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Recursive Simulation Models of the Semiconductor
Laser Modulation Characteristics for Accurate
Performance Evaluation of Coherent
Optical CPFSK Systems

l

Abstract—Modeling of the semiconductor laser nonumiform
FM response and residual IM modulation is essential for the
computer-aided design of coherent optical communication sys-
tems. This paper presents an accurate simulafion model, in which
the FM and IM responses are represented by recursive digital
filters derived directly from measurements. A comparison with
previous models of the bibliography reveals the advantages of the
current approach. The proposed modeling procedure is applied
in the case of a single-electrode DFB laser. This DFB model, in
combination with a semi-analytical technique for the evaluation
of the error probability, is used to study the influence of the
modulation characteristics on the performance of a coherent
heterodyne CPFSK system with differential receiver operating
at 1 Gb/s. Theoretical and experimental results are in excellent
agreement.

I. INTRODUCTION

ONTINUOQOUS PHASE frequency shift keying (CPFSK)

is an attractive modulation format for coherent optical
multichannel communication systems [1]. One of its major
advantages is that it can be generated directly by injecting
a small non-return-to-zero (NRZ) modulation current in the
laser.

As light source in the transmitter of coherent optical CPESK
systems, conventional single-electrode and three-electrode dis-
tributed feedback (DFB) lasers are most often used.

In the case of single-electrode DFB lasers, the frequency
modulation obtained is not ideal [1] because the FM response
of these devices is nonuniform [2]. In addition to that there is
always a small amount of residual intensity modulation (IM)
which coexists with the CPFSK modulation [3]. These two
effects cause intersymbol interference (ISI) which degrades
the performance of coherent optical CPFSK systems [4]-[7].

In (41-[7], different models were used to simulate the
nonuniform FM response and the residual IM modulation.
Jacobsen er al. [4] and Caponio et al. [5] simulated the FM
response by a filter. The residual IM modulation was ignored.
Alexander et al. [6] and Vodhanel et al. [7] used an hybrid
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approach: 1) the instantaneous amplitude and frequency of the
optical signal were calculated at high frequencies by resolution
of rate equations; 2) the FM response at low frequencies was
simulated by a filter. The diversity of these approaches proves
that no standard simulation model exists.

Obviously, modeling depends on the specific application.
Here we are interested in a model suitable for computer-aided
design of coherent communication systems. From this point of
view, the desirable model must be primarily accurate, to enable
the calculation of low error probabilities and fast, to enable the
simulation of long sequences. For this reason, a compromise
must be taken between computing time and sophistication
of the model. An abstract, communications engineer oriented
model, which does not involve the detailed physical theory of
the laser, may therefore be preferable.

This paper proposes a new model with the above features.
The principle idea of our approach is that the laser FM
response can be approximated by a recursive digital filter
derived directly from measurements. The procedure is divided
into two steps: 1) measurements of the FM response are fitted
by a rational function using a least squares error criterion;
2) the rational function is used to calculate the digital filter
coefficients by means of the impulse invariant transformation
method. The residual IM response can be also modeled by a
recursive digital filter in a similar manner.

This procedure is applied in the case of a:single-electrode
DFB laser. With this DFB model, we study the impact of
the nonuniform FM response on the spectrum, the output
waveform and the error probability of a coherent heterodyne
CPFSK system with differential receiver operating at 1 Gb/s.
The experiment verifies the theoretical results.

The calculation of the error probability is:done by a fast
and highly accurate semi-analytical technique including both
laser phase noise and shot noise.

This is the first time to the authors knowledge that the power
penalty caused by the FM and IM responses is calculated
accurately for a CPFSK system with differential receiver. A
previous attempt on this subject [4] used a simplified model
of the FM response in order to derive selection guidelines for
the transmitter laser. A more recent analytical study [8] was
carried out in the case of wide-deviation FSK system with
envelope detection.
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Fig. 1. Measurements of the FM response of a DCPBH DFB laser.

The remainder of this paper is organized as follows. In
Section II, the principal models of the FM response are
presented and compared to the experiment. In Section III, a
new model of the FM response is developed and an application
example is given. In Section IV, the model of the IM response
is presented. In Sections V and VI, the simulation model
and the experimental setup of a coherent heterodyne CPFSK
system with differential receiver are described respectively.
Finally, in Section VII, the influence of the nonuniform FM
response and the residual IM modulation on the system’s
performance is studied both theoretically and experimentally.

II. FM RESPONSE MODELS

A typical measured FM response of a double-channel planar
buried heterostructure (DCPBH) DFB laser is shown in Fig. 1.
It presents a magnitude dip in the 1 kHz to 10 MHz region
(faip = 40 kHz) and a phase transition from about 170° to
less than 0° as the modulation frequency increases. The slope
of the lower side of the dip is equal to ~4.2 dB/decade and the
slope of the upper side of the dip is equal to 3.3 dB/decade.

The FM response is due to two different mechanisms,
the temperature modulation effect and the carrier density
modulation effect [9]. The former dominates at low modulation
frequencies and the latter at high modulation frequencies.
Under small signal approximation the two effects simply add
and the FM response can be written (in terms of the Laplace
transform)

H(s) = Hc(s) + Hi(s) M

where H.(s), H:(s) denote the carrier and thermal FM con-
tributions respectively. H.(s), H:(s) have a phase difference
and their vectorial addition results, in general, in an amplitude
dip, like in Fig. 1.

Different expressions for H.(s), H(s) are proposed in the
bibliography.

A. Carrier FM Response

The transfer function of the carrier induced FM H.(s) can
be derived from the rate equations. For a Fabry-Perot, and
approximately for a DFB laser, the carrier FM response is
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given by [10]
Kc<1 + i)
Wy

2
(i) +2 41

Wy Wq
where. K. is the FM efficiency of carrier effects in low
frequencies, w, is the relaxation frequency, wq is the damping
frequency and wg is a frequency related to the gain nonlin-
earity.

The relation (2) is not valid for DFB lasers which are
strongly coupled or have very asymmetric mirror coatings,
because spatial hole-burning -effects become important [10].
In this case, the transfer function of the carrier induced FM
H_(s) can be evaluated by the model of [11].

He(s) = @

B. Thermal FM Response

The transfer function of the thermal FM response H:(s)
can be evaluated by resolution of heat diffusion equations in
the chip and the submount [12]. Due to the complexity of the
accurate solution, several analytical approximations for Hy(s)
are proposed in the bibliography.

The empirical model of Saito et al. [13] was shown to
describe satisfactorily the behavior of AlGaAs Fabry-Perot
lasers with CSP, BH and TJS structure [6], [9]. These lasers
display a strong thermal FM efficiency in comparison with
their carrier FM efficiency. The thermal FM response is given

by
K;

14,/
We

where K denotes the FM efficiency due to thermal effects
and w, is the thermal cutoff frequency.

The analytical model of Soundra Pandian-Dilwali [14] was
shown to describe well the behavior of DFB lasers. It is based
on the study of one-dimensional heat diffusion. The thermal
FM response is given by

Hy(s) = 2K; [tanh ( i) + tanh (—;— i
3 [s |- \/ We We
We

where K;,w,. have the same meaning as before.

It is worth noting that at high frequencies Hy(s) —
4K/(34/s/w.), so this model tends asymptotically to the
model of Saito ef al. except for a multiplication factor.

The empirical model of Caponio et al. [5] is developed
for single electrode InP/InGaAsP DFB lasers with different
structures. The thermal FM response is given by

K, 1
7n 5 &)

1 -
1+ <i> + Wt
We

where K is the carrier FM efficiency at low frequencies, n
is a parameter which usually ranges between 2.5-4, w, is the
cutoff frequency of the thermal diffusion and w;y is the cutoff

Hi(s) = 3)

} “

Ht(s) =
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frequency which accounts for the thermal behavior at high
frequencies (~MHz.)

At low frequencies (f < fy), the term (1 +s/w;)™t is
negligible. At this frequency region, the model of Caponio
et al. becomes equivalent to the model of Saito et al. when
n = 2. At high frequencies, the term (1 +s/w;)~! makes
the thermal FM response to diminish faster than in the two
previous models and creates a steeper slope of the upper side
of the dip.

C. Comparison of the Thermal FM Response Models

For the comparison of the thermal FM response models, the
measurements of Fig. 1 are approximated at low frequencies.
The approximation function is obtained by substituting (2)

in (1), and writing H(s) at low frequencies as
H(s) ~ H(s) + H.(0) = Hi(s) + K.. (6)

The least squares algorithm by Levenberg-Marquardt [15] is
used for the calculation of the adjustable parameters of H;(s)
in (6).

Fig. 2 (a)—(c) presents measurements (full curves) and their
approximation by (6) (dashed curves) for the three different
models of Hy(s).

Fig. 2(a) shows that the model of Saito et al. approximates
well both phase and amplitude dip. However, the slope of the
upper side of the dip is not steep enough. Consequently, the
theoretical curve intersects measurements at about 10 MHz.

Fig. 2(b) shows that the model of Soundra Pandian-Dilwali
approximates well the phase but the amplitude dip is very
shallow. This discrepancy indicates that the one-dimensional
model of [14], which considers the laser chip as an equivalent
single layer with an equivalent planar heat source at the center,
is not well adapted to the specific laser geometry.

Fig. 2(c) shows that the model of Caponio et al. gives an
excellent approximation of both amplitude and phase. On the
other hand, the complexity of this model is higher than the
complexity of the previous models (four parameters instead
of two), and that makes initial conditions more difficult to
determine.

Table I summarizes the advantages and drawbacks of the
above models. It is worth noting that these observations are
based on one specific laser so the conclusions cannot be
generalized for all lasers. However, this study indicates the
limitations of each model.

From a mathematical point of view, the FM response H(s)
can be considered as the transfer function of an analog filter
whose input is the laser injection current and whose output is
the instantaneous optical frequency.

A problem arises in the computer implementation of all the
above models, due to the irrational form of H(s) (i.e., the
denominator includes a term s'/™). The synthesis of a digital
filter representing an irrational transfer function is not trivial
[16], [17]. In this case filtering is easier to be performed in
the frequency domain by means of the fast Fourier transform
(FFT) {5], [8], [18].

On the other hand, the use of FFT inherently assumes that
the impulse response of the FM transfer function has finite
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Fig. 2. Approximation of the measured FM response of the Fig. 1 (full
curves) at low frequencies by different models (dashed curves) (a) Model
of Saito et al. (Parameters: K. = 764 MHz/mA, K; = —1.43 GHz/mA,
we = 2w 73 kHz. Only the amplitude of the FM response is approximated).
(b) Model of Soundra Pandian-Dilwali (Parameters: K. = 764 MHz/mA,
K, = —1.7 GHz/mA, w. = 27 10 kHz. For the calculation of K,w. the
method explained in [14] was used). (c) Model of Caponio et al. (Parameters:
K. = 764 MHz/mA, K; = —1.587 GHz/mA, w. = 27 37 kHz, w; = 27
32 MHz, n = 2.32. Only the amplitude of the FM response is approximated).

TABLE 1
ADVANTAGES AND DRAWBACKS OF THE PREVIOUS
MODELS FOR THE THERMAL FM RESPONSE

Model Advantages Drawbacks
Saito ef al. Goc;c:n ﬁﬁ:&ff;ﬁ:&n of Smootht }l;lé)%?; side of
P, gy IR o, ap
Caponio et al. Excellent approximation Digggl(xilitdi)x:li;ial

duration. This is definitely not true. The FM impulse response
can be considered as infinite, since its thermal components
may vanish very slowly (typically they extend over millions
of bits for bit rates at the Gb/s region). This fact suggests
that filtering in the time domain with a recursive (IIR, Infinite
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Impulse response) digital filter is better adapted to the nature
of the specific problem.

It will be shown in the next section that, by choosing
a model possessing rational transfer function, the instanta-
neous optical frequency can be calculated by simple recursive
relations with few coefficients.

1II. PROPOSED MODEL

In this section, we present a new model for the FM response.
The FM response is modeled as a recursive digital filter
derived directly from measurements.

The design procedure can be divided into two parts, the
approximation and the digitization.

In the following subsections, each part is treated separately.

A. Approximation

The approximation problem can be stated as follows: Given
N measurements of the amplitude and phase of the laser FM
response H(s), find a rational function r(s) which fits the
measurements in the sense of a least squares error criterion.

A suitable set of rational approximation functions r(s)
should satisfy the following requirements:

1) Conjugate symmetry around the origin (i. e. r(s*) =
r*(s)). The physical interpretation of this requirement
is that the impulse response of the filter should be real.

2) Lowpass behavior (i. e. the order of the denominator
polynomial must be greater than the order of the numer-
ator polynomial so that the transfer function of the filter
vanishes as s — 00).

3) Stability (i. e. the poles of r(s) must be located at the
left half of the s-plane). '

The choice of the form of the approximating function is

motivated by the physics of the device. The approximating
function r(s) is decomposed in two parts ‘

r(s) = re(s) +74(s) @)

where 7.(s),r:(s) fit the carrier and thermal FM contribu-
tions respectively, each one being adjusted independently and
separately.

1) Carrier FM Approximation: The transfer function of the
carrier induced FM is assumed to be uniform up to several
GHz.

In this case, the parasitics of the laser drive circuit and
package limit the laser modulation bandwidth and cause a roll-
off at high frequencies as shown in Fig. 1 [19]. Assuming that
the parasitics form an equivalent fow-pass filter with a series

inductance and resistance and a shunt capacitance, r.(s) can

be written in the form
a

s24+bs+c ®)

re(8;a,b,¢) =
where a, b, ¢ are positive real adjustable parameters.

The expression (8) has the form of a minimum phase all-
pole causal filter [20], [21]. In consequence, to adjust a,b,c
to the measurements, it is sufficient to fit only the amplitude
of the FM response since in this case the amplitude and phe_lSe
are related by the Bayard-Bode relationships [22].
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Fig. 3. Amplitude of the measured FM response shown in Fig. 1 (rapidly
varying curve) and its approximation by a Bode diagram (staircase curve) for
M = 4. The approximation by (10) is also given (dashed curve).

2) Thermal FM Approximation: A convenient form for dig-
itization is

M

Tt(5; M,'r,p) = Z s —p;

=1

73

7,0 € B,p; <0 (9)

where the number of fractions M, the residues 7 and the poles
p are adjustable parameters.

This form provides always a very efficient approximation
of the thermal FM response. To show this, we can rewrite
(7), at the low frequency region (far below the high-frequency
roll-off), by use of (8), (9) in the form

where z are the zeros of r(s) at low frequencies.

The last equality in the expression (10) can be used to make
an asymptotic Bode plot (Fig. 3). From this, it is easy to see
that by placing a sufficient number of poles and zeros we can
create a staircase approximation of the magnitude dip. More
particularly, by alternating real poles and zeros, it is possible to
create each side of the dip. By placing two successive zeros it
is possible to create the bottom of the dip. The major advantage
of this method in comparison with [5], [13], [14] is that any
dip with arbitrary depth and side slopes can be approximated.

It is worth noting in the expression (9) that, with no loss of
generality, only the case of real poles and zeros is considered.
This restriction simplifies the calculations and is adopted
because it was shown to describe fairly well the behavior of
the laser of the Fig. 1. Howéver, the method can be extended
in the case of complex poles and zeros.

For the calculation of the parameters M, r,p, we approxi-
mate the low frequency measurements with r(s) as given by
(10). Tt is necessary to approximate both the magnitude and
the phase of the measurements since the zeros of 7(s) are not
a priori in the left half of the s-plane.

Obviously, the approach we adopted for the approximation
of the thermal FM response can be extended to approximate
also the carrier FM response in the case that the latter is not
uniform and the relation (8) does not hold.
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B. Digitization

The digitization problem can be stated as follows: given the
_rational transfer function of an analog filter (s), find a digital
filter with the same characteristics.

Several methods for digitizing an analog filter exist in
the literature. We have used a technique called impulse in-
variant transformation [20]. The most attractive property of
the impulse invariant transformation is that it preserves both
magnitude and phase characteristics of the analog filter by
adequate choice of the sampling period T.

The straightforward application of the method described in
[20] leads to the following procedural steps in order to obtain
the frequency recursive relations as follows.

1) Expansion of the carrier FM response (8) in partial

fractions
ih ih
= — 1
re(s) s—oc+id s—o0—102 an
where
h=a/(2Q), o=-b/2, Q=+/c—b2/4.

2) Calculation of the impulse response of (7) by inversion
of the Laplace transform of (9), (11)

M .
r(t) = Z ;e 4 2he” sin (Qt)

=1

>0, (12)
3) Calculation of the impulse response of the digital filter
rq¢(nTs) by sampling the analog one r(¢) at sample
intervals T
M

ra(nTy) 2 r(nTs) = Zriepm'r“ + 2he”™Ts sin (QnTy)
i=1
n>0. (13)
4) Calculation of the z-transform of the digital filter
o M .
Ra() = D 1alT)e™" = 3y
-1
ai R
14
14+ asz71 +az2—2 14
where a;,i = 1,---,3, are related to h, o,
ay = 2he’ T sin (QT;) (15)
ag = —2eTs cos (OT%) (16)
a3 = €77, (17

5) Calculation of the ‘instantaneous optical frequency
f(nTy) by the following recursive relations

M+1
FT) =T, Y fi(nTy) (18)
=1
fi(nTs) =rii(nT5) + T x filln = 1)T5],
1=1,---, M 19)

frus1(nTs) = avif(n ~ 1)T] — a2 X farga[(n — 1)T]
—azfarq1l(n ~ 2)T5] (20)
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Fig. 4. Digital filter structure.

where i(n7}) is the instantaneous injection current and
fi(nTy),i=1,---, M+ 1, are auxiliary variables for the
recursion with f;(0) = 0, fi(—T5s) = 0, fas41(—2T5)
= 0. The scaling factor T is added in (18) to compen-
sate the gain induced by the sampling of the analog
impulse response in (13) [21]. With: this adjustment
Rd(Z)IzzeiuTs ~ T(s)]s:iw. .
Relations (18)—(20) define a digital filter ‘composed of M
first order recursive filters and one second order recursive filter
(Fig. 4). _ «
An important property of the approximating functions (8),
(9) is that they permit to calculate analytically the 2M + 3
coefficients of the digital filter by the relationships (15)~(20).
In consequence, the digital filter is stable because we control
the position of poles. ‘ <

C. Example

The modeling procedure presented in the previous subsec-
tions, is used to model the DFB laser of Fig. 1.

First the measurements at the high frequency region (f €
[25 MHz, 1 GHz]) are approximated by (8) using the algorithm.
of Levenberg-Marquardt (see the Appendix for more details).
The values of the adjustable parameters a, b, ¢ are ‘given in
Table IL
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TABLE 1I
COEFFICIENTS FOR THE APPROXIMATION OF
THE FM RESPONSE AT HIGH FREQUENCIES

a (GHz*/mA) 18.513
b (GHz) 7.739
c (GHZz?) 24222

TABLE 1II
COEFFICIENTS FOR THE APPROXIMATION OF THE FM RESPONSE
AT Low FREQUENCIES BY FIVE PARTIAL FRACTIONS.
(ConpiTioN: FROM TABLE I ¢/c = 764 MHz/mA).

p; (27 MHz) —0.003
—0.022
—0.113
—0.890
—7.830
—0.005

0.041
—0.055
—0.630
—5.954

z; (2 MHz)

TABLE 1V
COEFFICIENTS OF THE DIGITAL FILTER DEFINED BY
THE RELATIONSHIPS (15)—(20) (Ts = 10 ps)

r; (GHz MHz/mA)

—0.007
—0.070
—0.306
—1.373
—12.418
0.9999998
0.9999986
0.9999929
0.9999441
0.9995082
a; (GHz2/mA) 0.178
as -1.923
as 0.926

epiTs

Then the measurements at low frequencies (f € [l kHz,
60 MHz]) are approximated by (10) for different values of
M. The phase approximation is very good even for M = 3
but the amplitude approximation presents oscillations which
diminish by increasing M and practically vanish for M = 5.
The poles p; and the zeros z; of (10) in the case of M = 5
are summarized in Table III

From the values of the Tables II and III we calculated the
13 coefficients of the recursive filter using the relationships
(15)-(20) (Table IV).

In Fig. 5, the amplitude and the phase of the transfer
function of the digital filter Rj(z)|,~ciwr. (dashed curves)
are plotted together with the measurements (full curves). The
sampling rate was chosen equal to 100 GHz in order to avoid
aliasing.

To check the validity of the model, the simulated impulse
and step response of the digital filter were compared with the
theoretical ones and were shown to be in excellent agreement.

IV. MODEL OF THE IM RESPONSE

The injection current causes also a residual IM which
coexists with the FM. This is due to the amplitude-phase
coupling of the electric field [3] in the laser.
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Fig. 5. Measurements of the FM response (full curves) and approximation
by the transfer function of the recursive digital filter R4(2)|,_ s, (dashed
curves) as a function of the modulation frequency fu,.

The mathematical expression for the amplitude of the elec-
tric field of the emitted signal is [3]

|Es(5)] = AV/1 +my(?)

where A is the unmodulated amplitude of the electric field
and m is the IM index defined as

Iy — I,

where I,,, is the amplitude of the modulation current, I is the
DC bias current and I}, is the threshold current.

In (21) y(t) is a function specifying the current modulation
and can be written '

y(t) = ham(t) * hp(t) * in(t)

where hny(t) is the impulse response of the IM response,
hp(t) is the impulse response of the laser parasitics and
in(t) is the normalized instantaneous modulation current with
amplitude 4=1. The operator * denotes convolution.

From the relationship (22) we note that the IM index m
increases with the increase of the amplitude of the modulation
current [,,,. The value of [, is determined in order to obtain
a prescribed frequency deviation.

For example, for a bit rate R, = 1 Gb/s and for an
FM index 0.5 < h < 1, the frequency deviation ranges from
0.25-0.5 GHz. For the laser of the Fig. 1 the amplitude of
the modulation current necessary to obtain these frequency
deviations is always [, < 1 mA. Given that for this particular
laser Iy — Ity =~ 50 mA, the IM index m is less than 2% for
all M indices. Hence, the amplitude of the optical signal can
be considered as constant.

However, for other laser types (i.e., single-electrode MQW
DFB lasers) which present a low FM efficiency, the amplitude
of the modulation current necessary to obtain the desired
frequency deviations may take important values. Therefore, it
is instructive to study the hypothetical case of strong residual
IM. This can be done in the following manner: assuming
that the cutoff frequency of the laser parasitics is small in
comparison with the relaxation oscillation, the IM response
can be considered flat and in consequence, hiv(t) =~ 6(t).
The laser parasitics are modeled by the second order filter (8)
and we can write hp(t) = 7.(t). Then the amplitude of the
complex envelope of the transmitted signal can be evaluated
from (21) by replacing y(t) = rc(2) * in(t)-

(21)

m (22

(23)
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Fig. 6. Block diagram of the simulation model [Abbreviations used: AWGN
= additive white Gaussian noise, BPF = bandpass filter, LPF = lowpass
filter, 7 = delay, to = optimum sampling instant within a bit period ({¢ €
{0, Ta ).

V. SIMULATION MODEL FOR A COHERENT OPTICAL
CPFSK SYSTEM WITH DIFFERENTIAL RECEIVER

A block diagram of the computer model of a coherent
optical CPFSK system with differential receiver operating at 1
Gb/s is. shown in Fig. 6. The input data consists of a pseudo-
random binary sequence of variable length (periods varying
from “1010---” (square wave) to 21— 1). The sequence
represents a non-return-to-zero (NRZ) current of amplitude I,
which is injected into the laser. The instantaneous amplitude
and optical frequency are calculated using the models of
Sections III and IV.

It is well known [23] that the instantaneous optical fre-
quency of a semiconductor laser presents fluctuations ¢(t)
The frequency fluctuations ¢(¢) are simulated as a white
Gaussian noise with two side power spectral density equal
to 2nAv, where Av is the 3-dB spectral linewidth. This
modeling does not take into account the 1/f noise behavior
at low frequencies and the laser resonance peak. The sum
27 f(t) + ¢(t) is integrated by use of the trapezoidal rule to
obtain the instantaneous phase ¢(¢) of the transmitted optical
signal.

Fiber and polarization dispersion and fiber nonlinearities are
not included in the model. The local oscillator is assumed to
introduce negligible phase noise.

The microwave current after the photodiode resulting by the
mixing of the received and the local oscillator optical signals,
can be written in equivalent baseband signal notation as

o (t) = Arp(t) exp { [ ersy+ e dt'} Al
24

where A, = 2R+/P;(t)P,,R is the responsivity of the
photodiode, P,(t) = |E,(¢)|? = A?[1 +my(t)] is the received
optical power from the transmitter, P, is the received optical
power from the local oscillator and 7(¢) is the sum of shot
and thermal noises, which can be approximated as an additive
white Gaussian noise (AWGN). Tilde denotes the complex
envelope of the signals.

In Fig. 6 the transmitter, the local oscillator and the photo-
diode do not appear like separate units. The program generates
directly the signal given by the relation (24).

The bandpass filter (BPF) bandwidth is chosen large in
comparison to the signal bandwidth. Thus the only contribution
of the bandpass filter is to reduce the AWGN noise. Its
influence on the signal and the phase noise is negligible.

JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 13, NO, 11, NOVEMBER 1995

For the lowpass filter (LPF), two different filter types were
used: 1) a Tscebycheff I with 6 poles, passband ripple 0.1
dB and bandwidth 0.8 Rp; 2) an ideal LPF with very large
bandwidth which eliminates the second harmonic after the
microwave mixer but does not affect the signal and the phase
noise at the output of the receiver. The former was used to
plot the output waveforms of the Fig. 9 because it was shown
to closely approximate the LPF used in the experiments. The
latter was used in the evaluation of the error probability. In this
way, the ISI induced only by the FM and the IM responses
can be studied.

The differential delay was chosen equal torT =12 (T =
bit duration). This is the optimum value of the delay for
an FM index h = 1 when the laser's FM response is flat
[24]. However, this is not the case when the FM response is
nonuniform. In order to optimize the system’s performance,
the amplitude I,,, of the injection NRZ current was modified
until the achievement of a maximum eye opemng at the output
of the receiver for a square wave.

The degradation of the system’s sensitivity in prior works
is estimated by calculation of the eye closure penalty at the
receiver output [25]. In a more accurate approach, the error
probability must be used as performance criterion. For the
evaluation of the error probability we used a semi-analytical
technique [26]. According to this method, the signal is simu-
lated in the absence of noise in order to compute the distortion
induced by the nonuniform FM response. The nonuniform FM -
response changes the phase difference Af,, -between the two
entries of the microwave mixer. The residual IM changes the
instantaneous signal-to-noise ratio pg, p1 at the entries of the
microwave mixer. Then we can use the relation (9) of Jacobsen
et al. [4] to evaluate the conditional error probability Py of
the nth bit of the sequence

Pyjn = ; 1 We—(pwm/z) Z Q(k i) : —(’2k+1)27rAuT
[ () (]2 + e (2)]
X cos [(2k + 1)Ab,,] “ (25)

where I;,(z) are the modified Bessel functions of the first kind
and Av is the 3-dB spectral linewidth of the: transmitter.

The total error probability can then be estimated by aver-
aging over all the output samples L

1 L
Pe:EnZ::lPem

where L denotes the sequence length. ‘

The current semi-analytical approach differs from the -one
proposed by Jacobsen et al. [4] in the following two points: 1)
it uses more accurate models for the FM and IM responses; 2)
it takes into account the ISI caused by the whole sequence and
not only by the parts where several repeated marks or spaces
occur. It was already used with success for the study of the
influence of the BPF on the system’s performance [27], [28].

For the simulations, we used TOPSIM [29], a software
package for simulation of analog and digital! communication
systems.

(26)
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Photodetector
plifier

{ Optical attenuator

E
GHz[|Counter

External cavity laser

Fig. 7. Experimental setup (Abbreviations used: OI = Optical Isolator, PC
= Polarization controller, BPF = bandpass filter, LPF = lowpass filter, 7 =
delay).

V1. EXPERIMENT

For the verification of the theoretical evaluations, the ex-
perimental arrangement shown in Fig. 7 was employed [28].
The DCPBH DFB laser diode of the Fig. 1 was used in the
CPFSK transmitter. Its wavelength was 1520 nm and its 3-dB
linewidth for the bias current chosen was about 29 MHz. The
laser was directly modulated at a bit rate R, = 1 Gb/s and
the optical signal was launched into a single-mode fiber. An
optical isolator providing more than 60 dB isolation was used
at the laser output to avoid undesired feedback.

A tunable 10 kHz-linewidth external cavity laser was used
as local oscillator. The local oscillator power received at the
photodetector was P, = —5.3 dBm. This power was not
sufficient to produce shot noise limited operation and the con-
tribution of the thermal noise was significant. A polarization
controller was used to match the state of polarization of the two
lasers. The two optical fields were combined with an 1: 1 fiber
coupler and detected by a PIN photodiode. The photodiode
bandwidth was 13 GHz and its responsivity R = 0.8 A/W. The
IF frequency was fixed at 3 GHz. The IF signal was amplified
by a three stage wide-band preamplifier. After the first stage of
amplification, the signal was filtered by a bandpass filter with
3-dB bandwidth B, = 2 GHz. The delay-line discriminator
had a 3 GHz zero crossing and delay 7 = T3/2. The lowpass
filter (LPF) had a 3-dB cutoff frequency equal to 0.8 Rp.

As for the simulation, the amplitude of the modulation
current was adjusted to achieve a maximum eye opening at
the output of the receiver for a square wave.,

VII. RESULTS AND DiSCUSSION

In Fig. 8 we compare theoretical (bold curve) and exper-
imental (thin curve) spectra of the CPFSK. In the case of
an ideal CPFSK modulation with FM index A = 1, in the
absence of phase noise, the spectrum consists of a central
lobe 3Ry large and two impulses located at +R;/2 around
the central frequency [30]. The effect of the nonuniform FM
response is that the impulses are smeared (partly because of
the phase noise) and the separation between the central and
the secondary lobes has disappeared. Note that the spectra
are slightly asymmetric around the IF. This is due to the
residual IM of the optical signal which enhances the spectrum
at lower frequencies [3]. The peak at the lower left corner of
the experimental spectrum is due to the direct detection. Direct
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Fig. 8. Theoretical (bold curve) and experimental (thin curve) spectra of the
CPFSK.
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Fig. 9. Theoretical (dashed curve) and experimental (full curve) output
waveform of the differential receiver.

detection is not taken into account in the simulation because
it is filtered by the bandpass filter.

Comparison between theoretical (dashed curve) and experi-
mental (full curve) waveforms at the output of the differential
receiver is shown in Fig. 9. The transmitted sequence contains
320 consecutive zeros at a bit rate Ry = 1 Gb/s. Obviously, the
nonuniform FM response causes a reduction of the amplitude
of the output signal whenever a long sequence of consecutive
1 or O is transmitted.

Fig. 10(a)-(c) shows eye-diagrams for three different se-
quences (square wave, 2”— 1 and 2'3— 1, respectively) in the
absence of phase noise and with an ideal lowpass filter with
very large bandwidth. The eye opening is normalized, i.e. it is
equal to 1 in the absence of ISI. The eye-diagram closes as the
sequence length increases. The corresponding power penalty
according to the method of [25] is negligible for the square
wave, 0.24 dB for the sequence 2~ 1 and 0.59 dB for the
sequence 23—~ 1.

Fig. 11 shows the estimated probability of error as a func-
tion of the signal-to-noise ratio for three different sequences
(square wave, 27— 1, and 2*°— 1) in the absence of phase
noise. The sensitivity penalty at 10~ in comparison with the
ideal DPSK receiver (SNR = 13 dB) is negligible for the
square wave, 0.4 dB for the sequence 27~ 1 and 0.8 dB for
the sequence 21— 1.

It should be mentioned here that the method of [25] gives
a fast estimation of the power penalty in the absence of phase
noise. When phase noise is not negligible, the predictions of
[25] do not hold since phase noise is not taken into account
in the calculations.

The influence of the residual IM is negligible for the laser
of Fig. 1 but in general, it can deteriorate furthermore the
performance of the system.
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Fig. 10. Eye-diagrams for different sequences (a) Square wave, (b) 27 — 1,
©) 213~ 1.

The distortion induced by the combined action of the
nonuniform FM response of Fig. 1 and a hypothetical strong
residual IM on the eye-diagram is illustrated on the Fig. 12.
The transmitted sequence has a period 27— 1. The IM index
is assumed m = 0.3. We note that the eye-diagram becomes
asymmetric [compare with the Fig. 10 (b)]. Approximately,
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Fig. 11. Influence of the sequence length on the probability of error (Sym-
bols used: Curve 1: Square wave, Curve 2: 27— 1, Curve 3: 25— 1).
Condition: IM index m = 0.02.
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Fig. 13. Combined influence of the nonuniform FM response of Fig. 1 and
a hypothetical strong residual IM on the probability of error for a sequence of
period 27— 1 (Symbols used: Curve 1: m = 0.02, Curve 2: m = 0.1, Curve
3:m = 0.2, Curve 4: m = 0.3).

the level of the output signal is enhanced by a multiplication
factor (1 +m) for the “1” and decreased by a factor (1 —m,)
for the “0.” For example, in Fig. 10 (b) the output signal varies
between circa [—0.5, 0.5] and in Fig. 12 the level of the output
signal varies between circa [—0.35, 0.65].

The penalty induced by a strong IM modulation can be
calculated by the semi-analytical technique of the Section V.
Fig. 13 shows the estimated probability of erfor as a function
of the signal-to-noise ratio for three different IM modulation
indices (m = 0.1, 0.2, 0.3) for a sequence 27— 1 in the absence
of phase noise. For comparison, the curve 2 of Fig. 11 is
plotted (m = 0.02). From Fig: 13 we conclude that the IM
induced penalty at 1079 is less than 1 dB for m < 0.25.
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The above results show that the proposed technique for the
modeling of the IM and nonuniform FM responses, together
with an accurate semi-analytical method for the evaluation
of the error probability, can be a very efficient tool in the
computer-aided design of the coherent optical systems.

The semi-analytical method is very general and permits to
incorporate other effects as well, like chromatic dispersion and
signal distortions due to filtering in the study.

A drawback of the model is that it does not take into
account the FM response dependence on the bias current and
temperature [2], [9]. However, this dependence is small when
the transmitter laser is current and temperature stabilized and
in a first approximation can be neglected. '

In addition, the model does not take into account the change
of the FM response due to the aging of the transmitter laser.
In a recent study [31], it is shown that spectral linewidth and
FM efficiency of single and three-electrode MQW DFB lasers
increase slightly with laser age but this effect, under normal
operating conditions, becomes significant only after more than
105 hours of continuous operation. Therefore, bit error rate
degradation versus time can be assumed negligible with a
good degree of accuracy.

The model is applied here only in the case of a single-
electrode DFB laser. It was not possible to do the same
for other types of lasers, due to the lack of components in
ENST facilities. In addition, the application of the modeling
procedure to a small and rather insignificant laser sample, was
not considered as especially useful, since the form of the FM
response can vary significantly from one laser to the other,
even for lasers with the same geometry [2].

However, it is possible to do some remarks concerning the
robustness of the modeling procedure. As explained by use
of a Bode diagram in Fig. 3, expression (9) is very general
and allows a staircase approximation to any given set of FM
response measurements. The only practical constraint is that
the number of fractions M in (9) must be chosen sufficiently
low in order to guarantee the convergence of the Levenberg-
Marquardt algorithm, which otherwise becomes very slow
or stops at local minima. This is a major problem of all
optimization algorithms. Convergence is achieved only if the
initial conditions are close enough to the true solution. In
order to overcome this problem, it is possible to split the
approximation part of the modeling procedure, into two steps:
1) a rational interpolating function (Padé approximant [32])
is found which passes from some of the measured points; 2)
the Padé approximant can be used as initial condition to the
Levenberg-Marquardt algorithm.

VIII. CONCLUSION

This paper presents an accurate simulation model of the
nonuniform FM response and residual IM modulation of
semiconductor lasers for coherent optical CPFSK systems
design.

According to our approach, the FM and IM responses are
represented by recursive digital filters derived directly from
measurements. The instantaneous amplitude and frequency are
simulated in an elegant manner by recursive relations with
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very few coefficients which can be calculated analytically.
Other important models of the bibliography are discussed and
a comparison with the experiment reveals their limitations.

The modeling procedure is applied in the case of a con-
ventional DFB laser. The influence of the nonuniform FM
response on the spectrum, the waveform at the output of the
receiver, and the error probability of a coherent optical CPFSK
system is studied both theoretically and experimentally. The
hypothetical case of strong IM response is also examined
by eye diagrams and error probability evaluation. The excel-
lent agreement between theoretical and experimental results
confirms the validity of the approach.

APPENDIX
LEAST SQUARES APPROXIMATION
OF THE MEASURED FM RESPONSE

To approximate N measurements of the FM response
H(w;),i =1, ---,N, by a function 7(8)|s=i, it is necessary
to define an error function £ (Euclidean norm in R™)

N
E=) r=1Tr
=1

@7

where r are column vectors with elements 7; defined as
follows:
* Amplitude approximation only (at high frequencies)
_ NH @] ~JIre(wi;a, by o)}
o)1H||

(28)

T

* Simultaneous approximation of amplitude and phase (at
low frequencies)

(lIH(wi)ll - ur(wz-;M,z,mn)z

INHY]

1/2
29)

+ (¢H(wi)—¢r(wi;M,z,p)>2]
7%

If the measurement errors are normally distributed
with variances aﬁ |04 tespectively, the functions
re{wis a, b, ¢),7(wi; M, z,p) that minimize the error
function £ in (27) are shown to be the maximum-likehood
approximations of the measurements [15].

The minimization of (27) is a nonlinear least-squares prob-
lem. For its resolution the algorithm of Levenberg-Marquardt
was used [15]. This algorithm makes use of the first derivative
of the error function (27), which is expressed in terms of the
Jacobian matrix J(z);; = 2r;0r;(x)/0x;, where x; are the
variables to be optimized.

In our case, the Jacobian can be calculated analytically. For
the shake of completeness, the derivatives dr;(z)/dx; are
given below.

A. Amplitude Approximation Only

From the relation (8) the amplitude of the FM approximation
is given by
a

L@ =2t 1 0

lIre(ws a, b, c)l| =
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From (28), (30) it is straightforward to see that

%% :_”rc(awi)H (31)
ori __ lre(ws)|lbw?

b Wit (220w 2)
Ori _ _|lre(w)ll(c = w})

dc  wi+ (b —20)w? + 2’ G

B. Simultaneous Approximation of Amplitude and Phase

From the last equality of the expression (10) the amplitude
and the phase of the FM approximation are given by

e M2y, 1/2
s,z =2 11 [ 5 4
M w w
7 >M> ’ = -t B +1 -1 (h)}
r{w Z,p) ;[ tan (Zz> an P
(35)
From (34) and (35), it is straightforward to see that
Ol|r(w)ll Zk|| (@l
Oz, 22 + w? (36)
Olr(@)Il _ 7pk|lf‘(w)H
dpr pEAw? GD
¢,  w
ou Aot 8
A, w
e — 3
Ipy, p? + w? @9
Finally, from (29) we obtain
ors 1 [IIH @)l = llIr(ws; M,z p)l|
a{zk } s aﬁH”
Pk
‘ or(w;)
o}
Pk
_ _]; ¢H(wi) - ¢T(wi;M7 z,p)
r; oi
 99nlen), (40)
loe)
Dk
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