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Continuous-phase frequency-shift keying
(CPFSK) is an attractive modulation format
for coherent optical communication sys-
tems.! CPFSK can be demodulated by means
of differential detection (Fig. 1). This type of
receiver combines improved sensitivity and
circuit simplicity, but it is sensitive to laser
phase noise. However, its performance canbe
optimized by proper choice of receiver filters.
In a previous paper we presented a method
for optimizing the bandpass filter of the re-
ceiver? In this paper, the effect of the
postdetection (low-pass) filtering is, for the
first time to our knowledge, accurately ana-
lyzed.

The low-pass filter is modeled as a finite-
time integrator, i.e., a filter whose impulse
response is a rectangular pulse of duration ;.
Because we are interested only in the influ-
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CTul2 Fig. 1. Block diagram of the hetero-
dyne differential receiver (Abbreviations
used: BPF =band pass filter, LPF = Post-detec-
tion (lowpass) filter, T = delay).
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CTul2 Fig. 2. Output probability density
before (full line) and after (dashed line) post-
detection filtering (Conditions: Ty =1, Dt=1).

ence of the low-pass filter, the bandpass filter
is considered large. We make the common
assumption that the phase noise is a Wiener
process® and can be written as

4(t) =J;¢(f')df'.

where (F) is a zero-mean Gaussian random
variable with double-sided power spectral

" density D = 2rAv and Av is the spectral

linewidth at the intermediate frequency.

Using fundamental properties of the
Gaussian variables and the Wiener process
(Ref. 4, pp. 49-50), we have been able to de-
rive recursive relations for the moments
1 = E{t"(nTy)] of the demodulator output. A
symbolic calculations mathematical package
was used to compute analytically the mo-
ments up to the tenth order. The first three
moments are given in Table 1.

Since the number of moments that can be
practically calculated with this procedure is
limited because of the excessive computer
time required, we use the maximum-entropy
criterion” to approximate the probability-dis-
tribution function (pdf) of the output.

In the following we assume that the val-
ues of the delay time t and the duration t; of
the impulse nse are chosen as T, = tand
Dx =2. Figure 2 shows the probability density
p1 () before (dashed curve) and after (solid
curve) the postdetection filter when a 1 is
transmitted. The output v(nT}) is normalized
in the range [-0.5, 0.5]. The former pdf was

lotted by using the analytical expression
18) of Ref. 6. The latter pdf was plotted by
using the method presented above. We ob-
serve that filtering alters the shape and di-
minishes the queues of the pdf, as expected.

The error floor can be evaluated by the

numerical integration

Ppoce = J: 5p(v]dv :
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CTul2 Table1. The first three theoretical moments.
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The validity of the approach was checked by
using MonteCarlo simulation. Results for dif-
ferent combinations of D, 1, and 1; show that
postdetection filtering can reduce the phase-
noise variance by up to 69% of its initial value
and can lead to a significant reduction of the
error-floor. This confirms the validity of a
previous approximate analyses.™

In conclusion, the present model provides
a method for accurate error-floor evaluation.
In the future, it can be extended to include
intersymbol interference and output-sample
correlation.
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