
www.elsevier.com/locate/rse

Remote Sensing of Environment 92 (2004) 67–83
Mapping regional land cover with MODIS data for biological

conservation: Examples from the Greater Yellowstone Ecosystem,
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Abstract

The paper investigated the application of MODIS data for mapping regional land cover at moderate resolutions (250 and 500 m), for

regional conservation purposes. Land cover maps were generated for two major conservation areas (Greater Yellowstone Ecosystem—GYE,

USA and the Pará State, Brazil) using MODIS data and decision tree classifications. The MODIS land cover products were evaluated using

existing Landsat TM land cover maps as reference data. The Landsat TM land cover maps were processed to their fractional composition at the

MODIS resolution (250 and 500 m). In GYE, the MODIS land cover was very successful at mapping extensive cover types (e.g. coniferous

forest and grasslands) and far less successful at mapping smaller habitats (e.g. wetlands, deciduous tree cover) that typically occur in patches

that are smaller than the MODIS pixels, but are reported to be very important to biodiversity conservation. The MODIS classification for Pará

State was successful at producing a regional forest/non-forest product which is useful for monitoring the extreme human impacts such as

deforestation. The ability of MODIS data to map secondary forest remains to be tested, since regrowth typically harbors reduced levels of

biodiversity. The two case studies showed the value of using multi-date 250 m data with only two spectral bands, as well as single day 500 m

data with seven spectral bands, thus illustrating the versatile use of MODIS data in two contrasting environments. MODIS data provide new

options for regional land cover mapping that are less labor-intensive than Landsat and have higher resolution than previous 1 km AVHRR or

the current 1 km global land cover product. The usefulness of the MODIS data in addressing biodiversity conservation questions will

ultimately depend upon the patch sizes of important habitats and the land cover transformations that threaten them.

D 2004 Elsevier Inc. All rights reserved.
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1. Introduction natural habitats. Remote sensing data are increasingly used
The transformation of natural habitat by human activities

such as logging, crop cultivation and urban expansion poses

the single most important threat to biodiversity (Sala et al.,

2000; Soulé, 1991; Wilson, 1988). Land cover refers to the

suite of natural and man-made features that cover the earth’s

surface. Thus, it is essential to accurately map land cover in

an effort to understand the human land uses that threaten
0034-4257/$ - see front matter D 2004 Elsevier Inc. All rights reserved.

doi:10.1016/j.rse.2004.05.002

* Corresponding author. Tel.: +1-301-405-4556; fax: +1-301-314-

2798.

E-mail address: wessels@geog.umd.edu (K.J. Wessels).
to map land cover for conservation planning purposes, e.g.

prioritizing locations in greatest need of conservation and

monitoring important habitats (Steininger et al., 2001;

Turner et al., 2003; Wessels et al., 2000, 2003). The United

States Geological Survey’s Gap Analysis Program, for

example, uses Landsat data to map land cover throughout

the United States for regional conservation assessments of

native vertebrate species (Scott & Jennings, 1998). In

tropical rainforests, remote sensing has been extensively

used to map deforestation (INPE, 2000; Sader et al., 2001a;

Skole & Tucker, 1993; Townshend et al., 1995). Deforesta-

tion affects biological diversity through habitat destruction,
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fragmentation of former contiguous habitat (Gascon et al.,

1999; Laurance et al., 2000, 2002) and edge effects within

forest boundaries (Laurance et al., 1997; Skole & Tucker,

1993). Satellite-based deforestation mapping does not al-

ways reflect the full magnitude of human influences on

forests, such as surface fires and logging that reduce forest

cover but does not fully eliminate it (Nepstad et al., 1999,

2001). Remote sensing is however, viewed as an indispens-

able tool for monitoring the most extreme forms of land

cover change over large areas at low cost (Nepstad et al.,

1999).

Advances over the past decade in characterizing land

cover from satellite data have contributed substantially to

understanding the global distribution of vegetation types

and land uses (DeFries & Townshend, 1994; Friedl et al.,

2002a; Hansen et al., 2000b; Loveland et al., 2000).

However, conservation plans are most appropriately devel-

oped at the regional scale to account for spatial processes

and varying biophysical and socioeconomic conditions.

Until recently, satellite data have generally offered only

two options for regional-scale analyses covering spatial

extents on the order of thousands of square kilometers:

(1) subsets of data from coarse-resolution, globally ac-

quired data from sensors such as the Advanced Very High

Resolution Radiometer (AVHRR; e.g. Hansen et al., 2000b)

and SPOT Vegetation (e.g. Malingreau et al., 1995;

Mayaux et al., 1998) and (2) mosaics of high resolution

data from sensors such as Landsat and SPOT HRV (e.g.

Chomentowski et al., 1994; INPE, 2000; Skole & Tucker,

1993; Townshend et al., 1995; Tucker & Townshend,

2000). The former has the advantage of high, daily tem-

poral resolution but the disadvantage of coarse spatial

resolution of 1 km or greater. The latter, high resolution

data has the advantage of high spatial resolution (15–30

m), but infrequent temporal resolution. Limited acquisitions

from the Landsat sensor, since improved with the launch of

the Landsat Enhanced Thematic Mapper Plus (ETM+) in

1999 (Goward & Williams, 1997), pose challenges to

historical analyses, as do the limitations imposed by the

need for visual interpretation rather than automated analysis

in hazy and poorly calibrated scenes (Townshend et al.,

1997) and the labor-intensiveness of handling many scenes

(Tucker & Townshend, 2000). Data from the Moderate

Resolution Imaging Spectroradiometer (MODIS), acquired

daily at spatial resolutions from 250 m to 1 km, offer the

possibility for frequent temporal coverage at moderate

resolution. A number of global products are being derived

from MODIS data, such as land cover, net primary pro-

duction, and leaf area index (Justice et al., 2002a), but their

applicability to regional-scale analyses needs to be thor-

oughly explored.

The MODIS 1 km land cover is one of the suite of

available global MODIS products. It is generated from

various MODIS-derived inputs, e.g. surface reflectance,

vegetation index, surface temperature and texture, and

provides a global product according to the global IGBP
(International Geosphere–Biosphere Programme) classifi-

cation system (Friedl et al., 2002b). The global MODIS

land cover product is useful for global and continental

applications, but surface reflectance data available at 250

and 500 m can also be used to map regional land cover at

higher spatial resolution according to a user-specified

classification scheme. Empirical analyses by Townshend

and Justice (1988) illustrated that resolutions finer than

1 km are highly desirable for mapping human impacts on

land cover and, accordingly, the MODIS instrument was

designed to deliver 250 and 500 m resolution data (Justice

et al., 2002a,b; Townshend & Justice, 2002). Therefore,

this paper investigated the value of MODIS data for

mapping regional land cover at these moderate resolutions

(250 and 500 m resolution). We generated land cover

classifications from MODIS data (250 and 500 m) for two

major conservation areas and compared the results to

existing Landsat TM land cover classifications of the

same study areas. We selected two very different study

areas: the Greater Yellowstone Ecosystem, USA and the

Pará State, Brazil. We selected these areas because (1)

they are important for conservation, (2) reliable Landsat

classifications were available, and (3) we have ground

knowledge and expertise to aid in interpretation of the

results. The Pará State, Brazil represents a wet tropical

forest where deforestation is the major threat to biodiver-

sity. In contrast, within the cold and dry GYE changes in

coniferous tree cover and riparian vegetation due to

logging, agriculture and rural residential expansion are

the key conservation issues. Together, these two very

different sites should test the versatility of MODIS data

for conservation applications.
2. Study areas

2.1. Greater Yellowstone Ecosystem

The Greater Yellowstone Ecosystem (GYE), USA, is

made up of Yellowstone and Grand Teton National Parks

and surrounding public and private lands (Fig. 1). The

GYE is delineated as an area of strong ecological and

socioeconomic connection between public lands and the

surrounding private lands (approximately 350� 440 km).

It includes the watersheds of the GYE down to the lower

forest boundary and adjacent grasslands (Wright Parmenter

et al., 2003). The national parks are relatively high in

elevation, while private lands are generally in lower

elevations including the principal valley bottoms. Low-

elevation valley bottoms have fertile soils, longer growing

seasons, and higher primary productivity. Consequently,

many native species are concentrated in small hot spots at

lower elevations. Outside of the public lands, agriculture,

range and rural residential development are common land

uses on private lands. The GYE has 350,000 residents,

most living in small cities. Yellowstone National Park, one



Fig. 1. (A) Land cover of the Greater Yellowstone Ecosystem (GYE) mapped with 250 m MODIS data for summer 2001. (B) National parks and National

forests in the GYE study area. (C) Location of GYE in relation to the states of w
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of the best-known nature reserves in the world, is unique

in supporting wilderness species such as grizzly bear

(Ursus arctos) and free-roaming populations of large

ungulates. The GYE is undergoing a transition in demog-

raphy and land use (Hansen et al., 2002). The population

has grown 55% since 1970, fueled largely by wealthy

immigrants that are attracted by the natural amenities.

Because of the strong biophysical gradients, hot spots for

native species and intense land use tend to be concentrated

in the same relatively small areas of the landscape.

Consequently, development on private land negatively

impacts several native species and appears to be increasing

the potential for species depletion in the national parks

(Hansen & Rotella, 2002). This study area covers approx-

imately seven Landsat scenes.
2.2. Pará State, Brazil

To evaluate the use of MODIS data for regional land

cover mapping, the study area was taken as the intersection

between the Pará State of Brazil and one MODIS L2G

image tile, which covers approximately 50% (850� 900

km) of the state (Fig. 2; hereafter referred to as Pará State

study area). The area is primarily covered by moist tropical

forest. The region has been subjected to substantial land

cover transformation along highways and around rapidly

growing cities. For example, the urban population of San-

tarém has increased 211% since federally sponsored con-

struction of the Cuiabá–Santarém highway in the early

1970s. The highway linked Santarém to Brazil’s southern,

more industrialized regions and opened up vast areas of land

estern USA.



Fig. 2. (A) Land cover for the Pará study area, Brazil mapped with 500 m MODIS data for 6 August 2001. (B) Location of study area in relation to the states of

Brazil.
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along its southwest path to federally planned colonization

and spontaneous land invasion. In addition, with improved

energy sources, the Amazon Development Agency

(SUDAM) instigated a development plan, the Primeiro Polo

Agroflorestal-Industrial, which includes a component to

harvest 613 million m3 of high-value timber in the area

and develop an industrial park to process raw materials. This

project has introduced logging activities into the rural

periphery but caters to distinctly urban interests. The region

of Santarém includes the largest national forest, the Flona

Tapajós, in the Amazon. The Flona is bounded on the left by

the Tapajós River and on the right by the Cuiabá–Santarém

Highway (Fig. 2). This highway is currently being paved,

and migration, logging (Stone & Lefebvre, 1998) and

agriculture (Uhl et al., 1988; Walker & Homma, 1996) are

expected to increase dramatically (Sorrensen, 2000). Sub-

stantial deforestation has also taken place along the Trans-
Amazon Highway that connects the cities of Altimira and

Ruropolis (Moran et al., 1996). The larger Santarém region

and the Pará State as a whole therefore face the two main

factors driving deforestation, namely increasing human

population density and highways (Laurance, 1999). These

are expected to have major impacts on land cover and the

biodiversity inside and outside conservation areas (Moran,

1993; Moran and Brondizio, 1998) (Fig. 2). This study area

covers approximately 22 Landsat scenes.
3. Data

3.1. MODIS data

The MODIS instrument on the NASATerra Platform has

a swath of 2330 km, a near daily global repeat coverage,
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onboard spectral calibration and seven spectral bands for

land remote sensing with a spatial resolution of 250 m

(bands 1–2) and 500 m (bands 3–7) (Justice et al., 2002a;

Townshend & Justice, 2002). Although various multi-date

composite surface reflectance products (e.g. 8 day MOD09)

are potentially useful for land cover mapping (Braswell et

al., 2003), preliminary investigations showed that the vari-

able view geometry of the composites (MOD09, collection

3) caused adjacent pixels to have large radiometric differ-

ences for the same cover type, leading to classification

errors (Cihlar, 2000). The new 16-day Nadir Bidirectional

Reflectance Distribution Function—Adjusted (NBAR;

MOD43B) was developed to address the aforementioned

problems (Schaaf et al., 2002), but was only available at

1 km resolution. Instead, we used single date near-cloud-

free 250 and 500 m imagery for this study.

For GYE, three near-cloud-free, near-nadir, single date (1

August, 26 August and 1 October 2001), Level 1B 250 m

(MOD02QKM, collection 3) radiance images were acquired

to capture and utilize the phenological changes of the

different vegetation and land use types. Cloud-free images

were not available for the early summer period of 2001 and

the MODIS sensor was also not operational from mid-June

to early July 2001 (Justice et al., 2002a). The data were

projected to Plate Carée projection using algorithms based

on the USGS General Cartographic Transformation Package

(GCIP). For each of the three dates, we calculated the

normalized difference vegetation index (NDVI, a measure

of photosynthetic activity calculated as the difference be-

tween red and near-infrared reflectances normalized by their

sum) thus providing three bands (band 1, band 2 and NDVI)

per date to the classification.

Braswell et al. (2003) previously used 1 km MODIS 16-

day composite data (MOD43) to investigate sub-pixel land

cover mixture around the Tapajos National Forest in the

northern parts of the Pará study area. In the current study a

single date (6 August 2001) near-cloud-free, 500 m, seven-

band, Level 2G (MOD09, collection 3) surface reflectance

image was used for the Pará State. Preliminary results

showed that the additional infrared bands of the 500 m

imagery provided better land cover mapping results than

when using only the two 250 m bands. The image was
Table 1

The percentage of pixels in of the MODIS decision tree classification (rows) of G

Burn 1988 Burn 2001 Coniferous Cultivated Mixed con

Burn 1988 82 0 0 0 6

Burn 2001 1 99 0 0 0

Coniferous 1 1 99 0 0

Cultivated 0 0 0 94 0

Mixed coniferous 3 0 0 0 97

Deciduous 0 0 11 0 0

Shrublands 0 0 0 0 0

Grasslands 1 0 0 3 1

Wetlands 0 0 0 18 0

Bare soil 0 2 0 0 0

Water 0 1 0 0 0
projected to Plate Carrée projection using the MODIS

Reprojection Tool.

3.2. Training data for GYE MODIS classification

The primary training data were generated from 32 color

and color-infrared aerial photo transects (for details, see

Wright Parmenter et al., 2003). Approximately 1400 2.25

ha (150� 150 m) sites were sampled and the percentage

composition of the land cover types estimated by point-

interception of a 20-dot matrix overlaid onto the photo-

graph (Wright Parmenter et al., 2003). An additional six

hundred 0.81 ha (90� 90 m) sites were sampled using a

nearly identical method with a 10-dot matrix (unpublished

data). Sites that were at least 70% pure were assigned to the

dominant cover type, while mixed sites (e.g. 65% conifer

and 35% herbaceous) were classified as mixed coniferous/

herbaceous. Where necessary, USDA Forest Service

(USDAFS) maps for Gallatin, Bridger-Teton, and Cari-

bou-Targhee National Forests were used to add a small

number of training sites (N = 150). The USDAFS vector

data were displayed over the MODIS image and pixels

were selected from the center of USDAFS polygons when

the specific cover type could be visually distinguished from

adjacent cover types. Additional field surveys were under-

taken to clarify specific uncertainties. The values of

MODIS pixels coinciding with the centroids of all the

abovementioned sites were extracted, providing between

120 and 400 values per land cover class. Table 1 gives the

list of classes for the training data that were chosen to

represent the most important habitats and land uses. All

willow, cottonwood and aspen tree cover were grouped into

one deciduous tree cover class.

3.3. Training data for Pará State, Brazil MODIS

classification

Training data were generated using visual interpretation

of the 2001 MODIS image guided by the Tropical Rain

Forest Information Centre (TRFIC) 1997 land cover data.

The TRFIC data were generated from Landsat TM images

by Michigan State University. The deforestation, cerrado
YE that matched the training data (columns)

iferous Deciduous Shrublands Grasslands Wetlands Bare soil Water

0 0 4 0 8 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 6 0 0 0

0 0 0 0 0 0

80 0 7 2 0 0

0 96 3 0 1 0

0 1 83 0 10 0

28 0 2 53 0 0

0 12 4 0 82 0

0 0 0 0 1 98



Table 2

Reclassification of MRLC data used in current study

MRLC classes Reclassified

MRLC

Water 11 open water Other 1

12 perennial ice/snow

Barren 31 bare rock, sand/clay

32 quarries/strip

mines/gravel pits

33 transitional/burn scars Transitional 10

Developed 21 low intensity residential Developed 2

22 high intensity residential

23 commercial/industrial/transport

Herbaceous 81 pasture/hay Agriculture 3

planted/cultivated 82 row crops

83 small grains

84 fallow

85 urban recreational grasses

Non-natural woody 61 orchards/vineyards

Shrubland 51 shrubland Shrublands 4

Herbaceous upland

natural

71 grasslands/herbaceous Grasslands 5

Forested upland 41 deciduous forest Deciduous 6

42 evergreen forest Evergreen 7

43 mixed forest Deciduous 6

Wetlands 91 woody wetlands Woody

wetlands 8

92 emergent herbaceous

wetlands

Herbaceous

wetlands 9

Fig. 3. Flow diagram of data inputs and MODIS land cover evaluation

methods.
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(savanna) and secondary growth classes of the TRFIC maps

were reclassified into a single non-forest class. MODIS

pixels were selected as training data only when the visual

interpretation agreed with the overlaid 1997 TRFIC vector

data. The high reflectance values of non-forest areas visu-

ally distinguished them from forest areas (Skole & Tucker,

1993). Approximately 600 points per class were evenly

distributed throughout the entire MODIS image to account

for variation in view geometry.

3.4. Landsat TM land cover data for GYE

The Multi-Resolution Land Characteristics Consortium

National Land Cover Data Base (MRLC) was produced

from the early to mid-1990s Landsat TM data (Vogelmann

et al., 1998a,b; 2001). Based on the methods described by

Stehman et al. (2003), the overall accuracy of MRLC data

for federal region 8 covering the study areas was calculated

at 60–65% (unpublished data). The MRLC data was

processed to a 250 m resolution according to the methods

described below. MRLC data was reclassified according to

Table 2. The land cover classes of the MRLC and the

MODIS land cover products were not identical, but highly

comparable.

3.5. Landsat TM land cover data for Pará State, Brazil

Brazil’s National Institute of Space Research (Instituto

de Pesquisas Espaciais—INPE) produces annual maps of

deforestation from Landsat data (INPE, 2000). The INPE
data are widely used to estimate deforestation in the

Amazon (Nepstad et al., 2001) and are supplied at 60 m

resolution in raster format. Data for the Pará State were

acquired for the year 2001 to coincide with the MODIS

data and were projected to the Plate Carrée projection. All

the INPE map classes for deforestation during specific

years were lumped into a single deforestation class for this

evaluation. The natural non-forest class was retained in the

comparison.
4. Methods

Fig. 3 presents an overview of the data flow and

evaluation methods. For each study area, MODIS imagery

and training data were acquired. MODIS land cover prod-

ucts were generated using decision tree classifications. The

MODIS land cover products were then evaluated using

existing Landsat land cover maps (Fig. 3).

4.1. Decision tree classification

For both study areas, decision tree analyses (Venables

& Ripley, 1994) of the S-plus statistical package (Clark &

Pergibon, 1992) were used to classify the dependent

variable of class membership using the independent var-

iables of the MODIS bands (Hansen et al., 1996, 2000b;

Lawrence & Wright, 2001). The decision trees are non-

parametric, hierarchical classifiers that predict class mem-

bership by recursively partitioning the data set into more

homogenous subsets based on the reduction of deviance.

The training data were randomly split into two equal sets

per class so that one set could be used to grow the tree

and the other to prune the tree by eliminating nodes that

increased error. The optimal number of nodes was deter-

mined using a cost-complexity plot to establish the num-
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ber of terminal nodes beyond which the percentage

accuracy ceased to increase and started to decrease (Han-

sen et al., 1996, 2000b). One of the main advantages of

this procedure is that it is non-parametric and nonlinear

and therefore multiple terminal nodes can be created for

classes which have multi-modal distributions in spectral

space (Hansen et al., 2000b). The trees provide explicit

relationships between the dependent class membership and

independent remote sensing variables, thus allowing the

identification of remote sensing variables that are most

useful separating land cover classes.

4.2. Evaluating the MODIS classification

To fully understand the origins of the potential classifi-

cation error and evaluate the MODIS classifications, we

carried out three assessments (Fig. 3):

4.2.1. Comparison of the MODIS classification to the

training data

All training data were used in the production of the

decision trees. Before comparing the MODIS classification

to the Landsat land cover, it was valuable to first assess how

well the classification represents the training data (Hansen et

al., 2000b). This comparison does not constitute an accuracy

assessment, but merely a method to identify any inherent

errors in the classification procedure.

4.2.2. Accuracy assessment using homogenous core areas

of the Landsat land cover

An independent evaluation of the MODIS classifications

was obtained by measuring their concurrency with the

existing Landsat TM-derived land cover products (described

above). The Landsat TM-derived maps were reprojected,

resampled and processed to their fractional composition at

the MODIS resolution (250 and 500 m). The resampled

Landsat TM maps were aggregated to the dominant (highest

fractional coverage) Landsat land cover class in the 250 or

500 m pixels (Hansen et al., 2000b). Homogenous or core

areas were identified as 250 or 500 m pixels consisting of

greater than 90% of a single cover type in the high

resolution Landsat land cover maps. Comparing homoge-

nous areas provided a measure of thematic agreement and

minimized problems associated with the inherent incompat-

ibility of disparate resolutions and the mixtures of land

cover within large pixels (Foody, 2002; Hansen et al.,

2000b). Although the classes of the MODIS and the

reference Landsat land cover data were not identical, an

accuracy assessment was applied to provide a basis for

comparison and discussion (Foody, 2002). The producer’s

accuracy (PA, or errors of omission) relates to the probabil-

ity that a Landsat land cover reference pixel will be correctly

mapped by the classified MODIS product. The user’s

accuracy (UA, or errors of commission) relates to the

probability that a pixel in the classified MODIS product

matches the Landsat land cover reference data.
4.2.3. Quantification of the mixtures of the MODIS

classification classes in terms of the higher-resolution

Landsat TM land cover data

After calculating the percentage area of each of the

Landsat land cover classes contained within the MODIS

pixels (described above), instead of using the dominant

Landsat land cover class (above), the average mixtures of

all the MODIS pixels belonging to each of the MODIS land

cover classes were calculated. For example, all the MODIS

pixels in the coniferous MODIS land cover class were used

to calculate their average percentage composition in terms

of the Landsat land cover classes, e.g. 80% evergreen, 10%

grasslands and 10% shrublands.
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5. Results

5.1. GYE MODIS classification product compared to

training data

As expected, a very high percentage of the pixels in the

MODIS classification matched the training sites, e.g. conif-

erous 99%, bare soil 100%, cultivated 94%, shrubland 96%

(Table 1). For the deciduous class, the agreement was high

(80%) with some confusion with coniferous forests and

grasslands (Table 1). The wetlands training pixels showed

the most confusion with deciduous trees (28%) and culti-

vation (18%), since all three of these cover types occur in

close proximity along waterways. This indicated that the

wetlands class had inherent problems. Bare rock and areas

with very low vegetation cover in shrublands and grasslands

also showed some confusion. With the exception of the

wetlands, the MODIS data and the decision tree procedure

appear to be very successful at classifying the training data

they were given.

5.2. GYE MODIS land cover classification compared to

MRLC

5.2.1. Homogenous core areas

Visual comparison of the MRLC and MODIS land cover

maps showed a high level of general agreement between

the two products (Figs. 1 and 4). Table 3 provides the

percentage of the total number of pixels in the MODIS

classes that were more than 90% covered by a single

MRLC cover type. Some of the smaller, patchy MODIS

cover classes, e.g. deciduous and wetlands, had a relatively

small percentage of homogenous 250 m pixels (37% and

44%, respectively; Table 3). It should be noted that this

accuracy assessment is only applicable to the homogenous

pixels and not to the entire map products (Latifovica &

Olthof, 2004). The coniferous MODIS class had a UA of

77% and PA of 84% (Table 3), demonstrating the ability of

MODIS data to map extensive forest cover. The MODIS

mixed coniferous class was composed of nearly equivalent

percentages of evergreen (23%), shrubland (20%) and



Fig. 4. Land cover of the Greater Yellowstone Ecosystem (GYE) as mapped by Multi-Resolution Land Characteristics Consortium National Land Cover Data

Base (MRLC) produced from the early to mid-1990s Landsat TM data.
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grassland (34%) MRLC classes. The coniferous MODIS

classes covered 21.8% of the study area which compares

well with the 19% estimated by MRLC at 250 m resolution

and the recovering 1988 burn scar accounts for part of the

difference (Table 3; Figs. 1 and 4; Wright Parmenter et al.,

2003).

The MODIS cultivated class had a UA of 69%, but a PA

of only 30.7%. The MODIS cultivated class covered 7.7%

of the area, while the MRLC estimated this figure at 16.7%

(Table 3). The MODIS cultivated class only includes pixels

that contained actively growing crops during the 2001

summer season and therefore some disparity with the early

to mid-1990s MRLC agriculture class was expected. Visual

inspection of the MODIS images confirm that most areas of

disagreement that were mapped as agriculture by MRLC

and grasslands by the MODIS classification (e.g. northwest

of Billings, Fig. 4) were not covered by actively growing

crops on the dates of the MODIS images. These areas may
have been harvested before the dates of the MODIS images

which cover the latter part of the 2001 summer. This

discrepancy can also be attributed to the fact that MRLC

agriculture class included fallow land, pasture and hay and

not only cultivation. The MODIS product does however

appear to map cultivated areas accurately, e.g. around Boze-

man and Idaho Falls (Fig. 5). Scattered single pixels that

were misclassified as cultivation in the MODIS product

could be filtered out (Fig. 5).

The extensive shrublands and grasslands were effectively

distinguished from other classes by the MODIS data (Figs. 1

and 4), although there was some confusion between shrub-

lands and grasslands within the MODIS grassland class

(Table 3). The shrublands class had a UA of 88.5% and a

PA of 43.5%. This is attributed to the fact that a larger part of

MRLC shrublands class was mapped as grasslands by the

MODIS products (Figs. 1 and 4). Grouping the shrublands

and grasslands together, 57% and 52% of the study area was



Table 3

Error matrix for MODIS land cover classification of GYE using >90% pure MRLC pixels as reference data

%>90%

pure

Evergreen Agriculture Shrublands Grasslands Deciduous Woody

wetlands

Herb. Transitional Other Developed Total UA %

Area

Coniferous 69.0 412,520 7480 9948 78,714 6437 4933 254 16,053 1382 5116 537,721 76.7 21.8

Mixed

coniferous

50.2 20024 9448 16,343 28,924 513 1439 49 5904 885 5886 83,529 NA 3.6

Cultivated 68.0 1862 12,7431 9123 25433 815 396 1130 136 17,941 6463 184,267 69.2 7.7

Burn 1988 55.0 29,913 7685 5471 27,392 76 2775 95 17,362 1381 2373 92,150 18.8 3.8

Burn 2001 65.9 4380 205 33 1099 7 31 0 17 879 65 6651 NA 0.3

Deciduous 37.4 6166 4749 8072 10,726 6092 913 351 1009 1081 3164 39,159 15.6 1.7

Shrublands 93.4 49 16,513 301,503 20,283 4 8 56 0 2437 18,140 340,853 88.5 14.4

Grasslands 70.1 10,304 233,010 288,663 396,645 1416 2429 2642 7406 45,036 69,373 987,551 40.2 42.5

Wetlands 44.6 154 2215 224 1340 152 62 267 24 591 150 5029 5.3 0.2

Bare soil 83.2 2727 6769 53,491 7855 20 98 93 299 7522 2660 78,874 9.5 3.3

Water 93.2 889 36 3 201 1 5 0 0 14,939 9 16,074 92.9 0.6

Total 488,988 415,541 692,874 598,612 15,533 13,089 4937 48,210 94,074 113,399 2,371,858

PA 84.4 30.7 43.5 66.3 39.2 NA 5.4 36.0 23.9 NA

% Area>90%

pure

19.7 16.7 27.9 24.1 0.6 0.5 0.2 1.9 3.8 4.6

PA= producer’s accuracy; UA=user’s accuracy; herb. = herbaceous wetlands.
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mapped by the MODIS and MRLC data, respectively

(Table 3).

According to Table 3, the MODIS deciduous class

included many areas that were not >90% pure deciduous

vegetation according to the MRLC. The deciduous class had

a UA of 15.6% and a PA of 39.2%. This can be attributed to

the MODIS deciduous class including entire 250 m pixels

containing low densities ( < 90% pure) or small patches of
Fig. 5. MODIS cultivated class (A) and fractional coverage per 250 m pixel by M

Yellowstone Ecosystem.
deciduous tree cover (Fig. 6). This in turn could have been

caused by using entire 250 m MODIS pixels as training

data, while the deciduous trees covered only a much smaller

area of the pixels than 250� 250 m. This problem was most

likely introduced when the training data for the deciduous

class were supplemented using the USDA Forest Service

maps, as there were not enough homogenous deciduous

sites provided by the aerial photo interpretation (Wright
RLC (Landsat TM) agriculture class (B) in southwestern part of the Greater



Fig. 7. MODIS wetlands class (A) and fractional coverage per 250 m pixel by MRLC (Landsat TM) herbaceous wetlands class (B) in southern part of the

Greater Yellowstone Ecosystem.

Fig. 6. MODIS deciduous class (A) and fractional coverage per 250 m pixel by MRLC (Landsat TM) deciduous class (B) in southwestern part of the Greater

Yellowstone Ecosystem.
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Table 5

The percentage of pixels in the MODIS decision tree classification (rows)

of Pará State, Brazil that matched the training data (columns)

Forest Non-forest Cloud Water

Forest 98 2 0 0

Non-forest 2 97 1 0

Cloud 0 1 99 0

Water 0 0 0 100
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Parmenter et al., 2003). Fig. 6 illustrates how low density

deciduous tree cover ( < 60% of 250 m pixel) was included

in the MODIS deciduous class. The multi-temporal MODIS

data were therefore successful at capturing the contrasting

spectral properties of the leaf-on leaf-off phases of the

deciduous vegetation. The MODIS deciduous class also

included deciduous vegetation along rivers that was desig-

nated as woody wetlands by the MRLC (Fig. 6). According

to the MRLC, only 0.6% of the study area was covered by

>90% pure deciduous tree cover while the MODIS product

estimated this figure as 1.7%. It should be noted that

according to the accuracy assessment (Stehman et al.,

2003), the MRLC data in federal region 8 were also not

very effective at mapping deciduous forests (unpublished

data) and this could have increased the apparent error of the

MODIS classification.

The burn scar 1988 MODIS class corresponded to the

transitional MRLC class (Figs. 1 and 4). The MODIS burn

class only included the parts of the 1988 burn scar that still

remained spectrally distinct (Fig. 1). Much of the land

burned in 1988 has succeeded to other cover classes (Wright

Parmenter et al., 2003), thus explaining most of the dis-

agreement between the MODIS burn class and the MRLC

transitional class. The MODIS burn 2001 class mainly

included area burned during the Fridley fire.

No attempt was made to include training data for a

developed class in the MODIS classification, since these

areas were relatively small, heterogeneous and not visually

discernable in the MODIS imagery. The accuracy assess-

ment for wetlands showed very poor results (Table 3). Some

of the woody wetlands of the MRLC were mapped by the

deciduous tree class of the MODIS product. Some of the

large patches of herbaceous wetlands mapped by MRLC

were detected by the MODIS classification (Fig. 7), but

results were generally poor since the wetlands typically

cover relatively small areas.

5.2.2. Mixtures of MODIS land cover classes for GYE

Table 4 gives the average percentage mixtures of the

MODIS classification classes at 250 m resolution in terms of
Table 4

Average mixtures/fractional coverage (%) of pixels in GYE MODIS land cover c

Coniferous Agriculture Shrublands Grasslands Dec

Coniferous 69 0 8 9 4

Mixed coniferous 28 1 26 28 3

Cultivation 3 51 12 21 2

Burn scar 1988 38 1 14 25 0

Burn scar 2001 63 1 17 19 0

Deciduous 20 4 24 23 19

Shrubland 0 3 57 7 0

Grassland 4 9 28 44 1

Wetlands 6 25 14 30 6

Bare soil 2 18 23 28 0

Water 7 0 1 1 0

Burn scar 1988/2001 38 1 14 25 0
the MRLC classes at 30 m resolution. It should be stressed

that the 250 m resolution of the MODIS data forces the

classification to classify mixed pixels and that the compo-

sitions described in Table 4 do not represent errors, but

rather mixtures. Thus the MODIS cultivation class

contained pixels with an average of 51% agriculture, 12%

shrubland and 21% grassland according to the MRLC data.

The MODIS coniferous class pixels have an average mix-

ture of 69% coniferous, 8.2% shrubland and 8.5% grass-

land, and other fractional components (Table 4). The

MODIS deciduous class pixels had an average mixture of

only 19% deciduous trees, while containing equivalent

percentages of shrubland, grassland and coniferous trees.

As discussed above, this could be attributed to mixed

deciduous 250 m pixels used as training, while big homog-

enous patches (>250� 250 m) of deciduous trees are rare in

the field (Fig. 6b, >90% deciduous MRLC). This MODIS

class could therefore potentially be renamed ‘‘mixed decid-

uous trees’’. The MODIS mixed coniferous class contains a

mixture of equal proportions (approximately 28%) of shrub-

land, grassland and coniferous MRLC classes (Table 4).

5.3. Pará State MODIS classification compared to training

data

As expected, a very high percentage of the pixels in the

MODIS classification matched the training (Table 5). Ap-

proximately 2% of the training pixels for the forest and non-

forest classes were confused during the classification (Table

5). One percent of the cloud training pixels were classified

as non-forest. The MODIS data and the decision tree
lasses (rows) in terms of MRLC data (columns)

iduous Woody wetlands Herbaceous

wetlands

Transitional Other Developed

0 0 4 1 0

1 0 4 1 0

1 2 0 1 1

0 0 13 3 0

0 0 0 0 0

2 1 2 1 0

0 0 0 1 0

1 1 1 1 0

4 9 1 3 0

0 1 0 14 0

0 0 0 90 0

0 0 13 3 0
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procedure were therefore very successful at classifying the

training data.

5.4. Pará State MODIS land cover compared to INPE

5.4.1. Homogenous core areas

Visual comparison of the INPE and MODIS land cover

maps showed a high level of general agreement between the

two products (Figs. 2, 8 and 9). Homogenous or core areas

were identified as 500 m pixels consisting of greater than

90% of a single cover type in the INPE high resolution data

(Table 6). Generally, only pixels along the boundaries

between the major land cover classes were not covered by

more than 90% of a single INPE cover class. Pixels covered

by clouds in either the INPE or MODIS data were excluded

from the accuracy assessment. The INPE non-forest and

deforestation classes were grouped together for the accuracy

assessment. The MODIS forest class had a UA of 96.5%
Fig. 8. Land cover data for Pará study area, Brazil as mapped by Instituto de Pesq

edges of the clouds were caused by mosaicking multiple Landsat images).
and a PA of 98.1% (Table 6). The non-forest MODIS class

had a UA of 80% and a PA of 69%. The non-forest MODIS

class contained 18% forest according to the INPE data. This

disagreement was caused by (i) small, thin clouds over

forest that were misclassified as non-forest or (ii) single

pixels of disagreement along the boundaries between forest

and non-forest which may have been caused by slight

misregistration of the two land cover maps (Fig. 10). The

MODIS data mapped 89.1% of the study area as forest

while the INPE data mapped 87.7% of the area as forest

(Table 2; Figs. 2 and 8). The MODIS data mapped 8.5% of

the study area as non-forest, while the INPE data mapped

10% of the area as non-forest or deforestation. This could be

due to the well-known underestimation of non-dominant

classes when classifying coarse resolution pixels (Braswell

et al., 2003; Hansen et al., 2000b; Nelson & Holben, 1986).

Overall, the MODIS classification was very successful at

distinguishing forest from non-forest (Table 2b). The deci-
uisas Espaciais (INPE) from 1997 to 2000 Landsat ETM data. (The straight



Fig. 9. Land cover around Tapajós National Forest according to INPE

(Landsat ETM) data (A) and MODIS product (B), both at 500 m resolution.

Fig. 10. Misclassification of forest (according to INPE) as non-forest by

MODIS land cover around Tapajós National Forest, Brazil as a result of

misregistration of the two land cover maps.
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sion tree classification primarily used band 2 (near infrared,

841–876 nm) and band 5 (mid-infrared, 1230–1250 nm) to

distinguish between forest and non-forest.
Table 6

Error matrix for MODIS land cover classification of Pará State using >90%

pure INPE pixels as reference data

Forest Non-forest Water Total UA % Area

Forest 2,117,542 74,099 3479 2,195,120 96.5 89.1

Non-forest 39,281 168,790 1906 209,977 80.4 8.5

Water 2626 2287 53,511 58,424 91.6 2.4

Total 2,159,449 245,176 58,896 2,463,521

PA 98.1 68.8 90.9

% Area 87.7 10.0 2.4

PA= producer’s accuracy; UA=user’s accuracy.
5.4.2. Mixture of MODIS classification classes for Pará

State, Brazil

Table 7 provides the average percentage mixture of the

MODIS classification classes at 500 m resolution in terms of

the INPE classes at 60 m resolution. The MODIS forest

class contained 91% forest, 2% natural non-forest and 3%

deforestation according to the INPE data (Table 7). The

MODIS non-forest class contained 15% forest according to

the INPE data. As discussed above, this could be partially

explained by the slight misregistration of the two land cover

maps and the mixture of forest and non-forest within the 500

m pixels along forest edges which may have an adjacency

effect (Townshend et al., 2000). The fact that deforestation

in this study area follows narrow linear patterns further

exacerbated the situation, since it elevates the influence of

the aforementioned forest edges on these results.
6. Discussion and conclusion

The MODIS-derived land cover maps were very success-

ful at mapping extensive cover types and far less successful at
Table 7

Average mixtures/fractional coverage (%) of pixels in Pará State MODIS

land cover classes (rows) in terms of INPE data (columns)

Forest Non-forest Deforestation Cloud Water

Forest 91 2 3 3 1

Non-forest 15 19 62 3 1

Cloud 46 24 10 14 6

Water 10 6 2 1 82
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mapping smaller cover types (e.g. wetlands and deciduous

forest, Table 3) that typically occur in patches smaller than the

MODIS pixels. In the case of the GYE, other studies also

reported that deciduous/hardwood tree cover was very diffi-

cult to map with Landsat TM, since they are distributed in

small or narrow patches (Lawrence & Wright, 2001; Wright

Parmenter et al., 2003). In fact, a low accuracy for mapping

deciduous forests and herbaceous wetlands was also reported

for the MRLC data in this area (unpublished data; http://

landcover.usgs.gov/accuracy/). In the GYE, cottonwood,

willow and aspen woodlands are keystone habitats for many

species of plants, vertebrates and invertebrates (Hansen &

Rotella, 2002; Hansen et al., 2000a). In fact, the woody

deciduous habitats have the highest bird diversity in the GYE

(Hansen et al., 1999). The observed loss of deciduous wood-

lands, specifically aspen (Gallant et al., 2003; Kay&Wagner,
Fig. 11. Enlarged view of 250 m MODIS land cover for a portion of the Greater

National Park.
1996), pose a serious threat to biodiversity and therefore this

habitat requires accurate, high resolution mapping. The

results nevertheless showed that MODIS data are capable

of detecting deciduous tree cover (Fig. 6), although the spatial

resolution may be inappropriate for detailed monitoring.

The results for the GYE showed that the most extreme and

extensive land cover transformations, namely cultivation,

clear-cutting (e.g. along the western boundary of Yellowstone

National Park—mixed coniferous class in Fig. 11) and fire

scars can be easily mapped with MODIS data (Fig. 11).

However, currently, the most prevalent change in land use in

GYE is from natural and agricultural land uses to urban and

exurban development. The area under agriculture actually

decreased by 9% during the last 25 years (Wright Parmenter

et al., 2003). Exurban development (rural homes at densities

of less than one home per 20 ha) has increased radically in the
Yellowstone Ecosystem along the southwestern boundary of Yellowstone

 http:\\www.landcover.usgs.gov\accuracy\ 
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GYE and appears to be concentrated in biodiversity hotspots

at lower elevations (Hansen et al., 2002; Theobald, 2004).

These changes may have significant ecological impacts, but

since low density exurban development does not involve

extensive land cover transformation, it is not readily detect-

able with either Landsat (Wright Parmenter et al., 2003) or

MODIS data.

The MODIS classification for Pará State was successful

at producing a regional forest/non-forest product which is

useful for mapping the extreme human impacts such as

deforestation. The single MODIS classification covered

approximately 22 Landsat scenes and therefore provides a

cheaper and faster monitoring tool (Nepstad et al., 1999).

Although a single 500 m MODIS forest/non-forest product

cannot be expected to reflect all the complex human impacts

on biodiversity, such as secondary regrowth, local land use

matrix dynamics or low intensity logging (Asner et al.,

2003; Batistella et al., 2003; Lu et al., 2003; Mausel et al.,

1993; McCracken et al., 1999; Moran et al., 1996; Nepstad

et al., 1999; Zhan et al., 2002), it can provide rapid regional

land cover information to alert us to areas where higher-

resolution remote sensing and field surveys can be under-

taken. Future research will furthermore test the ability of

MODIS data (especially multi-temporal 250 m data) to map

secondary growth, pasture and cultivation in the Amazon

although it may prove difficult to assimilate reliable training

data for these dynamic classes at a regional scale.

The independently generated Landsat land cover classi-

fications provided the best available regional reference data

with which to evaluate the MODIS land cover classifica-

tions. However, this comparison posed a number of prob-

lems. Firstly in the case of the GYE, some of the differences

between the MRLC and MODIS land cover maps could be

attributed to differences between the training data used in

the MODIS classification and the MRLC land cover rather

than a lack of ability of the MODIS data to accurately detect

the land cover classes. Although the MODIS land cover

classification may have compared more favorably with the

MRLC land cover if the original training data (for MODIS

classification) was generated from the MRLC, the two

independently generated land cover maps provide a more

objective and general evaluation. The disagreement was

further exacerbated by the fact that the land cover classes

were not the same for the MODIS product and the MRLC

and there was a 9-year difference between the date of the

MRLC (1992) and MODIS (2001) land cover products. In

addition, the errors contained in the MRLC data (Stehman et

al., 2003) or INPE data were compounded in these assess-

ments. Unfortunately, these issues are difficult to avoid

when assessing the accuracy of a coarse resolution land

cover maps with other remotely sensed land cover maps

(Foody, 2002; Powell et al., 2004).

The two case studies illustrate the versatile application of

MODIS data in two contrasting environments experiencing

different human impacts. These examples showed the value

of using multi-date 250 m data with only two spectral bands
(in the GYE), as well as single day 500 m data with seven

spectral bands (in Pará State, Brazil), thus illustrating the

flexibility of MODIS data. The regular availability of multi-

date imagery enabled us to use vegetation phenology to

distinguish different vegetation and land use types (e.g.

deciduous trees in the GYE). MODIS data provide new

options for regional land cover mapping that are less labor-

intensive than Landsat and have higher resolution than

previous 1 km AVHRR or the current 1 km global land

cover product (Friedl et al., 2002b). The MODIS continuous

fields (MOD44B) would be useful for mapping mixtures of

the general cover types, i.e. tree, bare and herbaceous

(Hansen et al., 2003), but do not map specific small habitats

(e.g. wetlands and deciduous trees) that are often important

to conservation. The usefulness of the higher-resolution

MODIS surface reflectance data (250 and 500 m) in

addressing biodiversity conservation questions will however

depend upon the patch sizes and shapes of important

habitats and the land cover transformations that threaten

them. Although this will vary on a case-by-case basis, the

MODIS data clearly provide additional options that were

not previously viable. As described in this study, conserva-

tion agencies can utilize MODIS data in the same fashion as

Landsat data, while capitalizing on the daily, multi-tempo-

ral, regional coverage.

The two case studies provide insight into the wider

applicability of MODIS data for regional-scale conservation

initiatives. Such initiatives include the Yellowstone to Yukon

Conservation Initiative (Y2Y) and the Mesoamerican Bio-

logical Corridor (MBC). Y2Y, still in the development phase,

links protected areas and surrounding lands in the Northern

Rocky Mountains to protect biological diversity and the

wilderness character of the region (Chester, 2003). The

MBC grew out of an earlier plan to link a series of protected

areas spread throughout seven Central American nations in a

corridor known as Paseo Pantera or ‘‘path of the panther’’

(Miller et al., 2001; Sader et al., 2001b). Both the Y2Y and

MBC conservation initiatives intend to use MODIS data for

regional land cover mapping in conjunction with more

detailed Landsat ETM land cover mapping in specific areas.
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