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Abstract—This paper expands our previous work on record-low
attenuation of 0.1460 dB/km, measured on a silica-core fiber with
148 μm2 effective area. We describe the technology used to achieve
such low level of attenuation and quantify other span loss char-
acteristics, such as maintaining ultralow attenuation after cabling
and splice loss reduction using “bridge” fiber and tapering tech-
niques. We also show that a superior transmission performance in
submarine networks is achieved using a combination of ultralow
attenuation and large effective area, and discuss the impact of span
length on system performance. We finally demonstrate that the re-
duction in fiber attenuation provides an additional benefit of lower
optimum power into the fiber, therefore, relaxing the maximum
output power requirements of submarine EDFAs.

Index Terms—Fiber optics communications, single-mode fibers.

I. INTRODUCTION

A. Importance of Combination of Ultra-Low Attenuation and
Large Effective Area

IN 1966 Charles Kao in his seminal paper predicted that op-
tical waveguides made with silica could achieve attenuation

(α) better than 20 dB/km [1]. Four years later in 1970 Donald
Keck and his colleagues experimentally showed the first silica
fiber with an attenuation of <17 dB/km [2]. After this initial
demonstration the progress in achieving lower attenuation in
telecom optical fibers was astounding—by the time the most
deployed fiber type G.652 (also known as standard single mode
fiber) was specified by International Telecommunication Union
(ITU) in 1984, the commercial single mode fiber products had
attenuation of 0.4 dB/km at 1310 nm [3] and 0.26 dB/km at
1550 nm [4].

Manuscript received August 20, 2015; revised October 15, 2015; accepted
October 15, 2015. Date of publication October 25, 2015; date of current version
January 24, 2016.

S. Makovejs, J. D. Downie, J. E. Hurley, J. S. Clark, I. Roudas, C. C. Roberts,
H. B. Matthews, D. A. Lewis, D. T. Smith, P. G. Diehl, J. J. Johnson, C. R. Tow-
ery, and S. Y. Ten are with the Corning Incorporated, Corning, NY 14830
USA (e-mail: makovejss@corning.com; downiejd@corning.com; hurleyje@
corning.com; ClarkJS@Corning.com; roudasi@corning.com; RobertsCC@
corning.com; MatthewsHB@Corning.com; LewisDA@Corning.com; Smith-
DT@corning.com; DiehlPG@Corning.com; johnsonjj@corning.com; tow-
erycr@corning.com; tens@corning.com).

F. Palacios is with Alcatel-Lucent Submarine Networks, Boulogne-
Billancourt 92100, France (e-mail: florence.palacios@alcatel-lucent.com).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JLT.2015.2492821

Since that moment the improvement in attenuation of sil-
ica based optical fibers was less dramatic (from tens of dB/km
to a fraction of dB/km) as in the first decade of optical fiber
development. However, it was realized that even a minor de-
crease in fiber attenuation leads to a significant improvement in
transmission performance, so the pursuit for lower and lower
fiber attenuation continued. In addition, other fiber attributes
such as effective area (Aeff ) and nonlinear refractive index n2)
were identified as key parameters that affect overall transmis-
sion performance. For high-dispersion fiber (e.g., ITU-T G.654
fibers), the impact of attenuation, Aeff and n2 can be described
using a figure of merit (FOM) given below, which represents a
simplified FOM from [5]

FOM(dB)=
2
3
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where α, Aeff and n2 are taken at the signal wavelength (usually
1550 nm), L is a span length between optical amplifiers, and
Leff is effective length (� 1/α in linear units for long spans).
This formula is devised from [5] assuming that FOM is a rela-
tive metric and shows the improvement in optical signal to noise
ratio (OSNR) that a given fiber can achieve in comparison with
reference fiber, therefore, EDFA noise figure and miscellaneous
sources of insertion loss disappear from the equation in [5].
The use of coefficients 2/3 and 1/3 does not change the relative
importance of α, Aeff and n2 but ensures that the improve-
ment in FOM can be directly translated into an improvement in
Q-factor.

Fig. 1 shows the impact of attenuation, Aeff and n2 on the im-
provement in FOM in a configuration with 65 km spans, which
represents an average span length used in submarine systems (50
km—typical low, 80 km—typical high). The first notable feature
on Fig. 1 is the presence of a step in FOM around the attenuation
of 0.175 dB/km. This is because the reduction of attenuation <
0.175 dB/km typically cannot be achieved using SiGe fibers
(with n2 of 2.2 − 2.3 × 10−20 m2/W, depending on Aeff ), and
silica-core fibers with n2 of 2.1 × 10−20 m2/W should be used
instead. Overall, it becomes apparent that ultra-low attenuation
and large effective area (Aeff ) are the two most important fiber
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Fig. 1. FOM with respect to 0.350 dB/km fiber with Aeff = 67 μm2 in a
65 km span configuration.

attributes for long-haul transmission systems, which lead to a
superior transmission performance. It is remarkable that since
the inception of optical fiber in submarine systems in 1988 the
FOM was improved by almost 10 dB through the introduction
of new generations of optical fibers [6]–[10]. Ultimately, any in-
crease in fiber FOM results in longer reach or longer span length
[11], which can be beneficial in many scenarios. Higher FOM
also supports a higher bit-rate—a feature which has been his-
torically essential for every new generation of submarine link.
The trend of bringing higher data rates into the submarine links
is likely to continue in the foreseeable future through the use of
advanced modulation formats. It is worth noting that state-of-
the art silica-core fiber provides almost 1 dB improvement in
FOM relative to state-of-the-art SiGe fiber for a configuration
with 65 km spans studied in this paper.

There is an additional benefit of ultra-low fiber attenuation,
which leads to lower optimum launch power into the fiber, rel-
ative to generic fibers, therefore, relaxing the requirements on
maximum available EDFA output power. This feature is par-
ticularly important for submarine systems, where repeaters are
powered from the shores and minimization of total EDFA output
power is beneficial for its reliability and minimizing requirement
for the power feed.

It is also worth mentioning that over the last few years
there has been a substantial interest in non-traditional fibers
for space division multiplexing (SDM). Those fibers can be
generally divided in two distinct categories: multi-core and few-
moded fibers, where information can be transmitted over multi-
ple cores/modes simultaneously to further increase transmission
capacity. However, in terms of capacity x reach (which repre-
sents a good practical metric to determine the performance of
different transmission technologies), SDM fibers have not yet
provided a significant transmission improvement, according to
hero experiments from OFC and ECOC post-deadline confer-
ence sessions (see Fig. 2). In addition, the complexity of SDM
technology is still unclear in many areas, especially, the extent
to which operational procedures and design rules need to be
changed. Also, Fig. 2 suggests that hero experiments involving
silica-core are surpassing hero experiments using SiGe fibers,
therefore, in this paper we only focus on technology related to
silica-core fibers.

In this paper we expand our previous work on record-low
attenuation of an ultra-large Aeff silica-core fiber [12] mea-

Fig. 2. Historic evolution of capacity x reach product, as reported in hero
transmission experiments from OFC and ECOC postdeadline conference ses-
sions (different colors represent SDM, SiGe, and silica-core fibers).

TABLE I
SUMMARY OF ULTRA-LARGE AEFF SILICA-CORE

FIBER UNDER TEST ATTRIBUTES

Length, km Effective area, μm2

(1550 nm)
Dispersion,

ps/nm/km (1550 nm)
Cable cut-off

wavelength, nm

22.65 148.3 20.72 1418

sured across the C-band on both shipping and tension-free
spools. The attenuation obtained on a tension-free spool mim-
ics the benign, tension-free environment of a properly-designed
submarine cable. The attenuation at 1550 nm was measured
to be 0.1467 dB/km, and the lowest attenuation value was
0.1460 dB/km at 1560 nm. These results beat the previous atten-
uation records of 0.149 dB/km (at 1550 nm) and 0.148 dB/km
(lowest within C band), reported in [13].

To fully realize the technical advantage of ultra-low fiber at-
tenuation, it is imperative to ensure that the full ultra-low loss
ecosystem of a submarine span is in place, such as, splicing and
cabling. Therefore, we also showed that an acceptable splice loss
can be achieved between large Aeff fiber to 1) itself, and to 2)
lower Aeff fiber. The former is important since a single span be-
tween two repeaters typically consists of several shorter-length
fiber reels, which are spliced together. The latter is important
since large Aeff fiber sections must be spliced to the repeater
ends, which typically contain lower Aeff fiber. Finally we dis-
cussed the last component of the ultra-low loss ecosystem—
fiber attenuation in the submarine cable. We demonstrated that
fiber attenuation is not increased during the cabling process, so
that the transmission performance of a submarine link is not
compromised once the fiber is cabled.

II. FIBER DESIGN AND ATTENUATION MEASUREMENT

PROCEDURE

The fiber under test was an ultra-large Aeff silica-core Corning
Vascade EX3000 fiber sample with attributes listed in Table I.

This fiber had a silica-core and a fluorine-doped cladding to
achieve a difference in core-cladding refractive indices. As a
result of elimination of GeO2 in the core and consequent reduc-
tion of compositional Rayleigh scattering, the silica-core fiber
design ensured a significantly reduced attenuation coefficient
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Fig. 3. Sources of attenuation of silica-core and SiGe fibers.

TABLE II
ATTENUATION OF ULTRA-LARGE Aeff SILICA-CORE FIBER UNDER TEST (IN

DB/KM), MEASURED ON (A) LARGE DIAMETER SPOOL; (B) SHIPPING SPOOL

(A)

1530 nm 1535 nm 1540 nm 1545 nm 1550 nm 1555 nm 1560 nm 1565 nm 1570 nm
0.1499 0.1489 0.1480 0.1473 0.1467 0.1462 0.1460 0.1461 0.1465

(B)

1530 nm 1535 nm 1540 nm 1545 nm 1550 nm 1555 nm 1560 nm 1565 nm 1570 nm
0.1503 0.1493 0.1484 0.1478 0.1472 0.1467 0.1467 0.1467 0.1471

compared to Ge-doped fibers (see light blue bar in Fig. 3).
Due to the presence of fluorine in the cladding, there is fluo-
rine Rayleigh scattering component (see green bar in Fig. 3).
However, since most of light is concentrated in the core, the
fluorine Rayleigh scattering components is significantly lower
than other sources of attenuation. The reduction in attenua-
tion was also facilitated by the reduction of residual stress in-
duced during the manufacturing process, which was achieved
by matching the viscosity of the core and cladding [14] (see dark
blue bar in Fig. 3). The core-cladding refractive index design was
optimized for macrobend and cut-off wavelength performance
and to ensure compliance with the ITU-T G654.D standard. It
must be also noted that due to its ultra-large Aeff , the fiber did
not require as much cladding index suppression as silica-core
fibers with lower Aeff . As a result, the fiber had lower fluorine
concentrations and scattering within the near-cladding.

To determine fiber attenuation we used the spectral cutback
measurement technique, which is compliant to the IEC 60793-
1-40 standard. A measurement system consisting of a white light
source, monochromator with better than 0.5 nm accuracy, mod-
ulator, and InGaAs detector was used to conduct the attenuation
measurements. The system’s precision is 0.001 dB or better
and its accuracy was confirmed against other available industry
measurement benches. The fiber measurements are summarized
in Table II. The measurements were carried out over a wide
range of wavelengths with the fiber under test wrapped on a
(a) tension-free, large diameter spool and (b) standard diameter
shipping spool. As seen from the measurement data, the lowest
attenuation was achieved around 1560 nm. This was the wave-
length at which the rate of attenuation increase due to infrared
absorption overcomes the rate at which Rayleigh scattering is
decreasing with wavelength.

Fig. 4. (a) Effective area differences of fibers under test; (b) Statistics of
splices losses for different sets of fibers.

III. SPLICING PERFORMANCE OF ULTRA-LARGE Aeff
SILICA-CORE FIBER

To understand the splice losses, a set of comprehensive sta-
tistical studies were performed involving low, medium and high
Aeff values of Vascade EX3000 fiber. In the first set of measure-
ments, the average splice loss of Vascade EX3000 to Vascade
EX3000 fiber was found to be 0.014 dB, which is lower than the
observed average splice loss of 0.024 dB between two 82 μm2

fibers. This is because for the same amount of radial splice offset
d, the relative mode field diameter mismatch, i.e., d/MFD for
two large Aeff fibers is smaller than for two 82 μm2 fibers.

We then measured the splice losses between Vascade EX3000
and lower Aeff fiber, for which we chose Corning SMF-28e+
fiber with an average nominal Aeff of 82 μm2. By using low,
medium and high Aeff values within the production distribution
of both fiber types, the average splice loss was determined to be
0.296 dB. It must be also noted that this value is lower than the
splice loss of 0.308 dB predicted by frequently used formula (1)
[15], even when the radial splice offset is neglected in formula:

αd = −10log

[(
2W1W2

W 2
1 + W 2

2

)2

× exp
(

−2d2

W 2
1 + W 2

2

)]
. (1)
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Fig. 5. Image of splice using a tapering technique (X and Y reflect different
viewing angles).

In Eq. (1), 2W1 and 2W2 are mode field diameters (Aeff is
proportional to (2W)2) of the two fibers, d is the radial splice
offset, and αd is the splice loss.

One of the ways to minimize splice loss is to use a “bridge”
fiber, i.e., the fiber with an Aeff somewhere between Vascade
EX3000 fiber and SMF-28e+ fiber. For this study we chose
Corning Vascade EX2000 fiber with an average nominal Aeff
of 112 μm2 as a “bridge” fiber, and performed a set of splices
from Vascade EX3000 to Vascade EX2000 fiber, and Vascade
EX2000 to SMF-28e+ (also using low, medium and high Aeff
for all fiber types). The average splice losses were found to be
0.097 and 0.065 dB, respectively (i.e., 0.162 dB in total). These
results suggest that having two splices to the “bridge” fiber
yields a lower overall splice loss than having a single splice
between two fibers with substantially dissimilar Aeff values.
We also investigated tapering a Vascade EX3000 fiber with low
(146.7 μm2), medium (150.7 μm2) and high (154.6 μm2) Aeff
during a direct splice to SMF-28e+ fiber (Aeff = 83 μm2) to
achieve a reduction in splice loss due to a better mode field
match with an adiabatic transition from the large mode field to
the smaller mode field diameter. The splice was performed using
a Fujikura FSM-100P+ splicer. The process involves stretching
the large core diameter fiber after the splice is performed. The
taper region is confined primarily to the large core fiber by
controlling the offset of the arc from the splice point. Parameters
such as offset, time delay of fiber pull after arc, pull speed,
and pull distance were varied to minimize the splice loss. An
example of such splice is shown in Fig. 5. In this test 30 splices
were carried out, 10 each for the three different Vascade EX3000
fibers to the common SMF-28e+ fiber, and the results are shown
in Fig. 6. The average splice loss was found to be 0.145 dB, and
the standard deviation was 0.019 dB.

IV. CABLING PERFORMANCE OF ULTRA-LARGE AEFF
SILICA-CORE FIBER

While this may be counter-intuitive at first, the attenuation
of an optical fiber in a submarine cable can be (and in many
cases, is) lower than the attenuation on a fiber shipping spool.
The main reason is due to the presence of bends placed on
the fiber when wrapped on a shipping reel, which is the re-
sult of the winding tension applied when the fiber is spooled
to provide a stable package for storage, shipping, and process-
ing. The applied tension compresses the fibers within the pack,
which results in subtle bends at fiber crossover points generating
signal loss. When the fiber is properly cabled, such bends natu-
rally disappear, and the true intrinsic attenuation of the fiber is
realized.

Fig. 6. Distribution of splice losses between Vascade EX3000 fiber with low,
medium and high Aeff to SMF–28e+ fiber (directly spliced to each other using
tapering technique).

Fig. 7. Schematic diagram of submarine cable.

TABLE III
FIBER ATTENUATION (ON A SHIPPING SPOOL) AND CABLED ATTENUATION

VALUES (AT 1550 N·M) FOR EIGHT FIBERS UNDER TEST

Fiber 1 Fiber 2 Fiber 3 Fiber 4 Fiber 5 Fiber 6 Fiber 7 Fiber 8

Fiber
attenuation
(dB/km)

0.156 0.153 0.157 0.158 0.155 0.155 0.160 0.156

Cabled
attenuation
(dB/km)

0.155 0.153 0.157 0.158 0.154 0.153 0.160 0.154

Well-designed submarine cables ensure that negligible strain
and ultra-low pressure are applied to the fibers in normal opera-
tion conditions. The Alcatel-Lucent OALC4 cable, used in this
study, consists of a core structure that isolates fibers from me-
chanical stresses. This is achieved with a design in which fibers
lay freely in a steel tube. The fibers are housed in a jelly-filled
steel tube surrounded by two layers of steel wires that form a
protective vault against pressure and external aggressions, and
provide tensile strength. This vault is then enclosed in a hermet-
ically sealed copper tube and insulated with a layer of polyethy-
lene, necessary for deep sea cable applications (see Fig. 7). As
shown in Table III, for four out of eight fibers under test, the
attenuation decreased after cabling by 0.001–0.002 dB/km, and
for the other four fibers remained unchanged.

V. IMPLICATIONS FOR SUBMARINE EDFA POWER

REQUIREMENTS

There are two aspects of submarine systems that make them
different from terrestrial systems: 1) power for repeaters (EDFA
amplifiers) is provided from the two shores [16], and 2) the
reliability of EDFAs must be very high [17]. As a result, there
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TABLE IV
OPTIMUM LAUNCH POWER PER CHANNEL, AS A FUNCTION OF NUMBER OF

WDM CHANNEL (FOR THE LINK DESCRIBED ABOVE)

Number of WDM λ’s 1 10 40 80 100 125 150

Optimum Pin per λ

(dBm)
−0.2 −1.95 −2.45 −2.65 −2.7 −2.8 −2.8

Fig. 8. Total required power of EDFA as a function of number of WDM
channels for Vascade EX3000 fiber. Red line shows the maximum output power
of a typical submarine EDFA.

is a strong drive to keep the maximum output EDFA power
low—today this power rarely exceeds 19 dBm [18]. As the
number of wavelength division multiplexing (WDM) channels
per fiber continues to grow in the search for higher capacity,
the maximum required EDFA power must increase to support
amplification of additional wavelengths.

To study the impact of varying number of WDM channels
on required output EDFA power, we modeled a configuration
involving Vascade EX3000 fiber (typical values: 0.157 dB/km
attenuation, 150 μm2 Aeff , 20.7 ps/nm/km dispersion, 2.1 ×
10−20 m2/W n2) over a 10 000 km link with 50 km repeater
spans. The modeling was carried out using a Gaussian-noise
analytical model, where nonlinearity is approximated using an
additive Gaussian noise, statistically independent of ASE noise
[19]. The system was assumed to be operating at 32 GBd with a
PM-QPSK modulation format, resulting in the overall bit-rate of
128 Gb/s, including forward error correction overhead. EDFA
noise figure was set to be 6 dB.

First, the optimum launch power (defined as the launch power
at which the Q-factor is at its maximum) per channel was deter-
mined for several number of WDM channels (see Table IV). It is
apparent that the increase in number of WDM channels causes
an increase in inter-channel nonlinearity, resulting in lower opti-
mum power per channel. The change in optimum launch power
is highest for small number of WDM channels, and is reduced for
large number of WDM channels, as the effect of inter-channel
nonlinearity becomes saturated. To calculate the total required
output power of EDFA the optimum launch power is multiplied
by the number of channels (i.e., power in dBm summed with
10 × log10(N), where N is number of WDM channels), and the
results are plotted in Fig. 8. The graph shows that even for 150
WDM channels, representing the maximum practical number
of channels that could be jammed into C-band, using Vascade
EX3000 fiber the required output power of EDFA is within the
19 dBm capability of submarine repeaters.

Fig. 9. Total required optical power of EDFA as a function of fiber attenuation.
Red line shows the maximum output power of a typical submarine EDFA.

In addition to OSNR performance improvement, the reduc-
tion in fiber attenuation also enables lower optimum launch
power into the fiber, therefore, reducing the required output
power of submarine EDFA for a fully loaded C-band system
(see Fig. 9). For example, for a 150 μm2 fiber in a configuration
with 150 Nyquist WDM channels over 10 000 km and 50 km
spans, the reduction in attenuation by 0.02 dB/km corresponds
to the reduction in total required EDFA output power by 0.5 dB.
This leads to an important conclusion—an increase in EDFA
output power due to large number of channels in the C-band can
be partially offset by using fibers with lower attenuation.

VI. CONCLUSION

In this paper record-low attenuation of 0.1460 dB/km at
1560 nm and 0.1467 dB/km at 1550 nm for a 148 μm2 Vas-
cade EX3000 fiber was demonstrated. Such ultra-low level of
attenuation was achieved using silica-core technology, and a
design which matches the viscosity of the core and cladding.
Other components needed to achieve ultra-low loss submarine
span, such as splicing and cabling, were also studied.

Average splice loss between two ultra large Aeff (∼150 μm2)
silica-core fibers was measured to be 0.014 dB, which is lower
than for two G.652 fibers. The reduction in splice loss when
splicing two fibers with dissimilar Aeff values (∼150 and
∼82 μm2) using a ∼112 μm2 “bridge” fiber was also quan-
tified. Even though the use of such “bridge” fiber required
two splices, the overall average splice loss was decreased from
0.296 to 0.162 dB, as compared to a direct Vascade EX3000 to
SMF-28e+ fiber splice. The possibility to reduce direct Vascade
EX3000 to G.652 fiber splice losses was also studied using a
tapering technique, which provides a better mode field match
with an adiabatic transition from the large mode field to the
smaller mode field. The average achieved splice loss using ta-
pering technique was 0.145 dB.

In terms of cabled transmission performance, for four out
of eight fibers the cabled attenuation was found to be 0.001–
0.002 dB/km lower than the attenuation on the fiber shipping
spool. This is because a properly design submarine cable rep-
resents a more benign environment for optical fiber compared
to the case when fiber wrapped on a shipping reel fiber and is
exposed to bends—a result of a applied winding tension. Such
bends naturally disappear when the fiber is cabled. As part of
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our study we observed a reduction in attenuation by 0.0004–
0.0007 dB/km when the fiber was rewound from the standard
diameter shipping spool to a large diameter measurement spool
to mimic fiber behavior in a cable.

Finally, we evaluated the transmission performance of ultra-
low loss and large Aeff fibers—both in terms of FOM, and
required EDFA output power. It was observed that a combi-
nation of ultra-low attenuation and large Aeff always enables
a superior transmission performance. We also showed that the
reduction in fiber attenuation provides an additional benefit of
lower optimum launch power per channel, therefore, reduc-
ing the total required power of the EDFA (0.02 dB/km reduc-
tion in attenuation decreased the total required EDFA power
by 0.5 dB).
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