree/herbaceous 0–10/30–50/50–60 221 0.16 0.31 0.15
10 Dominant tree 0–10/30–40/60–70 201 0.11 0.24 0.05

Fig. 6. NDVI and productivity are less correlated in bare ground and forested cover (line graph and right axis), and productivity is a stronger predictor of bird richness in these areas
(bar graph and left axis). The bars in the histogram represent the percent of maximum coefficient of determination between bird richness and NDVI, GPP and NPP for the 10
vegetation classes (left axis). The line graph represents Pearson's correlation coefficient for NDVI/GPP, NDVI/NPP, and GPP/NPP.
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dominant herbaceous cover had a stronger relationship with all four
variables, ranging from R2=0.28–0.43. Vegetation classes that had
increasing tree cover were more variable in explanatory power, but all
three predictor variables had a weaker relationship in these classes
than the herbaceous dominated classes, and a stronger relationship
than the bare ground/little herbaceous cover classes.

Whenwe looked within each of the 10 vegetated cover classes and
compared NDVI, GPP and NPP, there were substantial differences in
strength of relationship with bird species richness (Fig. 6).

3.3.1. Bare ground to light herbaceous cover
In classes 1–3, characterized by bare ground and little herbaceous

cover, both NPP and GPP had a stronger relationship with richness
thanwith NDVI. GPP explained an average of 12.6%, NPP an average of
10.3%, and NDVI 6% in these three bare/herbaceous classes. In
vegetation class 4, characterized by routes that are covered in slightly
more herbaceous cover than bare ground, NDVI and GPP have equal
strength, with NPP much weaker.

3.3.2. Herbaceous cover
In the vegetation classes 5 and 6, characterized by the highest

amount of herbaceous (70–100% herbaceous) vegetation, NPP and
NDVI had the strongest relationships, 38% and 36% respectively. These
were the only two classes that GPP did not have the strongest
relationship with richness. In vegetation classes 7 and 8, characterized
by herbaceous cover and increasing tree cover, there was great
variability in strength of relationship with each dataset. GPP was
strongest in class 7, and NDVI was weakest in both of these classes.
Vegetation class 7 additionally had the strongest relationship with
GPP (R2=0.44) than any other predictor variable in any other
vegetation class. GPP explained 8% more than NDVI in this class.

3.3.3. Forest cover
The three most heavily vegetated classes, characterized by

increasingly dominant tree cover and decreasing herbaceous vegeta-
tion (classes 8, 9 and 10), were highly variable in explanatory power
among the three predictor variables. GPP was the strongest predictor
in all three of these classes, ranging from 10 to 15% greater than NDVI.
In the two most heavily forested vegetation classes (classes 9 and 10),
GPP was consistently high, and NPP varied widely. NDVI was less than
half of the explanatory power of GPP. NPP also explained less than half
than GPP in vegetation class 9 and in the most heavily forested class
had a negligible relationship with bird richness. These top two
forested classes had the greatest absolute difference in explanatory
power between the productivity product GPP and NDVI.

4. Discussion

The goal of this study was to evaluate if the new generation of
satellite-derived measures of ecosystem productivity are more strongly
correlatedwith bird species richness than thehistorically usedNDVI.We
found that NDVI and productivity measures were highly correlated
across all BBS routes but showed large variations in degree of correlation
when routeswere stratifiedbyvegetation cover class. Additionally, NDVI
and the productivity measures were relatively similar in strength of
regression relationship with bird richness across all routes, but showed
large variations in relationship strength when routes were stratified by
vegetation cover class. In areasof sparseanddense vegetation,wherewe
suspected NDVI would be least representative of productivity, NPP and
GPP substantially improved the strength of the richness–productivity
relationship. The benefits of using GPP and NPP were not obvious until
we accounted for the limitations of NDVI and compared correlation and
strength of relationship in these areas. We conclude that MODIS
productivity measures advance our ability to represent ecosystem
production to address the species energy relationship at broad spatial
scales.

4.1. Correlation of NDVI, GPP, and NPP among all vegetation cover classes

Aswepredicted, thedegree of correlationbetween the threedatasets
was high.

GPPandNPPweremorehighlycorrelated thanNDVIwaswith either.
GPP is used to calculate anestimate of daily net photosynthesis (PSNnet)
which is then summed across the year, for annual PSNnet. Plant costs for
maintenance and growth respiration are estimated based on plant
allometry, live wood mass and leaf area. The maintenance and growth
expenditures are direct inputs into theNPP algorithmand are ultimately
subtracted from GPP (Heinsch et al., 2003). Since GPP is the basis of the
NPP calculation, we were not surprised to see a strong correlation
between these datasets. However, since the algorithms used to create
the GPP and NPP products are muchmore complex than the vegetation
indices, incorporating climate, land cover and leaf area index informa-
tion, error propagation through the modeling is likely.

Finally, there was strong correlation between the NDVI/GPP and
NDVI/NPP. NDVI was nearly as highly correlated with GPP (r=0.94)
and NPP (r=0.914) as with previously discussed EVI (0.964). When
looking at the correlation across values, the scatterplots showed that
in lower values NDVI was more strongly correlated with GPP and NPP
in lower values was decreasingly correlated as values increased.
Additionally, the correlation relationship between NDVI and GPP
appeared to be somewhat curvilinear, such that NDVI underestimated
production in the upper and lower values (Fig. 4, bottom). We
suspected that the lower values contain pixels of bare ground and
backscatter effects result in NDVI underestimating productivity here.
In the upper values, we suspect that NDVI has saturated and it no
longer sensitive to the subtle differences in vegetation canopy, and is
not accounting for production under the forest canopy making GPP a
better estimate of productivity in these denser forests.

Although EVI is not the focus of this paper, we noted that NDVI and
EVI were the most highly correlated among the products and were
highly correlated across all vegetation classes. This was expected
because NDVI and EVI are the most similar in being derived entirely
from spectral data. Unlike NDVI that is calculated as the ratio of the
difference of the red and infrared electromagnetic bands, EVI
additionally incorporates the blue band to address the backscatter
and saturation limitations of NDVI (Huete et al., 2002). The addition of
the blue band is designed to de-couple the atmosphere from the
vegetation signal to gain more sensitivity to vegetation structural
properties than to chlorophyll, resulting in awider range of variation in
denser forests. We predicted that this would result in less correlation
with NDVI in the upper and in the lower values which could indicate
that EVI is more sensitive than NDVI to vegetation in pixels with the
combination of herbaceous cover and bare ground, that NDVI has not
recognized as vegetation.

In previous work, EVI has been shown to be more sensitive to
biophysical vegetation properties by reducing the saturation effects in
dense vegetation that are common with other indices (Jiang et al.,
2007). At high values, there was far less correlation between the two
variables. This suggests that EVI has promise for greater sensitivity in
the dense vegetation values that NDVI normally saturates. This greater
spread in EVI values could represent the differentiation of subtle
structural or canopy differences in the dense vegetation.

4.2. Species energy relationships across all vegetation cover classes

We found small differences in strength of relationship with bird
species richness among NDVI, GPP and NPP across all vegetation cover
classes. The coefficient of determination for quadratic models for the
three predictor variables ranged from 0.504 to 0.524, with NPP
weakest, then NDVI, and GPP strongest. Additionally, EVI had the
weakest relationship of the four (R2=0.492).

It is unclear why EVI, with its strong correlation to NDVI and
improved formulation to better handle soil backscatter and canopy
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saturation issues (Huete et al., 2002) did not have at least as strong a
relationship to bird species richness than NDVI. Also, contrary to
expectation, NPP, which is designed to represent production of new
vegetation biomass, was more weakly related to bird species richness
(R2=0.504) than GPP (R2=0.524).

Similar to many other species energy studies at the continental
spatial scale, we found that positive polynomial models have the
strongest richness–energy relationships with NDVI, GPP and NPP. There
is substantial lack of consensus on the nature of the species energy
relationship that is demonstratedwith two recent exhaustive reviews of
the literature. A reviewconducted in 1999 found that for animals at very
broad spatial scales similar to that of our study, a positive linear
relationshipwas foundmore frequently, followedbyapositiveunimodal
relationship (Waide et al., 1999). However, since then Mittelbach et al.
(2001) performed a meta-analysis designed to be inclusive of all
taxonomic groups, all spatial scales, and across community types. In this
work, when analyzing animal species, positive linear and unimodal
relationships were common, but at the broadest spatial scale, unimodal
was more often found. There has been heavy criticism of this review
regarding inappropriate consideration of spatial scale, acceptable
statistical parameters, lack of consideration of predictor variable
limitations (Whittaker & Heegaard, 2003) and general experimental
design flaws (Gillman and Shane, 2006). It was demonstrated (Whit-
taker and Heegaard, 2003) that when statistical parameters were
changed slightly, or studies with flawed experimental design
approaches were omitted (Gillman and Shane, 2006), that positive
linear relationships were more prevalent at the broadest scales in most
of the analyses in theMittelbach et al. study. These two studies illustrate
the interest and lack of consensus on the topic. For those studies that
looked specifically at bird richness and productivity surrogates, again a
positive linear relationship was most common, followed by a positive
polynomial relationship (Waide et al., 1999). Seasonal and annual
measures of energy were used for these studies (Hurlbert and Haskell
2003; Evans et al., 2005). In a similar ongoing study, we found positive
and quadratic relationships with richness for all seasonal measures of
energy, however these models had substantially weaker relationships
than models using annual averages (Phillips et al., in preparation).

The relationships between MODIS products and bird species
richness found here were stronger than in previous AVHRR-based
NDVI-bird studies. The most comparable study is Hurlbert and Haskell
(2003). They usedmonthly composites of AVHRRNDVI for at 12month
period during 1992 and 1993 and used the June average (representing
the breeding season) and the annual average as predictor variables.
Bird data were from the 2494 BBS routes that met data quality
standards for the year 1997. They found for analyses at the spatial scale
of BBS routes that the variation in bird species richness explained by
June NDVI was 41% and by annual NDVI was 34%. Our findings of 50%
and 53% of the variation in bird species richness explained by annual
MODIS NDVI and GPPmay be due to the improvements in MODIS over
AVHRR data and in our methods of analysis. There have been many
changes in theMODIS imagery that have likely improved the quality of
data from previous sensors. AVHRR data was constrained with
relatively poor spatial co-registration of images, crude atmospheric
correction, calibration problems, and less-than-ideal cloud screening
(Tan & Friedl, 2005). The MODIS sensor improves on the severity of
these issues to increase the quality of the spectral signal. Additionally,
theMODIS sensor collects a greater range of spectral signals at a higher
radiometric resolution for better signal quality. The temporal resolu-
tion is also increased to global coverage every 2 days.

Also, some confounding factors may have been reduced in our
analyses by using MODIS and BBS data from the same time periods,
taking a 5-year average of the satellite and bird data, and excluding
BBS routes with more intense land use or near coasts.

Hurlbert (2004) also used AVHRR NDVI data for June 1992 and BBS
data for 2000. He found that linear and power functions explained 45–
49% of the variation in the relationship. This stronger relationship than

found by Hurlbert and Haskell (2003) may be due to the nonrandom
selection of BBS routes. The Hurlburt analysis focused on differences in
vegetation structure and selected desert and grassland BBS routes and
deciduous forest routes. These samples may not have represented the
full range of vegetation cover classes and emphasized the grassland and
forest cover classes where we found the relationship was stronger. Our
results are not comparablewithmany other NDVI-based studies (Currie,
1991; Bonnet al., 2004; Evans&Gaston, 2005a) because of differences in
spatial scale of analyses, since differences in summarizing analysis unit,
spatial resolution and map extent strongly influence results (Waide
et al., 1999; Hawkins, Porter, et al., 2003, Evans et al., 2008).

4.3. Correlation and species energy relationships among vegetated cover
classes

This study is the first to examine the richness–productivity relation-
ship across the gradient of vegetation life forms and cover classes, and
the first to compare NDVI to MODIS productivity measures. The results
revealed that both the correlations among theMODISproducts and their
regression relationships with bird species richness varied considerably
among vegetation cover classes. Importantly, in vegetation classes
where NDVI and production was weakly correlated, the productivity
measures were substantially stronger predictors of richness (Fig. 6).

NDVI was most weakly correlated with GPP and NPP, in the
vegetation classes dominatedby bare ground andwasweakly correlated
with GPP and NPP in the two classes with the highest tree cover than in
intermediate vegetation cover classes dominated by herbaceous
vegetation (lines in Fig. 6). As mentioned above, we suspect this results
from the backscatter frombare soil and saturation effects in dense forest
canopy that limit the ability of simple vegetation indices to adequate
reflect productivity in these environments. In vegetation classes
consisting of heavy bare ground, the NDVI value varied which GPP
indicated little change. In vegetation classes of dense forest, the GPP
values increased,while theNDVI values remained the same (Fig. 7). Both
of these patterns would be found if NDVI had systematic error due to
backscatter and signal saturation.

The productivity measures, especially GPP, explained considerably
more variation in bird species richness than NDVI in these same classes
(Table 3 and bars in Fig. 6). In bare to herbaceous classes, GPP explained
6% more variation than NDVI. In herbaceous dominated classes, GPP
explained anaverage of 31.6% andNDVI average of 19%. Surprisingly, GPP
also explainedmore variation in richness thanNPP in 8 of the 10 classes.
In the two classes that NPP was strongest, it had only 1 and 2% greater
explanatory power and these were the herbaceous cover classes.

NDVI explained more variation in richness than EVI in 7 of the 10
vegetation classes. EVIwas not the strongest predictor in any vegetation
class, and was among the weakest in the classes characterized by
dominant tree cover.

The pattern of GPP consistently explaining more variation in
richness than NPP was perplexing. NPP is intended to represent
organic material present in the form of vegetation. As a result we
predicted that NPPwould have the strongest relationship with species
richness both for all routes andwhen stratified according to vegetative
cover. We suspected that GPP would also have a strong relationship
with bird richness, but would be inferior to NPP because it does not
directly represent actual available energy but rather potential energy
before growth and maintenance costs are considered. As discussed
previously, NPP does not perform as strongly as GPP for all routes or
when routes are stratified by vegetative cover.

A possible explanation for the discrepancy between GPP and NPP in
explanatory power relates to error propagation resulting from the NPP
algorithm being themost complex calculation of all MODIS datasets. The
fact that the largest differences in explanatory power of GPP andNPP are
in the heavily forested classes, suggests that there could be error in the
transformation of daily PSNnet to annual NPP from an inaccurate
estimation of respiration and maintenance costs for woody plants. The
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estimation of plant respiration has been shown to vary widely with
temperature, species, and lifeform. If respiration costs were over or
underestimated,wecould see the largest discrepancy in forests areasdue
to their woody content. NPP relies on estimates of LAI, land cover clas-
sification, and estimation of maintenance respiration costs of plants.
Since there are somanymodeled and theoretical inputs to this algorithm,
there is the greatest potential for error propagation in this final dataset.

Additionally, validation of these products is difficult because of
scaling issues, as empirical primaryproductiondata is not feasible across
a square kilometer (Morisette et al., 2006). However, one study found

that NPP and GPP provided consistent measures across many biomes,
and that both overestimated production in low productivity sites and
underestimated at high productivity sites (Turner et al., 2006).

These results suggest that as previous work has demonstrated,
species richness has a strong relationship with available energy, and
GPP is the superior measure of available energy for birds over the
historically used NDVI, and MODIS NPP. This is especially true in areas
where NDVI and GPP are least correlated (Fig. 6), such as in areas of
little vegetated cover to herbaceous cover (classes 1–3), and areas
with herbaceous to increasing tree cover (classes 8–10) (Fig. 7). The

Fig. 7. Scatterplot of NDVI and GPP across the vegetated surface. The colors indicate vegetation classes, from bare ground to herbaceous cover to forested cover.

Fig. 8. GPPandNDVIwere least correlated in the bare and treeportions of the vegetatedgradient (left axis). GPP had greater explanatory power in these portions of the gradient (right axis).
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correlation in these classes appears that NDVI underestimates
productivity in these classes systematically. As we suggested in our
conceptual model (Fig. 1), this analysis supports that in areas that have
little vegetation cover and areas of dense forest cover, the correlation
between NDVI and GPP is least and the explanatory power of GPP is
greatest (Fig. 8). These results support our initial predictions, except
that we expected NPP to have the greatest explanatory power.

When looking at the general regression results for NDVI, GPP and
NPP across all vegetated classes, the relationship with richness was
much stronger for herbaceous dominated vegetation classes 5–8, than
for the classes characterized with more bare ground or with more tree
cover. The coefficients of determination are not comparable between
vegetation classes because regression analyses are heavily influenced
by differences in the range of variation between both response and
predictor variables. Fig. 6 illustrates that there is little variation in GPP
in bare/herbaceous classes (1–3) and much more range of variation in
GPP in herbaceous/tree vegetation (4–10) classes.

4.4. Limitations and confounding issues

This study was designed to analyze the correlations between bird
richness and the predictor datasets generated from the MODIS sensor.
Correlation studies are useful in recognizing patterns but do not imply
causation. The design of this study is limited in its ability to infer that the
predictor datasets cause the variations in diversity, but rather suggest
that there is a relationship between the response and predictor data.

While the range of variation within North America is large, this
work does not include the full range of variation in primary
production or in vegetated cover types. Future research, including
similar analyses with even greater range of variation (i.e. tropical
forests) would provide additional insight into the richness–produc-
tivity relationship, especially regarding variations in strength and
slope (Hawkins, pers comm). This difference in the range of variation
of energy predictor variables among vegetation classes should be a
consideration in understanding the differing results among studies of
species/energy relationships.

The differences in the spatial resolution of the response and
predictor data are less than ideal. The diversity data is available at the
39.2 km linear route level and the satellite predictor data is available at
the 1-km resolution. The merging of these two data formats requires
averaging of predictor data values for approximately 40 cells. The BBS
cover a relatively large area, many habitat types and great variation in
an environmental gradient, thus making the average predictor value
less than ideal. We attempted tominimize this limitation by excluding
routes with high variation in vegetated cover. This is more important
issue for routes that are highly heterogeneous in vegetation cover/
type than homogeneous routes.

This study does not allow the comparison of the strength of
relationship between vegetation cover classes because the sample
sizes are not equal and because regression techniques are sensitive to
restricted variance. Sample sizes are not equal because of the differences
in BBS geographic representation as BBS routes aremuchmore common
and dense in themore population areas of theUS than the areas of lower
energy and lower population (Lawler & O'Conner, 1994). Additionally,
like other formsof correlation, it is not acceptable to compare correlation
coefficients when samples are different in independent variables or
dependent variables due to differences in variances of the variables such
that some might have less variation to be explained. Phillips et al. (in
prep) address the issue of differences in explanatory power.

These results only represent the relationship between the
predictor datasets and the BBS collected bird richness data. Relation-
ships with other taxonomic groups cannot be predicted since
biodiversity hotspots are not the same for varying taxonomic groups
(Williams et al., 1996). Additionally, richness was calculated for BBS
routes that were sampled from 1 to 5 years. It would be ideal to have a
larger time period that 1 year, but the MODIS data only became

available in 1999 and we chose to include routes that were sampled
during the same time period as the predictor data was collected.

4.5. Implications

This work indicates that the new MODIS vegetation products
covary more strongly with species richness than NDVI, which may
indicate that they are better representations of primary production.
While many studies have previously used NDVI to look at the
relationship of biodiversity measures and satellite products, none
have examined the differences in the utility of using indices versus
more complex products across a vegetated surface gradient. Our
results indicate that using theGPP product provides stronger statistical
relationships, and promote greater understanding of important
species energy patterns. This is especially true in areas with low
vegetated cover and dense vegetated cover. Additional work is needed
to determine if the differences in relationship for all variables could be
a result of error in the calculation of production in areas of less
vegetation of dense vegetation.
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