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Abstract. A dual-polarization lidar and photography are used to sense internal waves in
West Sound, Orcas Island, Washington, from a small aircraft. The airborne lidar detected a
thin plankton layer at the bottom of the upper layer of the water, and this signal provides the
depth of the upper layer, amplitude of the internal waves, and the propagation speed. The lidar is
most effective when the polarization filter on the receiver is orthogonal to the transmitted light,
but this does not depend significantly on whether the transmitted light is linearly or circularly
polarized. The depolarization is greater with circular polarization, and our results are consistent
with a single parameter Mueller scattering matrix. Photographs of the surface manifestation of
the internal waves clearly show the propagation direction and width of the phase fronts of the
internal waves, even though the contrast is low (2%). Combined with the lidar profile, the total
energy of the internal wave packet was estimated to be 9 MJ. © 2012 Society of Photo-Optical
Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JRS.6.063611]
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1 Introduction

Waves on the surface of the ocean are a common sight, but internal waves are less familiar.
Internal waves propagate along density gradients within the ocean much like surface waves pro-
pagate along the air/water density interface. In the ocean, solar heating at the surface and/or fresh
water input from terrestrial runoff or melting ice create a layer of water with lower density at the
surface. This layer is typically mixed with the water below by the action of surface waves and
turbulence, but this is only effective to some finite depth that depends on the strength of the wind.
This tends to create a layer of less dense water on top of the more dense water below. The
boundary, known as the pycnocline, is the region of large density gradients on which internal
waves propagate. Of course, the real ocean is more complex, and multiple layers may form from
episodic heating and mixing events.

Internal waves are an important process in mixing in the ocean.1–3 One of the most common
processes for the generation in internal waves is the flow of tidal currents over bottom
topography,4 especially at the edge of the continental shelf. These waves can propagate over
long distances, carrying this tidal energy with them. This energy is eventually released and
dissipated where the waves break.5
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The surface signatures from internal waves have been observed in microwave-radar data.6–9

The primary mechanism is the modulation of surface roughness, which is the source of the radar
signal, by the surface currents produced by the waves.8,10,11 Where surface currents are diverging,
the roughness is decreased, and the radar return is reduced. Where currents are converging, the
roughness is increased, and the radar return is increased.

For these waves to be apparent in a lidar signal, there has to be some tracer, such as a layer
of phytoplankton to scatter the light. Fortunately, such a layer often exists near the pycnocline. In
the simplified two-layer model of the ocean, one can imagine that the nutrients in the upper layer
would be consumed rapidly since there is plenty of sunlight for photosynthesis. The lower
layer represents a large reservoir of nutrients, but there is little sunlight. The result is a narrow
zone near the pycnocline that will support phytoplankton growth.12 This is oversimplified, and
other processes that contribute to thin-layer formation include stretching of a plankton patch
into a layer by current shear and sinking of plankton cells until they reach the depth where
their density matches that of the surrounding water.13–15 Regardless of the mechanism, thin
plankton layers associated with the pycnocline have been observed,13,14 and the detection of
scattering layers, including thin plankton layers, by airborne lidar is well documented.12,16–19

We have demonstrated that these thin layers can be associated with upwelling events and
with fresh water influx.18

Acoustic measurements have shown that these thin layers move up and down under the influ-
ence of internal waves,19 and internal waves also have been observed in airborne lidar data.18,20

However, neither of these lidar observations had coincident in-water measurements for compar-
ison. This paper reports on lidar and photographic measurements of several internal waves in
West Sound on Orcas Island in Washington state, and the comparison with in situ measurements
of water stratification and optical properties. The primary objective was to determine whether or
not the energy of an internal-wave packet can be obtained from remote sensing data collected by
lidar and aerial photography. A secondary objective was to determine if quantitative information
could also be obtained about turbulence within the plankton layers.

In previous studies, it was observed that the lidar signal from a plankton layer has higher
contrast (i.e., stands out more clearly against the lidar signal from the surrounding water) when
the laser transmitter is linearly polarized and the receiver is filtered to collect scattered light in the
orthogonal polarization.17,18,20 The reason is that plankton are much larger than the 532-nm
wavelength that is generally used for oceanographic lidar and have enough irregularly shaped
structures to depolarize backscattered light through multiple scattering within each cell or
colony. Previous work has suggested that circularly polarized light will provide better contrast
for large underwater targets,21–23 but does not have a corresponding advantage for a collection
of small particles.24–27 A third objective of this work was to compare the contrast for linear and
circular polarizations.

2 Measurements

East Sound on Orcas Island in Washington state has been the site of a number of studies on thin
layer formation and evolution.12,14,28–30 This history of plankton layer formation led us to return
to East Sound in September 2011 with the airborne lidar. No significant evidence of plankton
layers was found in the lidar data from flights over East Sound in September of 2011, so we
moved to West Sound to make the measurements. Only data from West Sound are considered in
this analysis. While both East Sound and West Sound are shallow fjords that are protected by
other islands to the south (Fig. 1), West Sound is smaller and more open to internal waves that
can be generated by the strong tidal flows through the channel outside the sound.

The NOAA Fish Lidar,31–33 developed in the Earth System Research Laboratory over a num-
ber of years, was installed in the back of a four-seat Cessna-177 aircraft with the rear seats
removed (Fig. 2). Two flights were made each day of the deployment at a flight altitude of
about 300 m and a speed of about 40 m s−1. The lidar transmitted 100 mJ of green (532 nm)
light in a 12-ns pulse at a rate of 10 pulses per second. It was pointed 12 deg off nadir to minimize
the specular reflection from the sea surface. The laser beam divergence was set so that the dia-
meter of the laser spot on the surface was 5 m, which is large enough that the power density at the
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surface is safe for humans and marine mammals.34 The scattered light from the water column
was collected by two telescopes whose fields of view were matched to the laser beam divergence.
Each telescope was equipped [as shown in Fig. 2(a)] with a polarizing filter, a field-of-view
aperture, and an interference filter to reduce background light. The light collected by each tele-
scope was detected by a photomultiplier tube, logarithmically amplified to increase the dynamic
range, and digitized at a rate of 109 samples per second. Between the morning flight and the
afternoon flight on September 16, we changed the polarization characteristics of the lidar. In the
morning, the transmitter was linearly polarized, and the two telescopes were filtered to receive
light co-polarized with the transmitter and cross-polarized to it. In the afternoon, the transmitter
was changed to right-hand circular polarization, and the receiver telescopes were filtered to
receive co- and cross-circularly polarized light.

Identification of internal waves in the lidar data was by visual inspection. The raw cross-
polarized lidar data was used for this because of the improved contrast, which facilitated
layer detection; the layers were much less visible in the co-polarized return. Data segments
with visible wave structure were processed further to correct for the exponential attenuation
and to subtract the background scattering to enhance the visibility of the layers. The depth

Fig. 1 Map of Orcas Island and surroundings. (a) Location of Orcas Island (black) in the north-
western United States between Vancouver, British Columbia, and Seattle, Washington; (b) Orcas
Island and surrounding islands, showing East Sound, which is about 10 km long, andWest Sound,
which is about half of that. The large bay on the east side of West Sound is White Beach Bay.

Fig. 2 Lidar system. (a) Schematic diagram of the laser transmitter optics and the receiver optics
for one of the two receiver channels; (b) wide-angle photo of the lidar looking toward the rear of the
aircraft. On the left is the receiver side of the optics package with the two telescopes at the bottom
and the photomultiplier tube modules near the center. The laser and transmitter optics are out of
view on the far side of the mounting plate. On the right, behind the pilot’s seat, is the stack of
electronics, including the laser cooling system (bottom), laser power supply, time-delay generator
(top left), and data-acquisition package (top right).

Churnside et al.: Airborne lidar detection and characterization of internal waves in a shallow . . .

Journal of Applied Remote Sensing 063611-3 Vol. 6, 2012

Downloaded From: http://remotesensing.spiedigitallibrary.org/ on 12/05/2012 Terms of Use: http://spiedl.org/terms



of the peak return was identified for each lidar shot, and the positions of the maximum depths of
the internal-wave oscillations were found. Because of the large number seen on September 16,
the analysis concentrated on that day.

In situ instrumentation comprised a Seabird conductivity, temperature, depth (CTD) profiler
with a Wetlabs AC-9 to measure the optical absorption and beam attenuation coefficients.
Conductivity was used to calculate salinity, which was combined with temperature to provide
density as a function of depth. The scattering coefficient was estimated as the difference between
the attenuation and absorption coefficients.

Photographs of the surface manifestations of the internal waves were taken through the
aircraft window with a Nikon D300 digital camera using an 18- to 200-mm focal length
zoom lens. The combination of a periodic displacement of a subsurface scattering layer with
a corresponding surface slick at the surface provides strong evidence for internal waves;
other mechanisms could produce perturbations of the scattering layer or surface slicks, but it
would be highly unlikely that these would occur together. The orientation and length of the
surface slicks in the photographs also provide information on the direction of propagation
and the width of the wave packet that are difficult to infer from the lidar alone.

To infer the width of the internal wave packet from one of the photographs (not presented),
we had to correct for the geometric distortion caused by the oblique view angle. The field of view
is easily obtained from the focal length of the zoom lens, which was recorded for each image.
This leads directly to the angle with respect to the optical axis represented by each pixel in the
image. We assumed that the camera was pointed at some angle α0 below the horizon with the
horizontal axis of the image parallel to the horizon. The position of each pixel on the surface can
then be written as

xij ¼ H cotðαyij − α0Þ sinðαxijÞ yij ¼ H cotðαyij − α0Þ cosðαxijÞ; (1)

where xij and yij are the position coordinates of the ij’th pixel on the surface perpendicular to
and along the optical axis, respectively, H is the aircraft altitude, αxij and αyij are the angles (in
the x and y axes) of the ij’th pixel. To estimate the angle α0, we selected two pixels at opposite
sides of the mouth of White Beach Bay and calculated the distance between them in the corrected
image, varying α0 until the calculated distance agreed with the actual distance of 1520 m
obtained from the nautical chart.

We also looked for evidence of stratified turbulence in plankton layers by calculating the
power spectrum of fluctuations in the lidar return along center of the layer. This investigation
used data from a previous deployment to East Sound, because those data could be compared with
in situ samples of zooplankton. Biological sampling was not done in 2011.

3 Internal Waves

Figure 3 is an example of the processed lidar data for one of the internal waves. The background
layer depth here was about 4 m, and the maximum depth of the internal wave was 7.8 m. This
large perturbation, almost equal to the layer depth, suggests nonlinear propagation. Furthermore,
two additional traits provide supporting evidence for this hypothesis. The first is the nonsym-
metric shape of the wave, which is sharper on the trough and more rounded on the crest. The
second is the fact that these waves were visible from the aircraft, because of the modulation of
surface roughness by the currents induced by the waves.

In all, 10 observations of internal waves were clearly seen in the lidar data of September 16,
two in the morning and eight in the afternoon. The positions of the troughs (maximum depths) of
the afternoon observations are shown in Fig. 4, along with the afternoon flight tracks. All of the
waves identified were near the mouth of White Beach Bay.

The in situ profile measured at the northern of the two locations (Fig. 5) shows a scattering
layer at a depth of 3.4 m, which is just below the depth where the density gradient is greatest. The
density profile has several step-like features, which are often related to different episodes of wind
mixing followed by re-stratification. It is useful to consider a two-layer approximation as a sim-
ple model of the complex structure in the density profile. This was done by simply picking
density values that seemed representative of the shallowest and deepest waters. The transition
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was set at the depth where the actual density was equal to the midpoint between the shallow- and
deep-water values.

For a two-layer ocean, the speed of propagation of a small (i.e., linear) internal wave is given
by:

clin ¼
�
g

�
1 −

ρ1
ρ2

�
h1h2

h1 þ h2

�1
2

; (2)

where g is the gravitational acceleration (9.8 m s−1), ρ1 is the density of the upper layer
(1021.7 kgm−3), ρ2 is the density of the lower layer (1022.53 kgm−3), h1 is the thickness
of the upper layer (2.57 m), and h2 is the thickness of the lower layer (16.53 m). Total
water depth here (h1 þ h2) was 19.1 m. The two-layer model for this case predicts a propagation
speed of 13 cm s−1. For weakly nonlinear internal waves, the Korteweg–de Vries (KdV)
equation predicts a propagation speed of:35

cKdV ¼ clin

�
1 − 0.5

�
h2 − h1
h1h2

�
A

�
; (3)

Fig. 3 Example of the relative lidar return across an internal wave (white to black represents 0 to 1)
as a function of distance along the flight track and depth. Each lidar profile has been normalized by
its maximum value, and the depth of that maximum is plotted as a white line.

Fig. 4 West Sound with flight tracks (red or gray lines), crests of internal waves (black ×),
and locations of in situ measurements (black circles) from observations on the afternoon of
September 16.
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where A is the wave amplitude. For example, nonlinear effects would reduce the speed to
11 cm s−1 in a wave with a 1 m amplitude.

Consider the internal wave of Fig. 3. The water depth is about the same (19.1 m), but the
thickness of the upper layer is 4 m, and the wave amplitude is 3.8 m. The layer densities are likely
to be similar to the measured profile, so the KdVequation would predict a propagation speed of
5 cm s−1. We made a second pass over the same area along the same direction 31 min later. The
wave had clearly evolved in that time, but we could line up the main peaks by shifting the second
record south by 87 m. Dividing 87 m by 31 min, we obtain a wave speed of 4.7 cm s−1, which is
in good agreement with the KdV prediction. This is more evidence for the nonlinear nature of the
wave, since the linear approximation predicts a speed of 16 cm s−1.

Numerical simulations,36 field measurements,37 and remote sensing observations38 have all
shown that the polarity of a nonlinear internal wave in a two-layer ocean depends on the relative
thickness of the two layers. If the upper layer is thinner, as in the case of Fig. 3, the wave will
manifest as a downward perturbation of the original layer. This polarity is clear from the figure. If
the bottom layer is thinner, the perturbation will be upward. Figure 6 depicts one such example,

Fig. 5 Profiles of density, σt (short-dashed line), a rough two-layer approximation to σt
(long-dashed line), and optical scattering coefficient b (black line) at a wavelength of 532 nm. The
measurement location was the northernmost of the two in situ measurements marked in Fig. 4.
The total water depth at this location was 19.1 m.

Fig. 6 Example of the relative lidar return across an internal wave (white to black represents 0 to 1)
as a function of distance along the flight track and depth. Each lidar profile has been normalized by
its maximum value, and the depth of that maximum is plotted as a white line.
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where the top layer is thicker than the bottom layer; in this case, the scattering layer is deeper
than the example in Fig. 3 and is perturbed upward by the internal wave.

The energy within an internal-wave field can be inferred from the aerial observations as well.
We note that the potential energy of a small volume of water dV is given by

dEP ¼ ρgzdV; (4)

where z is depth. In the two-layer approximation, integrating both sides yields

EP ¼ 0.5ðρ2 − ρ1ÞWg
Z

dx½h2ðxÞ − h21�; (5)

whereW is the width of the internal-wave field, h is the actual depth of the upper layer under the
influence of the internal wave, and x is in the direction of propagation. The total energy is the
sum of potential and kinetic energy, which are nearly equal.39 Therefore E ¼ 2Ep. Two passes of
the lidar provide the amplitude and phase speed from which the density difference can be
inferred. The integral is provided directly from the lidar. The width can be inferred from obser-
vations of the surface perturbation or from repeated passes of the lidar. For the case of Fig. 3, we
estimated the width to be 420 m using the distance between pixels at opposite ends of one of the
slicks in a photograph of the surface manifestation after applying the correction for geometric
distortion described in Sec. 2. We estimated the other parameters from the lidar data to get a total
energy of 9 MJ. The area of this wave train on the surface is about 420 by 200 m, so the average
energy density is about 100 Jm−2. At the measured velocity of 4.7 cm s−1, the 200-m-long wave
train will pass a point in 4300 s, so the power moving up West Sound is 2.1 kW.

4 Turbulence

In a strongly stratified body of water, the energy contained within the internal waves is converted
to turbulent energy at large scales through nonlinear interactions, and this energy cascades
through smaller scales. The resulting spectra of potential and kinetic energy are predicted to be40

EP ¼ 0.51εPε
−1∕3
K k−5∕3 EK ¼ 0.51ε2∕3K k−5∕3; (6)

where ε is the dissipation of potential or kinetic energy and k is the horizontal wavenumber. The
5/3 power law was originally derived for homogeneous and isotropic turbulence, but appears
also to be valid for the horizontal spectra of a thin layer of turbulence at spatial scales much
greater than the layer thickness.41

To the extent that plankton drift with the local fluid motion, we can consider them to be
passive additives that would have a horizontal spatial spectrum similar to that of the turbulent
energy. That implies that β, the volume scattering function at the lidar wavelength and scattering
angle (π rad), would also have a similar power spectrum42

Eβ ¼ 0.51εβε
−1∕3
K k−5∕3; (7)

where εβ represents the dissipation rate of the variance of β fluctuations. This is directly related to
the dissipation of the variance of plankton number density, but the relationship depends on the
volume scattering function of the individual organisms. There is very little information on these
relationships, especially for cross-polarized scattering from nonspherical organisms.43,44

Previous lidar measurements45 of the horizontal spatial power spectrum of lidar backscatter
produced a −3∕2 dependence rather than the −5∕3 dependence predicted by stratified-
turbulence theory. Horizontal power spectra in East Sound and West Sound also failed to
produce a −5∕3 power law. In the theory, the turbulent layer is at a constant depth where
the background density is assumed to be constant. In the real ocean, the layer is expected to
follow the constant-density surface, which is not at a constant depth. If, instead of the return
from a fixed depth, we select the return from the center of the layer and calculate the power
spectrum of this quantity, we can sometimes see the predicted −5∕3 dependence over the extent
of a layer (Fig. 7).
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Some layers failed to produce a clear power-law spectrum, however. The data presented in
Fig. 7 were taken during a previous deployment to East Sound where extensive in situ sampling
confirmed that almost no zooplankton were present within the layer. Other layers in the previous
measurements contained significant numbers of zooplankton, and no clear power law spectrum
was observed. Generally, zooplankton are more mobile than phytoplankton and are less likely to
be true passive additives. In addition, some phytoplankton (e.g., dinoflagellates) have limited
mobility, which has been shown to affect ocean color patterns46 and may be enough to violate the
passive-additive assumption. In other instances, the reason was not as clear, but lidar data may be
useful in deciding whether or not the dominant mixing process within a layer is stratified
turbulence.

5 Polarization Effects on Contrast

The layers that allowed detection of the internal waves were easier to see in the cross-polarized
return than the co-polarized return. This effect can be evaluated quantitatively by considering layer
contrast under different polarization conditions. For each shot, we define the contrast of the depo-
larized signal in terms of S, the cross-polarized lidar signal after correction for attenuation, as

Cx ¼
Sxmax − Sxmin

Sxmax þ Sxmin

; (8)

where Sxmax and Sxmin are the maximum and minimum values of the signal within the depth range,
respectively. For this analysis, we used a depth range of 2 to 10m. The top 2 m are contaminated by
surface reflections and bubbles in high winds, and the signals are noisy below 10 m in some areas.

To ensure that we were focusing the analysis on the scattering layers, the data were separated
into 10 s segments, and the shot with the highest contrast within each segment was selected for
further analysis. This time period corresponds with a horizontal distance of about 400 m, and
visual inspection of the data suggests that this is sufficient to include a strong layer in most cases.
For the selected data, we calculated the contrast of the co-polarized signal at the same depths as
Cx and the depolarization as the ratio of Sxmax to the co-polarized signal at the same depth.

The contrast, plotted in Fig. 8, shows variability from flight to flight, but the depolarized
contrast is clearly higher. For the linear polarization, average contrast was 0.13� 0.03

for the co-polarized signal and 0.25� 0.04 for the cross-polarized case. This difference is
statistically significant (p < 0.001 in a two-sided t-test). For the circularly polarized cases,

Fig. 7 Example of measured power spectral density of lidar return along a layer as a function of
spatial frequency. For clarity of presentation, spectral values have been averaged for wavelengths
less than 100 m and the positive error bar represents one standard deviation of the initial values.
The line is a −5∕3 power law.
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the corresponding values are 0.18� 0.04 and 0.26� 0.01, which also represents a statistically
significant difference (p ¼ 0.010). Interestingly, the contrast values for the linear and circular
cross-polarized signals were not significantly different (p ¼ 0.77). For the co-polarized signals,
the difference between linear and circular polarization was larger (p ¼ 0.046), but still only
bordering on significant even if a low standard of p < 0.05 is adopted.

The lack of a significant difference in contrast between linear polarization and circular polar-
ization suggests that both linear and circular depolarization carry the same information. In 1957,
van de Hulst24 used symmetry arguments to show that the Mueller matrix for the case of interest
for lidar (scattering angle of 180 deg) from a collection of particles was diagonal with only three
parameters as long as each particle is accompanied by its mirror image. Hu et al.25 showed that
two of these parameters were related for backscattering for even a single dielectric particle. Mis-
hchenko and Hovenier26 combined these two results to obtain the following Mueller scattering
matrix:

M ¼ βðπÞ

2
6664
1 0 0 0

0 1 − d 0 0

0 0 d − 1 0

0 0 0 2d − 1

3
7775; (9)

where βðπÞ is the volume backscatter coefficient at 180 deg and d is the single polarization
parameter.

This implies that the depolarization of an initially polarized beam will be

DL ¼ d
2 − d

DC ¼ d
1 − d

(10)

where D is the ratio of the backscattering perpendicular to the incident polarization to that in the
same polarization for incident light that is either linearly (L) or circularly (C) polarized. If this
Mueller matrix applies, we should be able to predict what the circular depolarization should be
based on the linear depolarization according to the following relationship:

DC ¼ 2DL

1 −DL
: (11)

Average depolarization values (Fig. 9) suggest that the circular depolarization is greater than
linear, as predicted. Overall, we have DL ¼ 0.06� 0.01 and DC ¼ 0.11� 0.03, and the differ-
ence is statistically significant (p ¼ 0.028). For the cases with linear polarization, we have also

Fig. 8 Optical contrast by flight as a function of year day, 2011. Symbols denote linear cross-polar-
ized (+), linear co-polarized (×), circular cross-polarized (•) and circular co-polarized (○) values.
Error bars denote � one standard deviation of the values measured during each flight.
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estimated what the circular polarization would have been if Eq. (10) is valid. The overall average
is 0.13� 0.02, which is not statistically different (p ¼ 0.28) from the actual measurements using
circular polarization. This is consistent with recent measurements of atmospheric scattering.47–50

6 Surface Manifestations

As noted in the introduction, internal waves can be detected by microwave radar because the
induced surface currents modulate the surface roughness. This same process affects the amount
of skylight reflected from the surface. The reason is that the Fresnel reflectivity from the surface
is not a linear function of incident angle, so the average reflectivity of a roughened surface at
some nominal view angle is not the same as the reflectivity of a flat surface at the same angle.
The magnitude of the effect depends on the view angle, surface roughness, and polarization of
the skylight, but can be a few percent for view angles of 60 deg to 70 deg from nadir and root-
mean-square surface angles near 5 deg.

A photograph taken from the aircraft (Fig. 10) shows the surface signature of one of the wave
packets observed. While the information is in the original image, it is much more visible after
contrast enhancement. The black line added to the original image crosses three slicks associated
with the wave. Figure 11 is a plot of relative pixel value in the green channel of the original color
image from the bottom of this line to its top. A linear regression of pixel value was used as the
background value, since there was a nearly linear change in illumination along the line. The
relative value at each pixel is then estimated as the difference between the pixel value and
the regression value, normalized by the regression value. The three slicks are clearly visible,
with peak values of about 2%, as expected from the Fresnel reflectivity estimates.

The presence of the surface manifestation is important for interpreting the lidar data, because
it provides the direction of the wave fronts. With this information, we were able to calculate
internal wave wavelength and phase speed in Sec. 3, knowing that our flight track crossed
the waves nearly normal to the wave front. Without this information, the angle between the
phase front and the lidar track is uncertain, and the estimate of wavelength is subject to error.
We should point out that the wavelength could also be inferred from the image in Fig. 10, but to
do this quantitatively would require a correction of the geometric distortion of the image as
described in Sec. 2. This was not done for this image, because we obtained the wavelength
from the lidar data.

Remotely sensing the surface manifestation alone misses important information. There have
been attempts to infer the depth of the pycnocline from the surface manifestations of internal
waves, but with limited success.51,52 These have only been made for a two-layer model of ocean

Fig. 9 Layer depolarization by flight as a function of year day, 2011. (×) is linear depolarization,
(○) is circular depolarization, and (•) is circular depolarization predicted from the measured linear
depolarization. Error bars denote � one standard deviation of the average of each flight.
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density profile and require multiple observations. The amplitude of the wave is not possible to
measure. The primary advantage of radar detection of the surface manifestation is that it is pos-
sible from space; there are currently no orbiting lidar systems capable of internal-wave detection.
The closest is the NASA Cloud-Aerosol Lidar with Orthogonal Polarisation (CALIOP), but it
lacks both the vertical and horizontal resolution for this application.53

7 Conclusions

Airborne lidar can easily detect nonlinear internal waves in a shallow fjord when conditions are
right to produce a plankton layer associated with a density gradient. The propagation of these
waves seems to be fairly well modeled by a two-layer ocean model and the KdVequation. While
there were almost certainly linear internal waves in West Sound during our measurement period,
their amplitudes would have had to have been much less than 1 m for nonlinear effects to be
negligible. Detection of these would require more sophisticated processing to discriminate
between internal waves and random variability.

The observed −5∕3 power law spectrum of lidar backscatter along the layer suggests that
stratified turbulence played an important role in producing the variability in lidar backscatter.
This spectral dependence is a necessary, but not sufficient condition for stratified turbulence, and
more work is needed to establish the reliability with which turbulent mixing within a layer can be
identified.

Fig. 10 Photo of the surface signature of one of the observed internal waves: (a) original with a
black line marking the section plotted in Fig. 11; (b) same image after contrast enhancement.

Fig. 11 Relative pixel value above background level as a function of position along the black line
in Fig. 10(a) (bottom to top).
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The layers that create the lidar signal can most easily be observed using a polarized trans-
mitter and a cross-polarized receiver, but there is no significant difference in contrast between
lidars using linear or circular polarization. The reason for this seems to be that the single-para-
meter Mueller matrix that has been used for atmospheric lidar studies is also valid for scattering
from plankton layers in the ocean.

When surface manifestations of internal waves are visible, these can provide additional infor-
mation about the direction of propagation and width of the wave front. This can be done reliably
with visible images, even if the contrast is low. The combination of lidar and surface imagery
provides the total energy in an internal-wave packet.
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