Drilling Equations

Rotational Speed (RPM's)

$$N = \frac{V}{\pi D}$$

N = Rotational Speed (RPM's) v = Cutting Speed (SFPM) D = Drill Diameter

Feed Rate (Dist/Min)

 $f_r = N f$ $f_r = \frac{\text{Dist}}{\text{Min}}$ N = Rotational Speed $f = \text{Feed (}^{\text{Dist.}}/_{\text{Rev.}}\text{)}$

Drilling Equations

Approach Distance

A = 0.5 D Tan(90- θ_{2})

A = Approach Distance
D = Drill Diameter
Θ = Drill Point Angle

$\frac{Machining Time}{d \text{ or } t + A}$ $T_m = \frac{f_r}{f_r}$

 $T_{m} = Machining Time (Min.)$ d or t = Part Thickness/Depth A = Approach Distance f_r = Feed Rate (^{Dist.}/_{Min.})

Drilling Equations

Material Removal Rate (cu.in./Min)

 $MRR = \frac{\pi D^2 f_r}{4}$

MRR = Material Removal Rate (^{cu.in.}/_{Min}) D = Drill Dia. f_r = Feed Rate (^{In.}/_{Min.})

Drilling Example

Data: D = 0.375"; v = 130.50 SFPM; f = 0.002 in/rev; $\Theta = 112^{\circ}$; Through Hole

Drilling Example Approach Distance $A = 0.5 D Tan (90 - \theta/_2)$ A = (0.5) (0.375) Tan (90 $-\frac{112}{2}$) A = 0.1265" **Rotational Speed** $N = \frac{V}{\pi D}$ $N = \frac{(130.50)(12)}{\pi \ 0.375}$ N = 1,329.3718 RPM's

Drilling Example

Tm = <u>0.3297</u> Min

Drilling Example

Material Removal Rate

 $MRR = \underline{0.2936} \text{ in}^{3}/_{Min}$