Drilling Equations

Rotational Speed (RPM’s)

\[N = \frac{v}{\pi D} \]

\(N \) = Rotational Speed (RPM’s)
\(v \) = Cutting Speed (SFPM)
\(D \) = Drill Diameter

Feed Rate \((\text{Dist}/\text{Min})\)

\[f_r = N f \]

\(f_r \) = Feed \((\text{Dist.}/\text{Rev.})\)
Drilling Equations

Approach Distance

\[A = 0.5 \, D \, \tan(90 - \frac{\Theta}{2}) \]

- \(A \) = Approach Distance
- \(D \) = Drill Diameter
- \(\Theta \) = Drill Point Angle

Machining Time

\[T_m = \frac{d \text{ or } t + A}{f_r} \]

- \(T_m \) = Machining Time (Min.)
- \(d \) or \(t \) = Part Thickness/Depth
- \(A \) = Approach Distance
- \(f_r \) = Feed Rate (Dist./Min.)
Drilling Equations

Material Removal Rate \((\text{cu.in.}/\text{Min})\)

\[
MRR = \frac{\pi D^2 f_r}{4}
\]

- \(MRR = \text{Material Removal Rate (\text{cu.in.}/\text{Min})}\)
- \(D = \text{Drill Dia.}\)
- \(f_r = \text{Feed Rate (In./Min.)}\)
Drilling Example

Data: \(D = 0.375'' \); \(v = 130.50 \text{ SFPM} \); \(f = 0.002 \frac{\text{in}}{\text{rev}} \);
\(\theta = 112^\circ \); Through Hole
Drilling Example

Approach Distance

\[A = 0.5 \, D \, \tan \left(90 - \theta/2 \right) \]

\[A = (0.5) \, (0.375) \, \tan \left(90 - \frac{112}{2} \right) \]

\[A = 0.1265'' \]

Rotational Speed

\[N = \frac{v}{\pi \, D} \]

\[N = \frac{(130.50) \, (12)}{\pi \, 0.375} \]

\[N = 1,329.3718 \text{ RPM's} \]
Drilling Example

Feed Rate

\[f_r = N f \]

\[f_r = (1329.3718)(0.002) \]

\[f_r = 2.6587 \text{ in/Min} \]

Machining Time

\[T_m = \frac{t + A}{f_r} \]

\[T_m = \frac{0.750 + 0.1265}{2.6587} \]

\[T_m = 0.3297 \text{ Min} \]
Drilling Example

Material Removal Rate

\[MRR = \frac{\pi D^2 f_r}{4} \]

\[MRR = \frac{\pi (0.375^2)(2.6587)}{4} \]

\[MRR = 0.2936 \text{ in}^3/\text{Min} \]