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Abstract: The effective size of a population (N, ) ratber than the census size (N) determines its rate of ge-
netic drift. Knowing the ratio of effective to census size, N./N, is useful for estimating the effective size of a
population from census data and for examining bow different ecological factors influence effective size. Two
different multigenerational ratios bhave been used in the literature based on either the aritbmetic mean or the
barmonic mean in the denominator. We clarify the interpretation and meaning of these ratios. The arith-
metic mean N./N ratio compares the total number of real individuals to the long-term effective size of the
population. The barmonic mean N./N ratio summarizes variation in the N./N ratio for each generation. In
addition, we show that the ratio of the barmonic mean population size to the arithmetic mean population
size provides a useful measure of how much fluctuation in size reduced the effective size of a population. We
discuss applications of these ratios and empbasize bow to use the harmonic mean N./ N ratio to estimate the
effective size of a population over a period of time for which census counts bhave been collected.

Relacion entre Tamafio Efectivo y Censal en Poblaciones Fluctuantes

Resumen: El tamarsio efectivo de una poblacion (N.) y no el tamario censal (N) determina su tasa de de-
riva génica. Conocer la proporcion del tamaiio efectivo con el censal, N./N, es de utilidad para estimar el
tamario efectivo de una poblacion a partir de datos censales y para examinar como influyen en el tamario
efectivo diferentes factores ecologicos. Se han utilizado dos diferentes proporciones N./N en la literatura bas-
ados en la media aritmética o en la media armoénica en el denominador. Aclaramos la interpretacion y sig-
nificado de esas proporciones. La media aritmética en la relacion N./N compara el total de individuos reales
con el tamario efectivo de la poblacion a largo plazo. La relacion N./N con base en la media armonica sin-
tetiza la variacion en la proporcion N./N para cada generacion. Adicionalmente, mostramos que la pro-
porcion de la media armonica del tamaiio poblacional con la media aritmética del tamario poblacional es
una medida 1itil de como la fluctuacion en tamario reduce el tamario efectivo de una poblacion. Discutimos
las aplicaciones de estas proporciones y enfatizamos como utilizar la proporcion N./N basada en la media
armonica para estimar el tamario efectivo de una poblacion en un periodo de tiempo en el cual se ban
colectado datos censales.

Introduction

Some of the most important work in conservation genet-
ics has explored interactions between population size,
genetic diversity, and population fitness. Small popula-
tion size can lead to loss of neutral genetic variation, fix-
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ation of mildly deleterious alleles, and thereby reduced
population fitness. The rate of this process depends on
the effective size of a population, N,, rather than the ac-
tual number of living individuals, N, making the effective
size of a population one of most fundamental parame-
ters in evolutionary and conservation biology.

The effective size of a population is the size of an ideal
population that would be affected by genetic drift at the
same rate as the actual population (Wright 1931). The
ideal population with which natural populations are com-
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pared has discrete (nonoverlapping) generations, an even
sex ratio, constant size, random union of gametes, and
random survivorship of offspring (Wright 1931). Although
intensive management can potentially cause the effective
size of a population to be greater than the census size
(e.g., by equalizing the reproductive success of all indi-
viduals), deviation from ideal conditions in nature typi-
cally causes N, to be <N. Unfortunately, directly estimat-
ing the effective size of natural populations is difficult.
Estimating N, requires either genetic data (for review
see Neigel 1996) or demographic data (for review see
Caballero 1994) that typically are difficult to obtain. These
difficulties often motivate use of census data to estimate
N, by multiplying a measure of census size by an esti-
mate of the ratio of effective size to census size, N,/N.

Although the concept of effective population size is el-
egantly simple, many applications of the theory are quite
complex, and even a strategy as apparently straightfor-
ward as multiplying a census count by a ratio can be
complicated. Consider recent theoretical and empirical
efforts to estimate N,/N in natural populations and de-
scribe its properties. Theoretical examination of uneven
sex ratios, nonrandom mating, overlapping generations,
and variation in family size by Nunney (1991, 1993,
1996) suggests that N,/N should be approximately 0.5 in
most populations and only rarely <0.25. Therefore,
when Frankham (1995) examined a large number of em-
pirical estimates of N,/N and found that N,/N ratios have
an average value of 0.1 in nature, he concluded that
wildlife populations generally have smaller effective
sizes than predicted by theory. Vucetich et al. (1997) re-
solved this apparent discrepancy by pointing out that
the theory of Nunney (1991, 1993, 1996) assumes con-
stant population size. When Vucetich et al. accounted
for population fluctuation, empirical estimates were in
rough agreement with theoretical expectations.

Although such research has considerably advanced
our understanding of effective population size and its
conservation applications, several important issues relat-
ing to multigeneration N,/N ratios remain unresolved.
First, no one has defined what N,/N represents in fluctu-
ating populations in terms of real and ideal individuals.
Second, there is no comprehensive framework to relate
how inter- and intrageneration demographic processes
interact to determine N,/N. Most previous research ei-
ther relates to one generation, assumes that N,/N for
each generation is constant, or describes the cumulative
effect of both processes. Third, discussion of how to use
N,/N to estimate effective sizes from census counts has
left a few important issues unclear.

We address each of these three issues. We propose
definitions for N,/N in fluctuating populations in terms
of real and ideal individuals and then derive mathemati-
cal formulae for these definitions. Although the biologi-
cal definitions for these NV,/N ratios are novel, we found
that they naturally led to the formulas for the two N,/N
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ratios that are currently in use. We review some of the
properties of these ratios and describe how they can be
used in a few conservation applications.

Defining the Ratio of Long-Term Effective Size to
Census Size

Effective Population Sizes in Fluctuating Populations

Effective population sizes can be defined for at least
three different time frames: a single generation, several
generations, or a large number of generations. At the
shortest time frame is the effective population size of a
single generation, N, , (where # indicates the #th genera-
tion). The effective size of a population over & genera-
tions is approximately the harmonic mean of the single-
generation effective sizes (Wright 1938; Crow & Kimura
1970; Motro & Thompson 1982):

(N,), = harmonic mean(N, ;,N, Now)- @))

e, 1>*ve2 - -

We call this effective size the multigeneration effective
size. The multigeneration effective population size de-
scribes a population over a specific number of genera-
tions—for example, the effective population size of the
black-footed ferret (Mustela nigripes) captive breeding
program or the effective size of the grizzly bear (Ursus
arctos) population in Montana since 1950. Lastly, the ef-
fective size of a population over a large or perhaps indef-
inite number of generations, either in the past or into
the future, is often of interest—for example, the effective
size of bighorn sheep (Ovis canadensis) populations since
the Pleistocene or the expected future effective size of
populations given current management practices. In many
circumstances this effective size is essentially equivalent
to (V,),, defined over a large number of generations. We
call this effective population size the long-term effective
size and represent it by (V, ) ,, to emphasize that it is of-
ten the asymptotic value of (V,),, as k increases.

Ratios of Effective Population Size to Census Size in
Fluctuating Populations

The ratio of effective to census size for one generation,
N, /Ny, is useful in summarizing the cumulative effects
of sex ratio and variance in family size for one genera-
tion. Because N, ,/N, is defined for only one generation,
it is not affected by and does not account for population
fluctuation. Defining a multigeneration analogue of N, ,/N,
can be done in at least two ways.

Let us first define a multigeneration N, ,/N, ratio as a
representative value of N, ,/N, during & generations. In
real populations census sizes, effective sizes, and their
ratios will probably vary each generation. The interac-
tion of these variables can be described by rewriting
equation 1 as
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(N,), = harmonic mean(NlTl, sz—vz—. ..N, 3 ).(2)
Let us define a multigeneration N,/N ratio, o, as the
value that N, /N, would have in equation 2 if the ratio
were constant each generation. This is analogous to de-
fining (V,),, as the value that N, , would have if N, , were
constant each generation. Therefore, let us define «, as
the ratio that satisfies the relationship

(N,), = harmonic mean(N 0, N,0. . .Np0lp), (3

where k indicates the number of generations for which
o, is defined. From equation 3 we obtain
(),
(N’

where (N)k is the harmonic mean census count over &
generations. Because o, is similar to a weighted average
of N, ,/N, values, it measures the cumulative effect of in-
trageneration departures from ideal conditions (sex ra-
tio, variance in family size) on (V,), in fluctuating popu-
lations. Population fluctuation also affects oy, but only
indirectly through interactions with variation in N, ,/N,.

Alternatively, we can define a multigeneration N, /N,
ratio to describe how all real individuals born during &
generations compared with their ideal counterparts. The
total number of real individuals living during & genera-
tions is

@

Ol

and the total number of ideal individuals “living” in the
same period of time is 2(V,),. Therefore, the ratio of

k
E(N), 10 Y N,,

t=1

which we will call 3, serves as a reasonable comparison
between ideal and real individuals. We obtain
RN, (N,
k - — I
o (N
N t
t=1

6))

where (N)k is the arithmetic mean census count over &
generations. The quantity 3, represents the proportional
contribution of each real individual (relative to an ideal
individual) to the multigeneration effective size of a pop-
ulation. This definition incorporates the combined ef-
fect of both intergenerational and intragenerational de-
partures from ideal conditions.

Relationship between Inter- and Intrageneration Effects
onN,/N

We defined o, to describe how intrageneration effects
influence N, and (3, to describe the cumulative influence
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of both inter- and intrageneration effects on N,. The ra-
tios oy, and 3, are related by

Br = 0dp ©

where b, = (V),/(N),,. The ratio ¢, is a useful measure
of how much the census count of a population fluctu-
ates. If a population remains constant in size, ¢, = 1.0,
whereas populations that fluctuate wildly will have val-
ues for ¢, close to 0.0. The ratio o, is affected by sex ra-
tio and variance in family size; the ratio ¢ is affected by
fluctuations in size. Equation 6, therefore, shows that 3,
is the product of both intra- (o) and intergeneration (¢b)
effects.

We can describe the relationship between (V,), and
intra- and intergeneration effects by rewriting equation 6
as

(Ne)k = (N)k.(xkq)h D

In equation 7, the arithmetic mean population size, (N)k,
is the size that each generation would have if population
size had been constant and the same total number of in-
dividuals were born. If the arithmetic mean population
size is a reasonable description of the population’s “nor-
mal” size, we can view (N e as the effective size a popu-
lation would have had if it had been ideal. If we view (N e
in this manner, then o, and ¢, show how intra- and in-
tergeneration effects, respectively, lower the effective
size of a population.

But the arithmetic mean population size must not be
accepted uncritically as the size a population would
have if it were not fluctuating. For example, the arith-
metic mean of the census counts 100, 100, 900, and 100
is 300, but viewing 300 as the size the population would
have if it did not fluctuate seems inappropriate. In a cir-
cumstance such as this, we may simply represent the ef-
fective population sizes of the fluctuating population by
the harmonic mean population size and relate this to
WV, as

(N, = (N)k0L. ®

Equation 8 does not contain a term indicating how
much a population has fluctuated in size. This is because
a population will have the same long-term effective size
whether it has a constant population size of K or a fluc-
tuating population with a harmonic mean population size
equal to K. This emphasizes that the familiar statement
“population fluctuation reduces N,” compares a fluctuat-
ing population with one of constant size, the same total
number of individuals, and the same N, ,/N, ratios.

Example: Applying Definitions of o, 3, and ¢ to Data

An example (Table 1) illustrates what a, 3, and ¢ repre-
sent. Real populations often deviate from ideal popu-
lations in each of the ways described above, but let us
examine a population that has only two non-ideal char-
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Table 1. Effective population size and ratios of effective population size to census size in four generations of a hypothetical population with
nonoverlapping generations, an unequal sex ratio, and Poisson variation in reproductive success within sexes.

Generation N; Np, N, N Ne /N
1 32 19 51 47.7 0.94
2 19 3 22 10.4 0.47
3 89 18 107 59.9 0.56
4 201 71 272 209.9 0.77
Ny 113

@y 51.2

(N4 = harmonic mean (47.7, 10.4, 59.9, 209.9) 28.8

oy = (]Yg)4/(ﬂ~)4 0.56
by = VYWD 0.45
Bs= V)N 0.25

acteristics: variable population size and an unequal sex
ratio. The effective size of each generation of such a
population is determined by the number of male and fe-
males according to the relationship

N — 4Nm,t Nﬁt
S N+ Ny,

(Wright 1938), where N, , and N;, indicate the number
of males and females, respectively, in generation £ Dur-
ing the four generations covered in this example, the
size of the population varied from 22 to 272 individuals,
N, varied from 10.4 to 209.9, and the ratio N, ,/N, var-
ied from 0.47 to 0.94. The cumulative effect of the un-
even sex ratio was to reduce (V) by a factor of 0.56
(.e., ay = 0.56 indicates that (V,), is 56% of what (V,)4
would have been if the sex ratio had been 1:1 among the
individuals mating each generation). This also means
that, from a neutral genetic perspective, this population
is equivalent to a population having the same census
count as that in the example and a constant N, ,/N, ratio
of 0.56 each generation. The effect of population fluctu-
ations was to reduce the effective size (compared with
the arithmetic mean size) by a factor of 0.45 (i.e., ¢, =
0.45). The combined effect of both population fluctua-
tion and sex ratio effects was to reduce the long-term ef-
fective size by a factor of 0.25 ((0.56)(0.45) = 0.25),
which is equal to 3. Another way of viewing this popu-
lation is that 452 individuals living during four genera-
tions passed on as much neutral genetic variation as four
generations of 28.8 ideal individuals. Therefore, each of
the real individuals living during these four generations
was equivalent to 0.25 of an ideal individual.

Relationship to Previous Research

Previous empirical and theoretical work has focused on
B. For example, Frankham (1995) and Vucetich et al.
(1997) reviewed the value of 3 across many taxa and ex-
amined how ¢ was related to § by assuming that N, /N,
was constant. Vucetich and Waite (1998) examined the
statistical properties of 3. The ratio o has received less
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application and discussion, but Nunney (1996) used it in
place of N, /N, to factor out the effect of population
fluctuations. Vucetich and Waite (1998) suggested that
the arithmetic mean value of N,,/N, be used to summa-
rize variation in N, ,/N,. Defining « this way will not sat-
isfy equation 2, however, and this approach should not
be used.

The integration of intra- and intergeneration effects
(equations 06, 7, 8) on N, extends or complements previ-
ous formulations. In particular, o permits variation in
N, /N, to be summarized. The ratio ¢ is valuable as a
measure of population fluctuation in a way that is rele-
vant for effective size theory. But the standard deviation
of the natural logarithm of population size can be used
to approximate ¢:

1

bp =
, 12
{1 +0.5[In(10)0,,] }

(Vucetich et al. 1997).

Comparison of Properties of o, 3, and ¢

Response to Population Fluctuation

One of the most important differences among «, 3, and ¢
is that a is not directly affected by population fluctuation,
whereas 3 and ¢ are. Consider an example (Table 2) of
a population fluctuating in size but with N, ;/N, equal to
a constant value of 0.5 each generation, which might oc-
cur if mating patterns, variance in family success, and
sex ratio were constant each generation. In this exam-
ple, the single-generation effective population size, N, ,,
ranges from 60 to 600; the four-generation effective size,
(N, is approximately 104. The ratio oy is equal to 0.5,
the value of N, ,/N, each generation. This is reassuring
because a is defined as the value that N, ,/N, would have
if N, ;/N, was constant. In this example, population fluc-
tuation by itself reduced the effective size of this popula-
tion by a factor of 0.48 (i.e., ¢ = 0.48). The cumulative
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Table 2. Example of a hypothetical population undergoing
fluctuations in population size but having a constant N, ,/N, ratio.

Generation N, Ne, Ne o/ N;
1 120 60 0.5
2 190 95 0.5
3 1200 600 0.5
4 210 105 0.5
(JY)4 430

@, 208.4

W) 104.2

oy = N/ V) 0.50
by = (]\”7)4/(5)4 0.48
By = N/, 0.24

effect of intra- and intergenerational departures from
ideal conditions was to reduce the effective size to ap-
proximately one-quarter of the arithmetic mean popula-
tion size (i.e., (e )(dy) = B4 = 0.24).

When population size is not constant, the harmonic
mean population size will always be less than the arith-
metic mean population size (e.g., Kendall et al. 1994),
and ¢ will be <1. The ratio  will always be <a, there-
fore, unless census sizes are constant.

Influence of Population Bottlenecks and Expansions on o, 3,
and ¢

Population fluctuation may be viewed as reducing N,
and ¢, but the effects of population bottlenecks (a rapid
decrease in population size) and expansions (a rapid in-
crease in population size) have statistical properties that
may be counterintuitive (Table 3). The effect of these
special types of population fluctuations can be explored
by examining two hypothetical populations with a con-

Table 3. Interactions between population fluctuations, N, ,/N,, o,
¢, and B, in hypothetical populations.

Population w/ Population w/

bottleneck explosion
Generation N, Ng¢ N /N N, Neo  Neo/N
Constant N, ,/N,
1 400 200 0.5 400 200 0.5
2 400 200 0.5 400 200 0.5
3 40 20 0.5 4000 2000 0.5
4 400 200 0.5 400 200 0.5
Ny 61.5 258.1
by 0.40 0.40
By 0.20 0.20
Variable N, ,/N,
1 400 200 0.5 400 200 0.5
2 400 200 0.5 400 200 0.5
3 40 40 1.0 4000 4000 1.0
4 400 200 0.5 400 200 0.5
V)4 100.0 262.3
oy 0.81 0.51
by 0.40 0.40
By 0.32 0.20
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stant size of 400 except for a one-generation bottleneck
or expansion. For simplicity, we assume that N, ,/N, has
been constant and equal to 0.5 each generation. These
populations would therefore have had an effective size
of 200 if there had been no bottleneck or expansion (Ta-
ble 3). A one-generation bottleneck that reduces popula-
tion size to one-tenth its normal value lowers the multi-
generation effective size from 200 to approximately 62.
A one-generation population explosion that increases
the population ten-fold only increases the four-genera-
tion effective size to approximately 258. Because we as-
sumed that N, ,/N, was constant, o is unaffected by ei-
ther event. In contrast, both the bottleneck and the
expansion cause ¢, to equal 0.4 and B, to equal 0.2. The
complexity of these ratios is illustrated by the observa-
tion that neither oy, ¢4, nor B, behave similarly to (V,)4
in this example. The bottleneck decreased (V,),, ¢, and
B4, whereas the explosion increased (V,), but decreased

¢, and By

Effect of Variation in N, ,/N, on , B, and ¢

To examine how variation in N, ,/N, affects N,, a, 3, and
¢, we return to our simple example of a population bot-
tleneck and expansion: the most common size of the
population was 400 and N, ,/N, was 0.5 each generation
(Table 3). Now we consider the consequences of a bot-
tleneck having a N, ,/N, ratio of 1.0 instead of 0.5 (Table
3). In this circumstance, the multigeneration effective
size increases 60% from 62 to 100. If the explosion gen-
eration has a N, ,/N, ratio of 1.0 instead of 0.5, the multi-
generation N, increases only slightly from 258 to 262—
illustrating the fact that generations with smaller N, ,
have a strong effect on N,. The ratio ¢, is unaffected by
variation in N, ,/N, because it is a function of population
size only, but o increases dramatically from 0.5 to 0.81
when the bottleneck generation has an N, ,/N, ratio of
1.0. The ratio oy is largely unaffected by the value of
N, /N, during the explosion generation. This trend is
general: generations with a small population have a dis-
proportionately large influence upon the value of .
Nunney (1996) describes a,, as factoring out population
fluctuation, and this is true if N, ,/N, is constant. If N, ,/
N, is variable, however, then o, is affected by popula-
tion fluctuation in the complex manner that this exam-
ple illustrates.

Relationship between (N,),, o, and (3, and ¢, and Number
of Census Counts

The long-term effective size of a population usually de-
creases as a population is observed for increasing
lengths of time (Vucetich et al. 1997; Vucetich & Waite
1998). This is because generations with small N, essen-
tially determine the long-term effective size of popula-
tions, and, everything else being equal, the longer a pop-
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ulation is observed, the more likely it is to experience a
generation of small effective size. The ratio 3 also usu-
ally decreases as new data are incorporated (Vucetich et
al. 1997; Vucetich & Waite 1998). If a population does
not have a long-term trend of growth or decline, (V,),
and (3, will often approach asymptotic values when the
population has been observed for a large number of gen-
erations (Vucetich et al. 1997; Vucetich & Waite 1998).
This effect can have important consequences for esti-
mating (V,),, from a small number of census counts.

To evaluate the effect of the number of census counts
on (V,),, oy, B, and &,, we considered a simple density-
dependent stochastic logistic model of population fluc-
tuation (Dennis & Taper 1994), parameterized to simu-
late a population of Grand Teton National Park elk (Cer-
vus elapbus) (Dennis & Taper 1994). In this example,
the population is expected to grow when its size is less
than about 1500 individuals and to decline when its size
is more than about 1500. We obtained the effective pop-
ulation size for each generation by assuming that N, ,/N,
was independent of census size and normally distributed
around 0.5. We first assigned N, ,/N, a high variance,
choosing a value so that N, /N, for each generation had
a 99% chance of falling between 0.25 and 0.75. We ran
10,000 simulations of 1000 generations for this model
and calculated the average value of (V,),, o, By, and ¢,
as k increased. We present results for the first 10 genera-
tions only because parameters appeared to quickly ap-
proach asymptotic values.

Consistent with results obtained by Vucetich and
Waite (1998), we found that the average value of (V,),
and (3, decreased steeply toward an asymptote (Fig. 1).
In this example B, approached its asymptote in a few
generations. If population size fluctuated more, this ap-
proach would require more time. This has important

1.0

0.8
o 0.6
k= :

O O —F 0 (04

X o4

0.2

0.0

2 4 6 8 10
Number of census counts

Figure 1. Average value of oy, ¢y, and By, calculated

over an increasing number of census counts for

10,000 simulations of an elk population (Dennis &
Taper 1994).
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ramifications for estimating long-term effective sizes
from short-term data. In contrast, o, was nearly indepen-
dent of the number of census counts. The slight decline
in oy, as increasing numbers of censuses were performed
shows that o, can be dependent on the number of cen-
sus counts even when N, ,/N, is independent of popula-
tion size. This seems to be because bottlenecks with a
low N, ,/N, affect o, more than bottlenecks with the
same population size but higher values of N, ,/N, (e.g.,
Table 3). But the observed decline from 0.50 to 0.48
over 10 generations was slight. When we assigned N, ,/
N, a smaller—and probably more realistic—variance, o,
was even less sensitive to the number of census counts.
This lead us to conclude that if N, ,/N, is independent of
census counts, then o, will probably be approximately
independent of census counts.

If N, ,/N, is not independent of population size, then
V), oy, and B, will all have different statistical proper-
ties from those we discussed. For example, if N, ,/N, was
expected to be higher during generations with a low
census count, then the average value of o, would in-
crease as more data is collected.

Estimating Effective Sizes from Census Data

The properties of «, B, and ¢ provide a basis for using
these ratios to estimate effective sizes (single-generation,
multigeneration, and long-term) from census count data.
An estimate of the effective size of a single generation,
N, ;, can be obtained from a census count by multiplying
the census count by an appropriate value for N, ,/N,.
Theoretical arguments (Nunney 1991, 1993, 1996) sug-
gest that N, ,/N, should be approximately 0.5 and sel-
dom <0.25 or >0.75 in animal populations. Empirical
examination (Frankham 1995) appears to support this
prediction and shows that different taxa have different
values. For example, plants appear to have lower values
of N, ,/N, than animals.

A guide to estimating the effective size of a population
over multiple generations is the number of terms in
equation 7, (N, = (N)kakﬁk, that can be estimated
from data available for the population and how many
terms must be estimated from theoretical or empirical
arguments. Estimating (V,), when census data are avail-
able is straightforward because ¢, is estimated from the
census counts and «,, is the only unknown parameter in
equation 7. Although o, has not been studied exten-
sively, if N, ,/N, is independent of census size, then most
theoretical and empirical discussion of N, ,/N, probably
applies to oy, as well. For example, if N, ,/N, is indepen-
dent of census size, then o, should be approximately 0.5
for most animal populations and seldom <0.25. Differ-
ent taxa appear to have different values of N, ,/N, (e.g.,
Frankham 1995), so reviewing published estimates of
N, /N, for similar taxa will probably be valuable. If N, ,/N,
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tends to be larger when populations are small (as was
observed by Pray et al. 1996), then o, might be larger
than expected. Conversely, if N,,/N, tends to be smaller
when populations are small, o, might be smaller than
expected. But if N, ,/N, is related to census size, o, will
probably be approximately independent of the number
of census counts unless N, /N, varies widely or the rela-
tionship between N, ,/N, and census size is strong.

Estimating the long-term effective size of a population,
V), from a limited number of census counts requires
making more assumptions than estimating (V,),, be-
cause estimating (NV,),, requires making a statement
about the size of the population during generations that
have not been observed. In this situation one knows ¢,
and has to decide how close this value is to the asymp-
totic value of ¢ (Vucetich et al. 1997; Vucetich & Waite
1998). If the population has been examined for many
generations, then one might assume that most of the
population’s variability in size has been observed (Pimm
& Redfearn 1988; Arino & Pimm 1995) and that &, is
close to its asymptotic value. If the population has been
observed for only a short period of time, then asymp-
totic ¢ probably will be less than the observed value of
&, In this situation, ¢, can be used to approximate a
maximum value for asymptotic ¢. Another, perhaps bet-
ter, alternative may be to estimate a confidence interval
for the asymptotic value of ¢:

¢k(X;1,k)2 q)k(X;z)l,k)z
b ok = S5, ] e for—te= Jou{ 15,0 |

where sz’k refers to the pth percentile of the chi-square
distribution with % degrees of freedom (Vucetich & Waite
1998).

Estimating the long-term effective size of a population,
(N, when only the arithmetic mean census size is avail-
able is substantially more difficult than when census
counts are available, because both o, and ¢, are unknown
in this circumstance. Once again, obtaining a reasonable
estimate for ¢,, is complicated by the dependence of ¢, on
the number of census counts. Furthermore, empirical re-
views (Pimm & Redfearn 1988; Frankham 1995; Vucetich
et al. 1997; Vucetich & Waite 1998) show that ¢,, varies
widely across species. These reviews suggest that the as-
ymptotic value for ¢, has an average value of 0.45 across
species, so this value might be used if enough generations
have been censused. If only a few generations have been
censused, then a larger value might be used.

Conclusions

We began this investigation by proposing two biologi-
cally meaningful definitions for N,/N ratios in fluctuat-
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ing populations: «, the value that N, ,/N, would have if it
were constant each generation, and 3, a description of
how much each real individual contributed to the effec-
tive population size. These biological definitions led nat-
urally to mathematical representations incorporating
harmonic (o) and arithmetic () mean population sizes,
which, conveniently, are the ratios used in previous re-
search. Next, we showed that (3 is simply a times a ratio
(d) that reflects how much the population fluctuated in
size. Each ratio is affected by population fluctuation, but
in fundamentally different ways: 3 is reduced by popula-
tion fluctuation itself, whereas « is reduced by small val-
ues of N, ,/N,, particularly in generations of small size.
Understanding these properties will be essential in using
a and B to monitor or manage genetic diversity in small
populations.

An important question remaining in effective-size the-
ory is how N, ,/N, ratios vary in natural populations. A
better understanding of this relationship would be use-
ful in predicting the effect of population bottlenecks on
genetic variation in populations. For example, high N, ,/
N, ratios during bottlenecks would reduce the effect of
genetic drift. Pray et al. (1996) observed this in small ex-
perimental populations of the red flour beetle (Tribo-
lium castaneum), but their study design did not address
how ecological determinants of population size might
affect N, ,/N,. Therefore, further exploration of this rela-
tionship would be valuable.
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