
JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 36, NO. 20, OCTOBER 15, 2018 4915

Optimal Launch States for the Measurement
of Principal Modes in Optical Fibers

Ioannis Roudas , Member, IEEE, Jaroslaw Kwapisz, and Daniel A. Nolan, Fellow, OSA

Abstract—Modal dispersion characterization of multimode
optical fibers can be performed using the recently proposed
mode-dependent signal delay method. This method consists of
sending optical pulses using different combinations of modes
through the multimode optical fiber and measuring the mode
group delay at the fiber output. From these measurements, it is
possible to estimate the modal dispersion vector, the principal
modes, and their corresponding differential mode group delays.
In this paper, we revise and extend the theoretical framework of
the mode-dependent signal delay method to include the impact
of receiver noise and mode-dependent loss. We compute optimal
launch modes, minimizing the noise error in the estimation of the
fiber modal dispersion vector. We show that, for a 40-mode fiber,
the electronic signal-to-noise ratio is improved asymptotically by
almost 6 dB compared to conventional mode combinations.

Index Terms—Modal dispersion, multimode fiber
characterization.

I. INTRODUCTION

INTERNET traffic is expected to grow steadily in the near
future [1]. For instance, Cisco predicts a 24% compound

annual growth of global data traffic through the Internet from
2016 to 2021 [2]. If this trend persists over longer periods of
time, it could eventually lead to a capacity shortage in the global
fiber-optic network [3].

To address this challenge, researchers have been considering
for some time the introduction of new fiber technologies that
can support petascale data traffic per link in a cost-efficient way.
For instance, it is possible to increase link capacity by using
spatial division multiplexing (SDM), i.e., parallel transmission
of optical data streams over disjointed spatial paths [4] provided
by multimode and multicore optical fibers (jointly abbreviated
below by the composite acronym SDM MMFs) [5]. So far,
it has been shown, both theoretically and experimentally, that
strongly-coupled, single-mode, homogeneous multicore fibers
exhibit a slight performance advantage over single-mode fiber
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(SMF) bundles [6]–[8]. Whether this argument alone is suffi-
cient for the adoption of such optical fibers by the telecommu-
nications market remains to be seen.

It is assumed here that SDM MMFs will be eventually adopted
in long-haul optical communications systems. A distinct feature
of SDM MMFs for long-haul applications is that their modal
dispersion (MD) should be very low, ideally comparable to the
levels of polarization-mode dispersion (PMD) of SMFs, in order
to facilitate digital signal processing at the coherent optical
receiver [4].

By analogy with PMD [9]–[11], MD in long SDM MMFs
can be described by a set of propagation modes called princi-
pal modes (PMs) and by their corresponding differential mode
group delays (DMGDs) compared to the average mode group
delay [12]. These quantities can be geometrically represented
by a vector in a generalized Stokes space called MD vector
[13], [14], which is a direct extension of the PMD vector in the
conventional Stokes space [9]–[11].

Taking further advantage of the similarity between MD and
PMD, it is possible to modify previously-proposed PMD mea-
surement techniques [11] and use them for MD characterization
[15]–[17]. For instance, the polarization-dependent signal delay
method can be used for the measurement of the PMD vector of
SMFs [18]. The recently-proposed mode-dependent signal de-
lay method [19] is a generalization of the polarization-dependent
signal delay method that can be used for the measurement of the
MD vector of SDM MMFs. Namely, it relies on the determina-
tion of the components of the MD vector by launching optical
pulses corresponding to different combinations of modes at the
fiber input and measuring the corresponding group delays at the
fiber output [19]. From the MD vector, one can construct a Her-
mitian matrix, called the group-delay operator, and determine
the PMs and the DMGDs from its eigenvectors and eigenvalues,
respectively [13], [14].

An important question that is left unanswered in previous
articles on the mode-dependent signal delay method [19], [20] is
which launch modes must be used to measure the MD vector. Let
N be the number of spatial and polarization modes in the SDM
MMF under test. Then, the dimensionality of the generalized
Stokes space is N 2 − 1 [13], [14]. We need to choose N 2 − 1
different combinations of launch modes to determine theN 2 − 1
components of the MD vector. A set of N 2 − 1 launch states
corresponding to N 2 − 1 orthonormal vectors in Stokes space
would constitute the best coordinate system for conducting such
measurements. For N > 2, however, it is impossible to find
N 2 − 1 launch mode combinations corresponding to N 2 − 1
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orthonormal vectors in the generalized Stokes space due to the
incomplete coverage of the Poincaré sphere with valid states
[13], [14].

Milione et al. do not address this issue [19], while Yang and
Nolan [20] propose a set of modes that is a generalization into
higher dimensions of the linear horizontal, linear 45 deg, and
right-circular states of polarization (SOPs) used for measure-
ments conducted in the conventional three-dimensional Stokes
space. A weakness of the mode set proposed by [20] is that, for
N > 2, it leads to suboptimal performance in the presence of
receiver noise, as shown in Section V.

In the present paper, we analyze the impact of noise on the
MD vector characterization process performed in the mode-
dependent signal delay method. Our analysis reveals that using
a set of launch modes corresponding to an oblique vector set in
the generalized Stokes space always magnifies the error in the
estimation of the MD vector. Therefore, we should seek launch
states that correspond to maximally-orthogonal Stokes vectors
in order to minimize this error. In the sections that follow, we
propose two numerical optimization algorithms based on the
gradient descent method [21] that search the generalized Stokes
space for N 2 − 1 maximally-orthogonal vectors corresponding
to feasible launch states.

Furthermore, the presence of mode-dependent loss (MDL) is
not considered in the original articles on the mode-dependent
signal delay method [19], [20]. This is a significant omission in
the sense that long SDM MMFs always exhibit a certain amount
of MDL. In the present paper, we show that the mode-dependent
signal delay method can be modified to characterize both MD
and MDL simultaneously.

In the following, we derive, from first principles, the funda-
mental equations for the determination of the MD and MDL
vectors by using the mode-dependent signal delay method in
the presence of additive white Gaussian noise, MD, and MDL
(Sections II-A–II-I). Practical considerations that might affect
the accuracy of the mode-dependent signal delay method are
discussed in Section II-J. The remainder of this paper is devoted
to the description of two optimization algorithms based on
the gradient descent method for the selection of maximally-
orthogonal launch states (Sections III and IV, respectively).
Using these algorithms, we compute optimal sets of launch
modes for up toN = 40 that maximize the signal-to-noise ratio
(SNR) at the direct-detection receiver and enhance the accuracy
of the mode-dependent signal delay method (Section V). For
example, for a 40-mode SDM MMF, we show that the optimal
mode combinations improve the noise performance of the
mode-dependent signal delay method by almost 6 dB compared
to the set of modes proposed by Yang and Nolan [20]. We also
compare the noise performance of the proposed optimal mode
combinations to vector sets often used for measurements in
quantum mechanics, i.e., symmetric, informationally complete,
positive operator valued measure (SIC-POVM) vectors [22]
and vectors selected from mutually unbiased bases (MUBs)
[23] (see Appendix A). We show that the proposed optimal
mode combinations exhibit superior noise performance asymp-
totically by 3 dB compared to the aforementioned vector sets.

II. MATHEMATICAL MODEL

A. Fundamental Concepts

An intuitive way to quantify the modal dispersion of an opti-
cal fiber is through the time-of-flight of an optical pulse traveling
along the fiber. The optical pulse experiences different delays
depending on the combination of modes that are excited at the
fiber input, the group velocity differences among the propaga-
tion modes, and the mode coupling at various points inside the
fiber. The received pulse is a mixture of a multitude of compo-
nents that arrive at the receiver at slightly different times and
interfere constructively or destructively. The extraction of infor-
mation regarding the fiber modal dispersion from pulse delays,
exclusively, constitutes the cornerstone of the mode-dependent
signal delay method.

In the absence of MDL (see Section II-F), an arbitrary launch
mode can always be written as a linear combination of princi-
pal modes at the fiber input. Furthermore, the group delay of
a narrowband optical pulse at the fiber output can be written
as a weighted superposition of the group delays experienced
by the principal modes. The weights of the superposition are
functions of the excitations of the input principal modes. For-
mally, this weighted superposition can be written in a concise
form in Stokes space as the dot product between the input MD
vector representing the MD of the optical fiber and a unit Stokes
vector representing the launch combination of modes (see
expression (12)).

The basic idea of the mode-dependent signal delay method
is to identify the components of the MD vector. This can be
accomplished by launching optical pulses at the fiber input cor-
responding to different combinations of modes and measuring
the corresponding group delays at the fiber output [19]. Assume
that different pulses excite mode combinations corresponding to
vectors that linearly span Stokes space. Then, the group delays
experienced by different pulses are enough to recover the input
MD vector.

If the above vectors are linearly independent, this corre-
sponds to a decomposition of the MD vector into the basis
of the Stokes vectors representing the launch combinations of
modes. We can write the components of the Stokes vectors in
the form of a matrix, the coefficient matrix of the linear sys-
tem (see expression (18)). We can also write the group delays
corresponding to different mode combinations as a column vec-
tor (see expression (19)). The components of the MD vector
can then be recovered by solving a set of linear equations (see
expression (21)).

If the Stokes vectors representing the mode combinations are
pairwise orthogonal, the solution of the aforementioned set of
linear equations is less affected by the unavoidable presence of
random perturbations in the measurements (e.g., thermal noise,
errors in the settings of the mode converter). Otherwise, matrix
inversion leads to error amplification.

We follow a similar procedure to the one described above in
order to measure the MDL of an optical fiber (see Section II-
I). For MDL characterization, we perform measurements of
the average output power of CW optical waves. A continuous
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optical wave can always be decomposed into a superposition of
principal attenuation modes at the fiber input. The attenuation
of the optical wave can be written as a weighted superposi-
tion of the attenuations experienced by the principal attenuation
modes. The weights of the superposition are functions of the
excitations of the input principal attenuation modes. Formally,
this weighted superposition can be written in a concise form in
Stokes space as the dot product between the input MDL vector,
representing the MDL of the optical fiber, and a unit Stokes
vector representing the launch combination of modes (see
expression (56)).

In summary, the mode-dependent signal delay method can
be used to measure both MD and MDL. In the joint presence of
MD and MDL, we use a more sophisticated, multi-step version
of the mode-dependent signal delay method, involving two
separate sets of measurements, for MDL and MD, respectively,
and an intermediate MDL equalization phase (see Section II-I).
First, we carry out MDL characterization by sending CW light
into the fiber under test and measuring the average output power,
as described above. Measurements for different launch mode
combinations enable us to retrieve the individual components
of the MDL vector. Once the MDL vector is known, we can
optically compensate for the optical fiber’s MDL at the fiber
input by adjusting the settings of the mode converter. Finally,
the MD vector of the MDL-equalized optical fiber can be
determined by launching optical pulses at the fiber input corre-
sponding to different combinations of modes and measuring the
corresponding group delays at the fiber output, as described in
the beginning of this subsection. In both sets of measurements,
for MDL and MD characterization, we can use the same set of
launch modes corresponding to maximally-orthogonal Stokes
vectors in order to minimize noise errors.

On a final note, it is worth explaining the motivation behind
using the generalized Stokes formalism for the analysis of the ex-
perimental measurements provided by the mode-dependent sig-
nal delay method. The familiar three-dimensional (3D) Stokes
space is traditionally used to provide a geometrical represen-
tation of SOPs in terms of real vectors. This is useful for vi-
sualization of the transformations of SOPs by optical systems.
For instance, the spatial evolution of the SOP of a monochro-
matic optical plane wave traveling through a birefringent SMF
can be graphically depicted by a trajectory on the surface of
the Poincaré sphere. The Stokes space formalism may be ex-
tended to higher dimensions [13], [14] to describe geometri-
cally mode combinations and their evolution during propaga-
tion through “modally-birefringent” SDM MMFs, but then the
intuitive visual appeal of the conventional 3D Stokes representa-
tion is lost. Nevertheless, from a modeling perspective, there is
still an incentive for using the generalized Stokes space instead
of the generalized Jones space. The reason is that measurable
quantities provided by direct-detection receivers can be conve-
niently expressed as dot products of generalized Stokes vectors.
Therefore, the use of the generalized Stokes space enables us to
perform analytical calculations solely in terms of real vectors,
avoiding to employ complex matrices in the generalized Jones
space.

Fig. 1. (a) Experimental setup for MD characterization of SDM MMFs
using the mode-dependent signal delay method (Abbreviations: AWG: arbi-
trary waveform generator, MZM: Mach-Zehnder modulator, MMF: multimode
fiber, MM Rx: multimode receiver, PC: computer); (b) Input Gaussian pulse
with unit energy (orange line) and output pulse (blue line). The origin of the
time axis coincides with the center of the input pulse. (Symbols:T0 = half-width
at 1/e power point [24]; τg = group delay of the output pulse).

B. Experimental Process

The experimental setup used in the mode-dependent signal
delay method is shown in Fig. 1(a). The transmitter consists
of a tunable laser externally modulated by a Mach-Zehnder
modulator (MZM) using an arbitrary waveform generator
(AWG). This configuration provides narrowband, Gaussian,
transform-limited, optical pulses with adjustable duration and
repetition rates. The laser scans the whole frequency band of
interest in steps larger than the pulse bandwidth. The purpose
of the mode converter is to generate arbitrary spatial and
polarization mode combinations. Applying appropriate mode
excitations, one can launch optical pulses which experience
different propagation delays. After the SDM MMF under test,
the optical pulses are detected, sampled using a real-time
oscilloscope, and stored in a PC. Off-line processing can be
used for the evaluation of the PMs and the DMGDs at each
frequency.

Indicative drawings of the input and output pulses are shown
in Fig. 1(b) (orange and blue lines, respectively). In the following
subsections, we link the group delay τg to the MD vector and
the unit Stokes vector representing the launch combination of
modes.
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C. Basic Notation

Throughout this article, we use the notation conventions in-
troduced by [10]: Dirac’s bra-kets refer to unit Jones vectors.
Unit Stokes vectors are denoted by carets, while non-unit Stokes
vectors are denoted by arrows. Matrices are designated by up-
percase boldface letters.

We can write any N ×N matrix M as a linear superposition
of the identity matrix I and the N 2 − 1 generalized Gell-Mann
matrices Λi , i = 1, . . . , N 2 − 1 [14]. We denote by Λ the Gell-
Mann column vector

Λ := [Λ1 , . . . ,ΛN 2 −1 ]
T , (1)

where the superscript T denotes the transpose of a matrix.
The unit Stokes vector ŝ corresponding to the unit Jones

vector |s〉 is defined as [14]

ŝ := CN 〈s | Λ | s〉 , (2)

where CN denotes the normalization coefficient [14]

CN :=
√
N/ [2 (N − 1)]. (3)

For each Jones vector |s〉, we can define the associated pro-
jection operator |s〉〈s|, which represents a mode filter, i.e., the
equivalent of a polarizer in the two-dimensional case. The pro-
jection operator can be expressed in terms of the identity matrix
and the generalized Gell-Mann matrices [14]

|s〉〈s| =
1
N

I +
1

2CN
ŝ · Λ. (4)

In (4), we used the dot product of the Stokes vector ŝwith the
Gell-Mann vector Λ. This is defined as the sum of the products
of the corresponding entries

ŝ · Λ :=
N 2 −1∑

i=1

siΛi (5)

Finally, we will use, without proof, a relationship between
the inner product in Stokes space and the inner product in Jones
space derived in [14]:

ŝj · ŝk = 2C2
N

[
|〈sj |sk 〉|2 − 1

N

]
. (6)

D. MD Vector Definition

First, we consider the ideal case of an N-mode SDM MMF
with negligible MDL. The fiber transfer function can be de-
scribed by a generalized Jones unitary matrix U (ω) . We de-
fine the input group-delay operator iU† (ω)Uω (ω), where the
subscript ω denotes differentiation with respect to the angular
frequency and a raised dagger denotes the adjoint matrix.

The input group-delay operator can be represented in the basis
of the identity matrix and the generalized Gell-Mann matrices

iU† (ω)Uω (ω) := τ0 (ω) I +
1

2CN
�τs (ω) · Λ, (7)

where τ0 (ω) is the average group delay and �τs (ω) is the input
MD vector [14].

The eigenvalues and eigenvectors of the operator
1/(2CN )�τs (ω) · Λ are the DMGDs τ i (ω) and the input PMs
|pi (ω)〉, i = 1, . . ., N . We can write the eigenvalue equation

1
2CN

�τs (ω) · Λ |pi (ω)〉 = τi (ω)| pi (ω)〉 . (8)

E. Information Provided by the Input MD Vector

Before we delve further into the mode-dependent signal de-
lay method, it is worth investigating whether the MD vector
�τs (ω) and the fiber transfer matrix U (ω) are really equivalent
representations of the optical fiber modal dispersion.

From the definition of the input MD vector (7), setting the
average group delay τ0 = 0 for simplicity, we obtain

iU† (ω)Uω (ω) =
1

2CN
�τs (ω) · Λ. (9)

Acting on both sides of this expression from the left with
−iU(ω) yields aN ×N homogeneous system of coupled first-
order ordinary differential equations

Uω (ω) = U(ω)
[
− i

2CN
�τs (ω) · Λ

]
. (10)

Assume that �τs (ω) is constant in the interval [ω0 , ω0 + δω].
Then, the solution of the above system in matrix form is

U (ω0 + δω) = U (ω0) exp
[
− i

2CN
�τs (ω0) · Λδω

]
. (11)

Notice that knowledge of �τs (ω0) is insufficient to fully deter-
mine the fiber transfer matrix U(ω0 + δω). This would require
knowledge of U(ω0) as well, which is not provided by the
mode-dependent signal delay method.

Measurement of the input MD vector �τs (ω) enables the de-
termination of the DMGDs and the input PMs, exclusively, as
shown in (8). In this respect, the input MD vector �τs (ω) in-
deed encapsulates the modal dispersion of the fiber. In contrast,
the fiber transfer matrix U(ω) inherently contains additional
information, e.g., one can also determine the output PMs, as
well.

Based on the above discussion, we conclude that the mode-
dependent signal delay method does not provide the same in-
formation as alternative methods measuring the fiber transfer
matrix, e.g., swept wavelength interferometry [15]–[17].

F. Linking the Input MD Vector to the Pulse Group Delay

Following the methodology of [10] and [19], assuming per-
fectly coherent signals, we can prove that the group delay τg of
an optical pulse with carrier angular frequency ω propagating
through the optical fiber under test is related to the input MD
vector �τs and the Stokes vector ŝ representing the combination
of launch modes [14]

τg = τ0 +
1

2C2
N

〈�τs〉 · ŝ, (12)

where all quantities depend on the carrier angular frequency ω
but we omitted this dependence for notational simplicity.
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In (12), the group delay τg is defined as the first moment in
time [10]

τg :=
1
Ē

∫ ∞

−∞
tE0(t)

†E0 (t) dt, (13)

where E0(t) is the electric field at the fiber output and Ē is the
average energy of the received pulse

Ē :=
∫ ∞

−∞
E0(t)

†E0 (t) dt. (14)

Finally, in (12), we defined the spectrally-averaged input MD
vector 〈�τs〉 as

〈�τs〉 :=
1

2πĒ

∫ ∞

−∞
�τs (ω′) |G (ω′)|2dω′, (15)

where G (ω) is the input pulse spectrum.
Our expression (12) differs from the initial expression (16) of

Milione et al. [19] on two important points: the input MD vector
�τs is spectrally-averaged and there is a corrective multiplicative
factor of 1/2C2

N in front of the inner product 〈�τs〉 · ŝ.
In the following, we assume that we use optical pulses with

sufficiently narrow spectrum around the carrier angular fre-
quency ω so that 〈�τs〉 � �τs.

G. MD Vector Estimation

First, the average group delay τ0 in (12) can be estimated by
using the following procedure: We launch pulses corresponding
to N arbitrary orthogonal states in Jones space |s0,i〉 and mea-
sure their group delays τ0g ,i , i = 1, . . . , N . We know that N
orthonormal vectors in Jones space are mapped into Stokes vec-
tors ŝ0,i that form the vertices of a (N − 1)-dimensional regular
simplex [25]. This implies that ŝ0,i sum to zero [14]

N∑

i=1

ŝ0,i = 0. (16)

Taking the average of the corresponding group delays τ0g ,i
[14], expression (12) yields

τ0 =
1
N

N∑

i=1

τ0g ,i . (17)

Subsequently, we launch N 2 − 1 linearly independent input
states in Stokes space and measure the corresponding group
delays τgi , i = 1, . . ., N 2 − 1. Expression (12) can be used to
form a (N 2 − 1) × (N 2 − 1) system of linear equations. We
can represent these equations in matrix form. First, we define
the coefficient matrix

S := [ŝ1 , . . . , ŝN 2 −1 ]
T . (18)

Notice that the columns of ST are the launch states represented
by the Stokes vectors ŝi , i = 1, . . ., N 2 − 1.

Then, we define the column vector of the DMGD’s

Tg := 2C2
N

[
τg,1 − τ0 , . . . , τg ,N 2 −1 − τ0

]T
. (19)

Finally, the matrix representation of the system of equations
is written as

S�τs = Tg . (20)

Thus, the MD vector �τs is given by

�τs = S − 1Tg . (21)

For S to be invertible, its determinant must be nonzero,
det(S) �= 0, so ŝi , i = 1, . . ., N 2 − 1, have to be linearly
independent.

H. Noise Modeling

Let us investigate the effect of the thermal noise n(t) of the
direct-detection receiver on the measurement of the DMGD’s.

The error in the estimate of the group delay τg is

δτg =
1

RdĒ

∫ T /2

−T /2
tn(t)dt, (22)

where Rd denotes the responsivity of the photodiode and T
denotes the integration time for the computation of the group
delay τg .

We assume that the thermal noise at the direct-detection re-
ceiver can be modeled as an additive white Gaussian noise
(AWGN) with zero mean and autocorrelation function given
by [26]

R(t, t′) := E {n(t)n(t′)} =
N0

2
δ (t− t′), (23)

where the operator E {.} denotes the expected value, N0/2
denotes the power spectral density of the noise, and δ(t) is the
Dirac delta function.

The mean of δτg is calculated by taking the expectation of
both sides of (22) [26]

μδτg := E {δτg} =
1

RdĒ

∫ T /2

−T /2
tE {n(t)} dt = 0. (24)

The variance of δτg is given by [26]

σ2
δτg

:=
1

R2
dĒ

2

∫ T /2

−T /2

∫ T /2

−T /2
tt′E {n(t)n(t′)} dtdt′. (25)

Upon substituting (23) into (25), we find

σ2
δτg

=
N0

2R2
dĒ

2

∫ T /2

−T /2
t2dt =

N0T
3

24R2
dĒ

2 . (26)

The presence of thermal noise at the individual measurements
τg,i , i = 1, . . ., N 2 − 1, can lead to a random offset δTg in the
estimation of the DMGD matrix Tg in (19). Consequently, there
is an error in the estimate of �τs (ω) in (21), namely

δ�τs = S−1δTg = AδTg , (27)

where we set A := S−1 for brevity.
Taking the expectation of both sides of (27) and substituting

(24) in (27), we obtain the mean of δ�τs

µδ�τs := E {δ�τs} = AE {δTg} = 0. (28)
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The covariance matrix of δ�τs is given by

Cδ�τs := E
{
δ�τsδ�τ

T
s

}
= ACδTg

AT , (29)

where we defined the covariance of δTg

CδTg
:= E

{
δTg δTT

g

}
. (30)

We assume that the measurements of the components Tgi of
the column vector Tg are performed sequentially. As a result,
the noise realizations ni(t) in different measurements are inde-
pendent and the random offsets δTgi are uncorrelated. There-
fore, the covariance matrix of δTg is diagonal with elements
σ2
δTg

CδTg
= σ2

δTg
I, (31)

where

σ2
δTg

= 4C4
N σ

2
δτg
. (32)

In (32), we assumed, for simplicity, that τ0 is a deterministic
(i.e., a perfectly measured) quantity, as opposed to the group
delays τgi , i = 1, . . ., N 2 − 1, that are independent, identically-
distributed random variables. The reason for this approximation
is that the variance σ2

δτ0
= σ2

δτg
/N , so it is much smaller than

σ2
δτg

for large values ofN . For smallN ’s, it might be necessary
to repeat the process for measuring τ0 a certain number of times
k and average the results. Then, σ2

δτ0
= σ2

δτg
/(kN), so that σ2

δτ0

is negligible compared to σ2
δτg

for large values of kN .
From (29), (31), it follows immediately that

Cδ�τs = σ2
δTg

AAT . (33)

The diagonal entries of the covariance matrix Cδ�τs are the
variances of the components of the random vector δ�τs . Thus,
the variance of ‖δ�τs‖ is given by

σ2
‖δ�τs ‖ := E

{
‖δ�τs‖2

}
= Tr [Cδ�τs ] , (34)

where the operator Tr(.) denotes the trace of a matrix.
Substituting (33), we obtain

σ2
‖δ�τs ‖ = σ2

δTg
Tr

[
AAT

]
, (35)

We can calculate explicitly Tr
[
AAT

]
from the singular value

decomposition (SVD) of S [27]

S = WΣVT , (36)

where W,V are orthogonal matrices and Σ is a diagonal matrix
with entries the singular values σi , i = 1, . . . , N 2 − 1, of S.

Then, A = S−1 = VΣ−1WT and we have

AAT = VΣ−2VT . (37)

Hence, we obtain a succinct expression for the trace

Tr
[
AAT

]
=

N 2 −1∑

k=1

σ−2
k . (38)

Combining (35) and (38) yields

σ2
‖δ�τs ‖ = σ2

δT g

N 2 −1∑

k=1

σ−2
k . (39)

To find a lower bound for (39), we use the fact that the
arithmetic mean of the numbers σ−2

k is greater than or equal
to the geometric mean of the set (arithmetic/geometric mean
inequality)

1
N 2 − 1

N 2 −1∑

k=1

σ−2
k ≥

⎛

⎝
N 2 −1∏

k=1

σ−2
k

⎞

⎠

1/(N 2 −1)

. (40)

In addition,

N 2 −1∏

k=1

σ2
k = det(SST ) = det(S)2 ≤ 1, (41)

because |det(S)| is the volume of the N 2 − 1-dimensional
parallelotope spanned by the unit Stokes vectors ŝj , which can-
not exceed that of a cube.

Therefore,

N 2 −1∑

k=1

σ−2
k ≥ N 2 − 1. (42)

Notice that, if S is an orthogonal matrix, then so is A and
AAT = I. Thus, we obtain the minimum estimated variance
from (35)

σ2
‖δ�τs ‖ = (N 2 − 1)σ2

δTg
. (43)

In addition, since the off-diagonal elements of AAT are zero
in this case, the components of δ�τs are uncorrelated and there-
fore independent.

In contrast, if S is not an orthogonal matrix, then σ2
‖δ�τs ‖ >

(N 2 − 1)σ2
δTg

, i.e., there is noise amplification compared to
the previous case, which is due to the matrix inversion in (21).
Moreover, the off-diagonal elements of AAT are nonzero and
the components of δ�τs become correlated.

I. Joint Measurement of MD and MDL

In our previous formulation, we assumed that MDL was
negligible and that the fiber transfer matrix was unitary U(ω).
This was an instructive special case. In the presence of MDL,
the fiber transfer matrix becomes non-unitary and is denoted
by H(ω). The output group delay operator then becomes
iHω (ω)H−1 (ω) [28]. The corresponding input group de-
lay operator becomes iH−1 (ω)Hω (ω) . The latter is a non-
Hermitian matrix, so it has complex eigenvalues and non-
orthogonal eigenvectors, in general [28].

Following closely the methodology of [28], we can represent
the input group delay operator as a linear combination of the
identity matrix and the Gell-Mann matrices

iH−1 (ω)Hω (ω) = χ0 (ω) I +
1

2CN
�χs (ω) · Λ, (44)
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whereχ0 (ω) , �χs (ω) denote the complex mean group delay and
the complex MD vector, respectively.

The input PMs are the eigenstates of the group-delay
operator [28]

1
2CN

�χs (ω) · Λ |χi (ω)〉 = χi (ω)| χi (ω)〉 , (45)

The DMGDs are given by [28]

τi (ω) = � [χi (ω)] , i = 1, . . . , N. (46)

We can use the right polar decomposition of the fiber transfer
matrix H(ω) [28]

H(ω) = U(ω)P(ω), (47)

where U(ω) is a unitary matrix and P(ω) is a positive-
semidefinite Hermitian matrix.

Multiplying H(ω) by its adjoint yields

H(ω)†H(ω) = P(ω)†P(ω) = P(ω)2 . (48)

Since P(ω) is a Hermitian positive-semidefinite matrix, its
eigenvalues are real and its eigenvectors corresponding to dif-
ferent eigenvalues are orthogonal to each other.

Using the spectral decomposition of P(ω)2 in terms of
its eigenvalues exp [−ak (ω) z] and eigenvectors |υk (ω)〉, we
obtain

P(ω)2 =
N∑

k=1

e−ak (ω )z |υk (ω)〉〈υk (ω) |, (49)

where z represents the fiber length.
We refer to ak (ω) , |υk (ω)〉 as the principal attenuation co-

efficients and the principal attenuation modes, respectively. The
latter are pairwise orthogonal.

We define MDL as the ratio of the largest eigenvalue to the
smallest eigenvalue of P(ω)2

MDL : =
max

{
e−ak (ω )z

}N
k=1

min
{
e−ak (ω )z

}N
k=1

. (50)

This is identical to taking the SVD of the fiber transfer matrix
H(ω) and defining MDL as the ratio of the squares of the largest
and the smallest singular values [16].

From (4), the projection operators |υk (ω)〉〈υk (ω) | can be
decomposed into the basis of the identity matrix and the Gell-
Mann matrices [14]

|υk (ω)〉〈υk (ω) | =
1
N

I +
1

2CN
υ̂k (ω) · Λ. (51)

Therefore, combining (49) with (51) yields [29]

P(ω)2 = α0(ω)
[
I +

1
2CN

�Γ(ω) · Λ
]
, (52)

where we defined the mean attenuation as the arithmetic mean
of the eigenvalues of P(ω)2

α0(ω) :=
1
N

N∑

k=1

e−ak (ω )z , (53)

and the MDL vector

�Γ (ω) :=
1

α0(ω)

N∑

k=1

e−ak (ω )z υ̂k (ω) . (54)

We can determine α0 , �Γ (ω) by sending CW light into the
fiber under test and measuring the average output power

P̄ (z) = P̄ (0)〈s|H(ω)†H(ω)|s〉, (55)

or, equivalently, using (52), we can define the attenuation
α(z) as

α(z) :=
P̄ (z)
P̄ (0)

= α0(ω)
[
1 +

1
2C2

N

�Γ(ω) · ŝ
]
. (56)

Due to the similarity of (56) to (12), α0(ω), �Γ(ω) can be
estimated using a similar process to the one described in
Section II-G. Now, we simply measure the average output
power instead of the time-of-flight of pulses. An alternative
method for estimating MDL based on power measurements
using a direct-detection receiver is described in [30].

Once α0(ω), �Γ(ω) are known, we can construct H(ω)†H(ω)
and calculate

P(ω) =
√

H(ω)†H(ω). (57)

We can optically compensate for the optical fiber’s MDL at
the fiber input. The transfer matrix of the MDL-equalized optical
fiber will then be

U(ω) = H(ω)P(ω)−1 . (58)

Since U(ω) is unitary, the input group delay operator
iU†(ω)Uω (ω) can be expressed as a linear combination of the
identity matrix and the Gell-Mann matrices as in (7)

iU†(ω)Uω (ω) = τ
′
0(ω)I +

1
2CN

�τ ′
s (ω) · Λ. (59)

Using the process described in Section II-G, we can estimate
τ

′
0(ω), �τ ′

s (ω).
By differentiating (47) with respect to the angular frequency

ω, we obtain

iH(ω)−1Hω (ω) = P−1(ω)
[
iU†(ω)Uω (ω)

]
P(ω)

+ iP−1(ω)Pω (ω).

Since we have already calculated P(ω), iU†(ω)Uω (ω),
we can calculate iH(ω)−1Hω (ω) and its eigenvalues and
eigenvectors.

In summary, in the joint presence of MD and MDL, we follow
a divide-and-conquer approach, i.e., we conduct the experiment
into two successive phases: (i) Initially, we perform MDL
characterization exclusively, followed by optical compensation
of MDL; (ii) Then, we measure the MD vector of the compen-
sated fiber transfer matrix. At each stage, we perform sequential
measurements for the various components of the MDL and MD
vectors at different frequencies, following identical procedures,
launching the same set of quasi-orthogonal vectors each time.
Finally, we combine the experimental results to create the
input group delay operator and calculate the input PMs and the
corresponding DMGDs of the optical fiber.
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J. Practical Considerations

1) Modal Crosstalk: The mode-dependent signal delay
method is vulnerable to errors in the mode converter settings. In
this subsection, we aim to assess the impact of modal crosstalk
induced by erroneous mode converter settings. A back-of-the-
envelope calculation, for the case of SMFs (N = 2), indicates
that this type of crosstalk can be the most significant limiting
factor of the mode-dependent signal delay method. However,
it can also be minimized by using quasi-orthogonal vectors in
Stokes space as launch modes.

For MD characterization of FMFs and MMFs, mode
selection at the fiber input can be accomplished, for instance,
by using a Liquid Crystal on Silicon (LCOS)-based spatial light
modulator (SLM) as a mode converter [31]. These devices can
be used to implement reconfigurable phase masks by varying
the voltage of their pixels. Their main drawback is that they
exhibit high crosstalk between certain pairs of modes [31]. The
optimization of phase masks using simulated annealing can
reduce the crosstalk introduced by the SLM [17]. Nevertheless,
any residual crosstalk in the transfer matrix of the mode
converter may influence the accuracy of the measurement of
the fiber input MD vector.

Detailed physical modeling of the operation of the SLM is
out of the scope of this paper. We consider an abstract model
instead. Assume that we launch the perturbed states ŝ

′
i instead

of the intended states ŝi , due to errors in the SLM settings. Then,
we obtain erroneous group delay measurements that affect the
entries of the DMGD vector Tg in (19). The elements of the
modified DMGD vector T

′
g are given by

T
′
g = S′�τs, (60)

where we defined the perturbed coefficient matrix

S
′
:=

[
ŝ
′
1 , . . . , ŝ

′
N 2 −1

]T
. (61)

Assuming that we are unaware of the errors in the SLM
settings, we reconstruct the MD vector using the matrix
inversion (21)

�τ ′
s = S−1T

′
g .

The computed MD vector �τ ′
s is offset from its nominal value

�τs by

δ�τs = �τ
′
s − �τs = S−1δS�τs, (62)

where we defined the error matrix δS

δS := S′ − S. (63)

We want to estimate the error in (62). For this purpose,
we will use the following inequality for square matrices
[32, Th. 2.10]

‖AB‖ ≤ ‖A‖ ‖B‖ , (64)

where ‖X‖ denotes the spectral norm of a matrix X, which is
the maximum singular value of X.

Taking the spectral norm of both sides of (62) yields

‖δ�τs‖ ≤ ∥∥S−1
∥∥ ‖δS‖ ‖�τs‖ , (65)

or, equivalently,

‖δ�τs‖
‖�τs‖ ≤ ∥∥S−1

∥∥ ‖δS‖ = κ (S)
‖δS‖
‖S‖ , (66)

where κ (S) is the condition number [32, Def. 2.12]

κ (S) : =
∥∥S−1

∥∥ ‖S‖ . (67)

The condition number increases as the matrix gets closer to
being singular. The choice of quasi-orthogonal Stokes vectors
reduces κ (S) but could affect ‖δS‖ as well.

As an illustrative example, consider the elementary case
of a SMF (N = 2). In this case, the mode converter can
be substituted by a polarization controller and we can use
the polarization-dependent signal delay method [18] for PMD
characterization.

Assume that the intended launch vectors are linear hor-
izontal, linear 45 deg, and right-circular SOPs, denoted by
|s1〉 = |ex〉, |s2〉 = |e45◦ 〉, |s3〉 = |eRC 〉, respectively.

Due to the finite extinction ratio of the polarization controller,
every time we attempt to launch a given SOP, we excite also its
orthogonal SOP. The polarization crosstalk level ε is defined
as the ratio of the power launched at the orthogonal SOP and
the nominal signal power. Since Jones vectors represent electric
fields, the generated SOPs

∣
∣s

′
i

〉
, i = 1, . . . , 3 contain perturba-

tions of order
√
ε. Modeling the transfer matrix of the polariza-

tion controller as unitary, the actual launch vectors are
∣∣∣s

′
1

〉
=

√
1 − ε|ex〉 +

√
ε |ey〉

∣∣
∣s

′
2

〉
=

√
1 − ε|e45◦ 〉 +

√
ε|e−45◦ 〉

∣∣∣s
′
3

〉
=

√
1 − ε|eRC 〉 +

√
ε|eLC 〉

where |ey〉, |e−45◦ 〉, |eLC 〉, denote the linear vertical, linear -45
deg, and left-circular SOPs, respectively.

In the ideal case without polarization crosstalk, the coefficient
matrix S given by (18) is just the identity matrix. In the presence
of crosstalk, the actual coefficient matrix S′ is

S′ =

⎡

⎢
⎢
⎣

1 − 2ε 2
√

(1 − ε)ε 0

2
√

(1 − ε)ε 1 − 2ε 0

2
√

(1 − ε)ε 0 1 − 2ε

⎤

⎥
⎥
⎦ (68)

Upon substituting (68) into (63), we obtain

δS′ =

⎡

⎢⎢
⎣

−2ε 2
√

(1 − ε)ε 0

2
√

(1 − ε)ε −2ε 0

2
√

(1 − ε)ε 0 −2ε

⎤

⎥⎥
⎦ . (69)

Expanding in Taylor series with respect to the crosstalk level
ε yields

δS =

⎡

⎢
⎢
⎣

O (ε) 2
√
ε+O (ε) 0

2
√
ε+O (ε) O (ε) 0

2
√
ε+O (ε) 0 O (ε)

⎤

⎥
⎥
⎦ . (70)
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The spectral norm of the error matrix δS is

‖δS‖ = 2
√

2ε+O(ε). (71)

The bound of the relative error in the MD vector is given by

‖δ�τs‖
‖�τs‖ ≤ ∥∥S−1

∥∥ ‖δS‖ = 2
√

2ε+O(ε). (72)

We observe that the relative error in the PMD vector is of
order

√
ε. It is crucial that we know the launched SOPs pre-

cisely, that is with ε < − 40 dB, in order for the relative error
in the assessment of the PMD vector ‖δ�τs‖/‖�τs‖ to be of the
order of 1%. For N > 2, modal crosstalk is more severe. This
places extremely stringent requirements on the accuracy with
which we know the launch states into the fiber. In practice, this
means that the transfer matrix of the mode converter is an in-
separable part of the optical fiber transfer matrix and influences
the measurements. All MD characterization methods essentially
measure the joint transfer matrix of the input/output spatial mul-
tiplexer/demultiplexer and the optical fiber [16].

2) Numerical Quadrature Accuracy: At the direct-detection
receiver, the signal is sampled and the group delay τg is
estimated by evaluating the integral (13) numerically. The com-
putation can be carried out by using any numerical integration
technique for equally-spaced subdivisions [33]. The accuracy
of the integral depends on the sampling frequency and the verti-
cal resolution of the real-time oscilloscope, as well as the pulse
shape, the integration interval T , and the particular quadrature
rule.

Assume that we launch ideal Gaussian pulses with half-width
at the 1/e power point [24] equal to T0 = 10 ns. The integration
time in (22) is T = 50 ns. Using a low-end, real-time oscillo-
scope with 2 GHz bandwidth, 5 GSa/s sampling frequency, and
16 b vertical resolution, the relative error for detecting 0.1 ps
group delays is less than 1% when using the composite 3/8
Simpson’s rule for numerical quadrature [33]. Therefore, it is
not necessary to employ a fast real-time oscilloscope or fs pulses
in order to achieve sub-ps resolution.

3) Thermal Noise Significance: The reconstruction of the
MD vector is influenced by the thermal noise of the individual
measurements. For N ∼ 100, N ∼ 104 sequential measure-
ments are required to recover the N ∼ 104 components of the
MD vector. During the MD vector reconstruction, the variances
of the noises of individual measurements add up. The noise im-
pact on the MD vector ends up being 40 dB higher than the
impact of the noise on each individual measurement.

Consider a thermal-noise limited direct-detection receiver
with noise-equivalent power [24] equal to 10 pW/

√
Hz. An

integration time T = 50 ns corresponds to a digital filter with
100 MHz noise-equivalent bandwidth. We assume that the band-
width of the photodiode is much larger than this value so that
the thermal noise is essentially filtered digitally. For 10 mW
received power, the rms noise per measurement given by (26) is
on the order of 0.1 ps. Even for 100-mode SDM MMF, the rms
noise given by (35) is on the order of 10 ps.

III. OPTIMIZATION FORMALISM

We seek to compute a set of N 2 − 1 Stokes vectors ŝi , i =
1, . . ., N 2 − 1, that minimizes the variance of the MD vector.

A. Cost Function

Neglecting σ2
δTg

in (35), since it is dependent on the specific
implementation of the direct-detection receiver, we adopt the
squared Frobenius norm of A as a normalized cost function

ξ := ‖A‖2
F = Tr

[
AAT

]
. (73)

We want to minimize ξ subject to the constraint that the Stokes
vectors in the matrix S must correspond to valid combinations
of modes in the generalized Jones space.

An alternative form for the cost function (73) is

ξ = Tr(G−1), (74)

where we defined

G := SST . (75)

Notice that the entries of G are the inner products of the
Stokes vectors, i.e., Gjk = ŝj · ŝk . In other words, G is the
Gram matrix of the Stokes vectors ŝj .

Since ξ ≥ N 2 − 1, where the lower bound of ξ = N 2 − 1
occurs in the ideal case of orthonormal vectors, we define the
penalty for choosing a set of N 2 − 1 non-orthonormal Stokes
vectors ŝi , i = 1, . . ., N 2 − 1, as

δ :=
ξ

(N 2 − 1)
. (76)

The latter quantity can be viewed as the noise amplification per
degree of freedom.

B. Gradient Descent Method

Assume that the Jones vectors |si〉, i = 1, . . . , N 2 − 1, and,
thus, S and ξ, are functions of n real parameters p1 , . . . , pn .We
can write the parameters in a concise form as a column vector

p := [p1 , . . . , pn ]T . (77)

We define the gradient of ξ as the column vector

∇ξ :=
[
∂ξ

∂p1
, . . . ,

∂ξ

∂pn

]T
. (78)

The method of gradient descent [21] uses an iterative algo-
rithm to calculate a minimum of the cost function ξ. Starting
from a given point p(0) , it makes successive steps to points
p(k) by moving opposite to the direction of the gradient, until it
reaches a local minimum:

p(k+1) = p(k) − μ(k)∇ξ
(
p(k)

)
, (79)

where μ(k) is a positive constant (adaptive step size) [21]. This
iterative process is continued until the magnitude of the gradient
falls below a certain threshold or until a maximum number of
iterations is reached.
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From (73), the components of the gradient of ξ can be
written as

∂ξ

∂pr
= 2Tr

[
∂A
∂pr

AT

]
. (80)

One can prove (80) by writing the trace expression as a scalar
using index notation, taking the derivative with respect to pr ,
and rewriting the final result in matrix form.

We also use the following matrix identity

∂A
∂pr

= −A
∂S
∂pr

A. (81)

The trace of a product of matrices is invariant under cyclic
permutation of the matrices in the product [27]. Based on this
property, we can rewrite (80) after substituting (81) as

∂ξ

∂pr
= −2Tr

[
∂S
∂pr

B
]
, (82)

where we defined the auxiliary matrix

B := AAT A. (83)

Assume that only one Stokes vector of the set ŝ1 , . . . , ŝN 2 −1
is a function of the parameter pr . Furthermore, assume that this
is the k-th Stokes vector ŝk . After taking the trace in (82), only
the product of the k-th row of the first matrix with the k-th
column of the second matrix remains. We write in a shorthand
manner

∂ξ

∂pr
= −2

∂ŝTk
∂pr

Bk , (84)

where Bk denotes the k-th column of the matrix B.
In addition, we need to satisfy the constraint that the Stokes

vectors making up the matrix S should correspond to valid
combinations of modes in the generalized Jones space. We defer
the discussion about how to take this constraint into account until
Section IV.

C. Alternative Formulation Using Jones Vectors

To speed up numerical optimization, we find that it is compu-
tationally advantageous to express the elements of the gradient
in terms of Jones vectors instead of Stokes vectors. This avoids
unnecessary transitioning between Jones and Stokes spaces and
eliminates the need for Gell-Mann matrices.

As a starting point, we first calculate the derivative of the
Stokes vector ŝk with respect to pr by differentiating (2)

∂ŝk
∂pr

= 2CN�
{〈

sk
∣∣Λ
∣∣∂sk
∂pr

〉}
. (85)

Furthermore, we notice that matrix B can be expressed as
B = ST G−2 , so we rewrite (82) as

∂ξ

∂pr
= −2Tr

[
G−2 ∂S

∂pr
ST

]
. (86)

In (86), we invoked the cyclical property of the trace and we
pre-multiplied ∂S/∂pr with G−2 and post-multiplied with ST .

Assume that only the k-th Stokes vector ŝk is a function of
the parameter pr . It follows that we can rewrite the previous

expression into the form

∂ξ

∂pr
= −2

∑

j

G−2
jk

(
ŝj · ∂ŝk

∂pr

)
. (87)

We can rewrite the term inside the parenthesis in (87) using
(85) and the property [A.13] in [10]

ŝj · ∂ŝk
∂pr

= 2CN�
{〈

sk
∣∣ (ŝj · Λ)

∣∣∂sk
∂pr

〉}
. (88)

Using (4), we obtain

∂ξ

∂pr
= −8C2

N�
⎡

⎣
∑

j

G−2
jk 〈sk |sj 〉

〈
sj
∣∣∂sk
∂pr

〉⎤

⎦

+
8C2

N

N
�
⎡

⎣
∑

j

G−2
jk

〈
sk
∣∣∂sk
∂pr

〉⎤

⎦ . (89)

Also recall that (6) gives

Gjk = ŝj · ŝk = 2C2
N

[
|〈sj |sk 〉|2 − 1

N

]
. (90)

From (89), (90), it is apparent that ∂ξ/∂pr can be expressed
in terms of Jones vectors exclusively. Furthermore, (89) uses the
inverse of G, which is symmetric and positive semi-definite, un-
like (84) that is a function of A, the inverse of S. The advantage
of (89) over (84) is that inversion of positive semi-definite ma-
trices can be done via Cholesky decomposition [27], which is
twice as fast as the LU decomposition used for general matrices.
Finally, we shall see later on, when we discuss the projected gra-
dient method, that due to the constraints 〈sj |sj 〉 = 1, the terms
in (89) not only simplify slightly but the entire second sum
in (89) can be omitted, since it is orthogonal to the constraint
manifold (cf. Section IV).

IV. OPTIMIZATION ALGORITHMS

Our aim is to find an “almost orthogonal” matrix S that mini-
mizes the cost function ξ. In other words, we want to compute a
set of N 2−1 maximally-orthogonal Stokes vectors ŝi that cor-
respond to feasible combinations of propagating modes. This
section is devoted to the description of two different gradient
descent algorithms [21] that can accomplish this task.

A. Hyperspherical Coordinates and Unconstrained
Gradient Descent

In the first algorithm, we parameterize the j-th unit Jones
vector |sj 〉 by using 2N − 2 hyperspherical coordinates [14]

|s〉 :=
[
cos(φ1), sin(φ1) cos(φ2)eiθ1 , . . . ,

sin(φ1) · · · sin(φN−2) sin(φN−1)eiθN −1
]T
. (91)

Furthermore, we define the parameter vector p that contains
the coordinates φjv and θjv of all N 2 − 1 Stokes vectors.
Then, we perform unconstrained optimization in a real space
of n =

(
N 2 − 1

)× (2N − 2) dimensions using the method of
gradient descent (79).
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For large N ’s, when p(0) is selected randomly, the matrix
S might become almost singular, and the cost function can
initially assume very high values. In this case, we find that the
convergence of the gradient descent method can be accelerated
by first using the normalized gradient and a constant step size μ
in (79)

p(k+1) = p(k) − μ
∇ξ (p(k)

)
∥∥∇ξ (p(k)

)∥∥ , (92)

for k = 0, 1, 2, . . ..
When the value of the cost function is decreased below a

certain threshold, we revert back to (79), and the adaptive step
μ(k) is selected using the backtracking method [21].

B. Cartesian Coordinates and Projected Gradient Descent

In the second algorithm, we parametrize the j-th Jones
vector |sj 〉 = (sjv )Nv=1 ∈ CN by the 2N real parame-
ters xjv := �(sjv ) and yjv := �(sjv ). Therefore we have
n := (N 2 − 1) × 2N parameters, which we arrange into one
column vector p ∈ Rn = R2N × · · · × R2N by concatenat-
ing together the N 2 − 1 copies of [xj1 , yj1 , . . . , xjN , yjN ]T ∈
R2N , j = 1, . . . , N 2 − 1.

The modest price to pay in order to avoid using the numeri-
cally slower trigonometric functions in the parameterization, is
the imposition of N 2 − 1 unit length constraints

γj (p) := 〈sj |sj 〉 =
N∑

v=1

(
x2
jv + y2

jv

)
= 1, (93)

where j = 1, . . . , N 2 − 1.
This is to say that the parameter vector p is restricted to a

(N 2 − 1) × (2N − 1) dimensional manifold M in Rn that is
the Cartesian product ofN 2 − 1 unit spheres in R2N . Any non-
zero p ∈ Rn can be projected into M by simply normalizing
each block [xj1 , yj1 , . . . , xjN , yjN ]T . We denote this projection
by proj(p).

Furthermore, at every p ∈ M, we have N 2 − 1 vectors nor-
mal to M given by the unit normals to the individual spheres,

nj (p) := [0, . . . , 0, xj1 , yj1 , . . . , xjN , yjN , 0, . . . , 0]T , (94)

where j = 1, . . . , N 2 − 1.
Alternatively, these vectors are the normalized gradients of

individual constraints:

nj (p) =
1
2
∇γj (p) =

1
2

[
∂γj
∂pr

]n

r=1

=
[
�
〈
sj
∣∣∂sj
∂pr

〉]n

r=1
. (95)

Given any vector v ∈ Rn attached at p ∈ M, we can readily
decompose it into components that are tangent (parallel) and
orthogonal (normal) to the constraint manifold M, v = v‖ +
v⊥, where

v⊥ =
N 2 −1∑

j=1

(nj (p)T v) nj (p). (96)

Fig. 2. Flowchart of the gradient descent methods used for computing quasi-
orthonormal vector sets in Stokes space.

Recall that the gradient ∇ξ(p) is the column vector of all the
partial derivatives given by (89) for r = 1, . . . , n. In view of
(95), the second sum in (89) is a linear combination of nj (p).
Thus it is orthogonal to M and can be omitted if we only
need the tangential component of ∇ξ(p). Hence, to reduce the
computational burden, we replace the gradient by

[∇ξ(p)]‖ = −8C2
N

⎡

⎣�
⎧
⎨

⎩

∑

j

G−2
jk 〈sk |sj 〉

〈
sj
∣
∣∂sk
∂pr

〉
⎫
⎬

⎭

⎤

⎦

n

r=1,‖

,

where the subscript ‖ indicates taking the tangential component
of the quantity inside the parenthesis.

The method of projected gradient descent starts from a given
point p(0) ∈ M and then makes successive steps to points
p(k) ∈ M by first moving in the direction opposite the tan-
gential component of the gradient and then projecting (renor-
malizing) to hop back onto M. The corresponding recursive
formula is

p(k+1) = proj

{
p(k) − μ(k)

[
∇ξ

(
p(k)

)]

‖

}
(97)

for k = 0, 1, 2, . . . [21].
To explore the sensitivity of both optimization algorithms to

the choice of initial conditions, we perform several optimization
runs with different random seeds. Given that the algorithms are
computationally intensive, due to the high-dimensionality of the
optimization space, individual runs are executed in parallel in a
high-performance computing cluster.

The flowchart shown in Fig. 2 summarizes the steps of the
numerical optimization process.

V. RESULTS AND DISCUSSION

In this section, we present the results of the numerical opti-
mization algorithms described in Section IV.

As an illustrative example, the optimal launch mode combi-
nations forN = 4 are given in Table I. Each mode is represented
by a generalized Jones vector |si〉, i = 1, . . . , 15, and its decom-
position in terms of the fiber eigenmodes |i〉, i = 1, . . . , 4, is
listed. The angles among pairs of the corresponding generalized
Stokes vectors vary in the interval 85◦–97◦, so the generalized
Stokes vectors are approximately orthogonal. The value of the
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TABLE I
OPTIMAL VECTOR SET FOR N = 4

cost function for this vector set is ξ = 16.9, while for a truly
orthogonal vector set it would be ξ = 15. The SNR penalty is
0.517 dB. Penalties for the optimum vector sets for other values
of N are given in Fig. 3(a).

Before we proceed, it would be instructive to explain how to
use the results of Table I. Consider the case of an FMF support-
ing the LP01 and LP11 mode groups. If there is weak coupling
between the FMF mode groups, one can choose to characterize
the modal dispersion of the LP01 and LP11 mode groups sepa-
rately. In this case, the mode-dependent signal delay method can
be used first to determine the MD vector of the LP01 mode group.
This requires launching three different combinations of the x-
and y-polarizations of the LP01 mode. For this purpose, we can
select three arbitrary orthonormal vectors in the conventional 3D
Stokes space, e.g., the linear horizontal, linear 45 deg, and right-
circular SOPs. Then, the mode-dependent signal delay method
can be applied once more to determine the MD vector of the
LP11 mode group. It is well known that the LP11 mode group is
composed of four spatial and polarization modes, i.e., the LP11,o
and LP11,e modes, each in two orthogonal polarization config-
urations. The mode-dependent signal delay method for N = 4
requires launching 15 launch mode combinations. Launching
the 15 launch mode combinations |si〉, i = 1, . . . , 15, shown in
Table I will yield the smallest possible error in the measurement
of the MD vector. The fiber eigenmodes |i〉, i = 1, . . . , 4, are the
constituents of the LP11 mode group. The complex coefficients
in Table I represent the complex excitations of the phasors of
the electric fields of these modes.

Next, it is shown that the computed optimal Stokes vector
sets yield much better performance than previously proposed
vector sets. Fig. 3(a) shows plots of the SNR penalty δ as a
function of the number of propagation modes N in the optical
fiber for various vector sets. The ideal, albeit infeasible, case
of orthonormal vectors is shown by the horizontal red line.
The results of the numerical optimization are represented by
the black curve with circles. Notice that the penalty is initially
0 dB forN = 2, reaches a maximum value forN = 4, and then
falls monotonically to almost 0 dB for N = 40. The fact that

Fig. 3. (a) SNR penalty compared to the ideal case vs the number of modes for
four different vector sets (Symbols: Blue line: Yang and Nolan’s vectors [20];
Green line: MUBs [23]; Orange line: SIC POVMs [22]; Red line: Orthonor-
mal Stokes vectors; Circles: Numerical optimization using the algorithms in
Section IV. The optimization results were also validated by using the function
FindMinimum in Mathematica [34], which is based on the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) quasi-Newton algorithm. Early results were presented
in [35]). (b) Sensitivity of the numerical optimization results to the initial con-
ditions for N = 14–30 (Symbols for different initial conditions: Triangles:
Random initial guess; Magenta points: Yang and Nolan’s vectors; Cyan points:
MUBs; Open circles: SIC POVMs).

the penalty is 0 dB for N = 2 comes as no surprise: in this
case, the whole surface of the Poincaré sphere is covered with
valid states. Thus, there exists an infinity of orthonormal vector
sets that can be used for the measurement of the MD vector in
Stokes space. For larger values of N , it is impossible to find
an orthonormal set of N 2 − 1 Stokes vectors. For instance, for
N = 4, we observe that there is 0.517 dB penalty with respect
to the ideal case. By further increasingN , we observe a gradual
reduction in penalty, reaching 0.046 dB for N = 40.

For comparison, we included in the same graph, three ad-
ditional plots corresponding to vector sets proposed in prior
literature in optical communications and quantum mechanics,
namely Yang and Nolan’s vectors [20], vectors selected from
MUBs [23], and SIC-POVM vectors [22] in blue, green, and
orange, respectively (see Appendix A for details). The main
advantage of these three vector sets is that there are relatively
simple analytical or numerical algorithms for the evaluation of
their coordinates. In contrast, computing the optimal vector sets
using the method of gradient descent is time consuming for
large values of N . On the downside, Yang and Nolan’s vectors,
MUBs, and SIC-POVMs present much higher penalties than
the optimal vector sets given by numerical optimization. In-
dicatively, we remark the following features: a) N 2 − 1 Stokes
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vectors from MUBs can be evaluated using various numerical al-
gorithms only for values ofN that are prime numbers or powers
of prime numbers [23]. It is worth noting that this vector set can
be used only for waveguides lacking cylindrical symmetry. For
the optical fibers of interest, the number of modes N can never
be a prime or a power of a prime. We refer to MUBs here just
for completeness. The green line in Fig. 3(a) shows that there is
an asymptotic penalty equal to 3 dB for largeN ’s, i.e., the noise
in the estimate of the MD vector is amplified by a factor of 2. b)
SIC POVMs exhibit slightly worse performance with respect to
MUB vectors for small values of N but, as N increases, the
penalty asymptotically reaches a ceiling of 3 dB, as in the case
of MUB vectors (orange line in Fig. 3(a)). The main advantage
of this vector family, compared to MUBs, is that N 2 − 1 vec-
tor sets can be computed for all practical values of N . c) Yang
and Nolan’s vectors are given by simple analytical formulas,
in contrast to the previous vector families. Nevertheless, they
present worse performance than all prior vector sets, and the
corresponding penalty asymptotically reaches 6 dB (blue line in
Fig. 3(a)).

In summary, the optimal vector sets provided by numerical
optimization increase the SNR of the measurements asymptot-
ically by 3 dB for large values of N compared to SIC POVMs
and MUBs and by about 6 dB compared to Yang and Nolan’s
vectors. Therefore, we conclude that the performance of the
mode-dependent signal delay can be dramatically improved by
using the optimal vector sets provided by the gradient descent
method. One can contrast this finding with the claim in Yang
and Nolan’s paper [20] that the results of the mode-dependent
signal delay method do not depend on the choice of launch
state vectors, as long as the latter are linearly independent. This
is true only in the absence of receiver noise.

Despite their inferior performance compared to the optimal
vectors, MUBs, SIC POVMs, and Yang and Nolan’s vectors
are still useful as they can be used as starting points in order
to accelerate the convergence of the gradient descent method.
Fig. 3(b) compares the results of the gradient descent method
when the aforementioned vector sets are used as initial guesses
for N = 15 − 30. We observe that the gradient descent method
converges to different local minima for each vector family after
100,000 iterations. Interestingly, using SIC POVMs as initial
guesses leads to the lowest penalties (black curve with circles)
whereas the use of random initial vectors as starting points leads
to the worst performance (black curve with triangles). The use of
MUB vectors and Yang and Nolan’s vectors as starting points for
the numerical optimization leads to intermediate penalty values
in between the two back curves. Indicative values of penalties
are shown in Table II.

In retrospect, it is not surprising that the gradient descent
method yields best results when the SIC POVM vectors are
used as an initial guess: This must be attributed to the fact that
SIC POVMs present maximum symmetry because they form a
regular simplex in Stokes space and are equiangular, i.e., their
pairwise inner products in Stokes space are the same. As ex-
plained in detail in Appendix A, the pairwise inner product
of two different SIC POVMs tends to zero for large values
of N . This is illustrated by the almost diagonal Gram matrix

TABLE II
NUMERICAL OPTIMIZATION RESULTS (FIG. 3(B), N = 30)

Note: Starting from different initial conditions, the numerical optimization reaches differ-
ent local minima after 100, 000 iterations. For instance, for N = 30, using SIC POVMs
in the mode-dependent signal delay method leads to a 3 dB penalty compared to the ideal
case. However, using the gradient descent method with the SIC POVMs as an initial guess,
we compute an optimal set of vectors that exhibits only 0.07 dB residual penalty at the
end of the optimization process compared to the ideal case. Worse residual penalties are
achieved by starting the optimization process using vectors from MUBs, Yang & Nolan’s
vectors, and random vectors as initial conditions.

for N = 5 in Fig. 4(a). For comparison, density plots of the
Gram matrices for vectors from MUBs and Yang and Nolan’s
vectors are shown in Fig. 4(b) and (c), respectively. The latter
two density plots reveal a block diagonal and a block struc-
ture, respectively, indicative of much less symmetric vector
configurations.

Finally, we can catch a glimpse of the optimum set of Stokes
vectors using a 2D projection (e.g., see Fig. 5 for N= 3). We
know that theN 2 − 1 Stokes vectors should be ideally orthonor-
mal. From the optimal vectors given by the numerical optimiza-
tion procedure, we compute a set of orthonormal vectors best
approximating the optimal vectors. It is possible to project these
orthonormal vectors onto a plane so that their projections have
equal angular separations (dashed black vectors). Now we can
superimpose on the same plane the projections of the actual opti-
mal vectors given by the numerical optimization procedure (red
vectors), as well as the projection of the manifold of allowed
states on the surface of the Poincaré sphere (light green area)
[5]. All vectors are bounded by the projection of the Poincaré
sphere onto the plane (pink circular disk with unit radius).

VI. SUMMARY

In this article, we revised the mode-dependent signal de-
lay method formalism for the characterization of SDM MMFs.
We analytically calculated the variance in the estimation of the
length of the input MD vector due to receiver thermal noise. We
showed that the mode-dependent signal delay method is versa-
tile and can be applied to the estimation of the MDL vector,
as well as the simultaneous measurement of the MD and MDL
vectors. We discussed various measurement errors other than
these due to the thermal noise of the direct-detection receiver
that occur during the characterization process. The latter part of
the paper was devoted to the optimization of the launch states
used in the mode-dependent signal delay method for the mea-
surement of modal dispersion in SDM MMFs. The optimal sets
of launch modes proposed here are universal, i.e., they are not
limited to specific fiber types and can be used for SMFs, MMFs,
and MCFs with strong and weak coupling.
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Fig. 4. Density plots of the absolute value of the Gram matrix G of various
vector sets for N = 5. (a) SIC-POVMs [22]. (b) MUBs [23]. (c) Yang and
Nolan’s vectors [20].

As a final note, we stress that all MD characterization
methods inherently make measurement errors due to receiver
noise, modal crosstalk introduced during mode launch, and
other implementation imperfections. Therefore, it is important
to measure the modal dispersion of a fiber using various alter-
native methods and determine whether their results agree or
not. Even if the mode-dependent signal delay method does not
prevail as the method of choice for MD characterization, the set
of optimal vectors proposed here can be used for measurements
in the generalized Stokes space and data transmission using
Stokes vector modulation. We anticipate that, since these vec-
tors are quasi-orthonormal, they will give superior performance
in a variety of problems involving measurements in Stokes
space compared to other vector sets proposed in the literature.

Optimum vector sets are available online [36].

Fig. 5. 2D projections of various vector sets for N = 3 (Symbols: Red vectors:
actual optimal vectors given by the numerical optimization of Section II; Dashed
black vectors: ideal orthonormal vectors best approximating the optimal vectors;
Light green area: projection of the manifold of allowed states on the surface of
the Poincaré sphere).

APPENDIX A
SPECIAL VECTOR SETS

The goal of this Appendix is to derive useful analytical rela-
tionships for the cost function of special vector sets.

A. Symmetric, Informationally Complete, Positive Operator
Valued Measure (SIC-POVM) Vectors [22]

Consider the N -dimensional Jones space CN . The inner
product of the N 2 unit SIC-POVM vectors {|ψi〉} satisfies the
condition

|〈ψi |ψj 〉|2 =
1

N + 1
, ∀i �= j (98)

We recall that the dot product of Stokes vectors is related to
the inner product of Jones vectors through (6). By substituting
(98) into (6), we can compute the exact dot products of the SIC
POVM vectors in generalized Stokes space

Gij = ψ̂i · ψ̂j =

⎧
⎨

⎩

1 i = j

− 1
N 2 − 1

i �= j
(99)

A density plot of the absolute value of the Gram matrix G =
SST forN = 5 is shown in Fig. 4(a). Due to its simple structure,
the cost function can be calculated analytically.

Namely, we can decompose G into a linear combination
of two square

(
N 2 − 1

)× (
N 2 − 1

)
matrices, the identity

matrix I and the constant matrix J with all entries equal to
unity

G =
N 2

N 2 − 1
I − 1

N 2 − 1
J (100)

Matrices I and J commute so the eigenvalues of G are the
corresponding combinations of the eigenvalues of these two
matrices.

The identity matrix I has a unit eigenvalue with multiplicity
N 2 − 1, and the matrix J has two eigenvalues, zero with mul-
tiplicity N 2 − 2 and N 2 − 1 with multiplicity 1. Therefore, the
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eigenvalues of G are

λ (G) =

⎧
⎪⎪⎨

⎪⎪⎩

N 2

N 2 − 1
, . . .

N 2

N 2 − 1︸ ︷︷ ︸
N 2 −2

,
1

N 2 − 1

⎫
⎪⎪⎬

⎪⎪⎭
. (101)

Consequently, the eigenvalues of G−1 are

λ
(
G−1) =

⎧
⎪⎪⎨

⎪⎪⎩

N 2 − 1
N 2 , . . . ,

N 2 − 1
N 2

︸ ︷︷ ︸
N 2 −2

, N 2 − 1

⎫
⎪⎪⎬

⎪⎪⎭
. (102)

If X is a square n× n matrix, then the sum of the n
eigenvalues of X is the trace of X and the product of the n
eigenvalues is the determinant of X.

Therefore, the cost function can be analytically expressed as

ξ = Tr
(
G−1) = 2

(
N 2 − 1

)2

N 2 . (103)

The penalty is given by

δ =
ξ

N 2 − 1
= 2

(
N 2 − 1

)

N 2 . (104)

For optical fibers supporting a large number of modes N , the
penalty asymptotically reaches the limit

lim
N→∞

δ = 2. (105)

We conclude that, for large N ’s, there is roughly a 3 dB penalty
compared to the ideal orthonormal states.

In addition, the volume of the parallelotope with edges equal
to the Stokes vectors ŝ1 , . . . , ŝN 2 −1 is given by the determinant
of the Gram matrix V =

√
det (G). The last expression can be

analytically evaluated from the eigenvalues in (102)

V =
√

det (G) =
NN 2 −2

(N 2 − 1)
(N 2 −1 )

2

(106)

For optical fibers supporting a large number of modes N , the
volume of the parallelotope asymptotically tends to zero

lim
N→∞

V = 0. (107)

B. Vectors From Mutually Unbiased Bases (MUBs) [23]

Two distinct bases {|ψi〉} , {|φj 〉} are said to be mutually
unbiased if ψ̂i · φ̂j = 0. Then, from (6), we obtain

|〈ψi |φj 〉|2 =
1
N
, ∀i, j. (108)

There existN + 1 MUBs ofN vectors each when the number
of modes N is a power of a prime [23]. Here, we select launch
states by picking groups of N − 1 vectors from each one of the
N + 1 MUBs.

From (6) and (108), we can calculate the elements of the
covariance matrix G = SST without first calculating explicitly
the MUB vectors.

It turns out that G = SST is a
(
N 2 − 1

)× (
N 2 − 1

)
square

matrix in block diagonal form

G =

⎡

⎢⎢⎢⎢
⎣

X 0 0 0
0 X 0 0

0 0
. . . 0

0 0 0 X

⎤

⎥⎥⎥⎥
⎦
, (109)

where X is a (N − 1) × (N − 1) submatrix given by

X =

⎡

⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

1 − 1
N − 1

. . . − 1
N − 1

− 1
N − 1

1 . .
. − 1

N − 1
... . .

. . . . − 1
N − 1

− 1
N − 1

· · · − 1
N−1 1

⎤

⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

. (110)

This form is analogous to (99). Therefore, we can decompose
X as in (100)

X =
N

N − 1
I − 1

N − 1
J, (111)

where now I,J are square (N − 1) × (N − 1) matrices.
Following the same methodology as in the preceding sub-

section, it is straightforward to show that the eigenvalues of X
are

λ (X) =

⎧
⎪⎪⎨

⎪⎪⎩

N

N − 1
, . . . ,

N

N − 1︸ ︷︷ ︸
N−2

,
1

N − 1

⎫
⎪⎪⎬

⎪⎪⎭
. (112)

For a block diagonal matrix

Y =

⎡

⎢
⎢⎢⎢
⎣

Y1 0 · · · 0
0 Y2 · · · 0
...

...
. . .

...

0 0 · · · Yn

⎤

⎥
⎥⎥⎥
⎦
, (113)

the following properties hold

detY =
n∏

i=1

detYi ,

TrY =
n∑

i=1

TrYi . (114)

Using (108)–(114), the cost function can be analytically ex-
pressed as

ξ = Tr
(
G−1) = 2

(
N 2 − 1

) N − 1
N

. (115)

The penalty is given by

δ =
ξ

N 2 − 1
= 2

N − 1
N

. (116)
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For optical fibers supporting a large number of modes

lim
N→∞

δ = 2 (117)

Asymptotically, there is roughly a 3 dB penalty compared to the
ideal orthonormal states.

In addition, the volume can be analytically expressed as

V =
√

det (G) =
N

(N −2 ) (N + 1 )
2

(N − 1)
(N 2 −1 )

2

. (118)

For optical fibers supporting a large number of modes N , the
volume of the parallelotope asymptotically tends to zero

lim
N→∞

V = 0. (119)

C. Cost Function for Yang and Nolan’s Vectors [20]

Consider the fiber eigenmodes in Jones space |i〉, i =
1, . . . , N. Yang and Nolan’s vectors are defined as [20]

|xi〉 = |i〉 i = 1, . . . , N − 1

|yij 〉 =
|i〉+|j〉

2
1 ≤ i < j ≤ N

|zij 〉 =
|i〉+i|j〉

2
1 ≤ i < j ≤ N (120)

In the last expression, we used different fonts to distinguish
the imaginary number i from the index i. Notice that there are
N 2 − 1 vectors in total.

The squared norms of the inner products in Jones space are

|〈xi | xj 〉|2 = δij

|〈xi | yjk 〉|2 =
(δij + δik )

2

2

|〈xi | zjk 〉|2 =
δij + δik

2

|〈yij | yk�〉|2 =
(δik + δi� + δjk + δj�)

2

4

|〈yij | zk�〉|2 =
(δik + δjk )

2 + (δi� + δj�)
2

4

|〈zij | zk�〉|2 =
(δik + δj�)

2 + (δi� − δjk )
2

4
(121)

The elements of the Gram matrix are given by (6)

Gjk = ŝj · ŝk = 2C2
N

[
|〈sj |sk 〉|2 − 1

N

]
. (122)

Let’s define the submatrices of Stokes vectors

X = [x̂1 , . . . , x̂N−1 ]
T

Y =
[
ŷ1 , . . . , ŷ N (N −1 )

2

]T

Z =
[
ẑ1 , . . . , ẑ N (N −1 )

2

]T
(123)

where we reindexed the Stokes vectors from ŷij , ẑij to ŷk , ẑk .
The Gram matrix structure is shown in Fig. 6. The Gram

matrix is partitioned into nine blocks (in color). An analytical

Fig. 6. Partitioning of the Gram matrix for Yang and Nolan’s vectors [20].
Rectangular submatrices are shown in brown and green, while all other colors
indicate square submatrices of different dimensions.

calculation of the cost function in a way analogous to the case
of SIC-POVMs and MUBs is cumbersome due to the more
complex block structure of the Gram matrix. Therefore, the cost
function shown in blue in Fig. 3(a) is calculated numerically
by taking the trace of the inverted Gram matrix obtained by
(121)–(123).
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