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The computer program STRUCTURE does not
reliably identify the main genetic clusters within
species: simulations and implications for human
population structure

ST Kalinowski
Department of Ecology, Montana State University, Bozeman, MT, USA

One of the primary goals of population genetics is to
succinctly describe genetic relationships among populations,
and the computer program STRUCTURE is one of the most
frequently used tools for doing so. The mathematical model
used by STRUCTURE was designed to sort individuals into
Hardy–Weinberg populations, but the program is also fre-
quently used to group individuals from a large number of
populations into a small number of clusters that are supposed
to represent the main genetic divisions within species. In this
study, I used computer simulations to examine how well
STRUCTURE accomplishes this latter task. Simulations of
populations that had a simple hierarchical history of fragmenta-
tion showed that when there were relatively long divergence
times within evolutionary lineages, the clusters created by

STRUCTURE were frequently not consistent with the evolu-
tionary history of the populations. These difficulties can be
attributed to forcing STRUCTURE to place individuals into too
few clusters. Simulations also showed that the clusters
produced by STRUCTURE can be strongly influenced by
variation in sample size. In some circumstances, STRUCTURE
simply put all of the individuals from the largest sample in the
same cluster. A reanalysis of human population structure
suggests that the problems I identified with STRUCTURE in
simulations may have obscured relationships among human
populations—particularly genetic similarity between Europeans
and some African populations.
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One of the principal goals of population genetics is to
describe the genetic structure of populations. In essence,
this means summarizing the genetic similarities and
differences among populations in as simple of a manner
as possible. For some taxa, this is easy. For example, the
range-wide population structure of Atlantic salmon has
two salient features: Atlantic salmon in Europe and
North America are very different from each other, and
within each continent, genetic differentiation between
populations is proportional to geographic distance (King
et al., 2001). The population structure of other species can
be difficult to summarize. For example, human popula-
tion structure is quite complex, and there has been recent
debate on the extent to which human genetic diversity is
distributed in clusters or along clines (for example,
Manica et al., 2005; Rosenberg et al., 2005).

No matter how simple or complex genetic relation-
ships among populations may be, geneticists need to be
careful that the statistical methods they use to summar-
ize relationships do not distort the actual relationships
among populations. Imposing inappropriate statistical
models upon genetic data is all too easy. For example, if
populations have an isolation-by-distance population

structure, an unweighted pair group method with
arithmetic mean tree could easily provide a misleading
depiction of the genetic structure (Kalinowski, 2009).
This happens because an unweighted pair group method
with arithmetic mean tree cannot show a population
structure that is not hierarchical.

The computer program STRUCTURE (Pritchard et al.,
2000; Falush et al., 2003; Hubisz et al., 2009) is currently one
of the most frequently used statistical tools for describing
population structure. The program does this by sorting
individuals into Hardy–Weinberg/linkage equilibrium
populations, which creates clusters of individuals that
have distinctive allele frequencies. An important step in
this analysis is deciding how many clusters to sort
individuals into. This number, K, is selected by the user.
If K is equal to the actual number of Hardy–Weinberg
populations that the individuals belong to, STRUCTURE
will attempt to sort individuals into the populations they
came from. This can be very useful when the origin of
individuals is unknown. However, STRUCTURE is also
frequently used to identify the main genetic clusters within
species. In this second type of analysis, individuals are
assigned to clusters in the same manner as above, but K is
deliberately set to be smaller than the actual number of
populations. Rosenberg et al. (2001) argued that such
clustering is useful for ‘identification of population
relationships, history, and within-species genetic units for
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In the 10 years since STRUCTURE was created, over
3000 papers have cited the program, and many users of
STRUCTURE have used the program to describe genetic
relationships among populations. For example, in a
landmark study of human population structure, Rosen-
berg et al. (2002; 2005) used STRUCTURE to sort people
from 52 ethnic groups into five clusters. This analysis
clustered individuals by continent, and this result has
been influential in subsequent discussions of human
population structure. However, this result—and other
analyses of population-level relationships made by
STRUCTURE—may need to be reevaluated. The math-
ematical model used by STRUCTURE was designed for
clustering individuals into Hardy–Weinberg/linkage
equilibrium populations. It was not designed for
clustering individuals into groups of populations, and
may not work as its users intend when this is done.

A few investigators have evaluated how well STRUC-
TURE works in different applications, but this testing has
shed little light on how well STRUCTURE summarizes
relationship among populations. For example, Rosenberg
et al. (2001) showed that STRUCTURE could accurately
sort individual chickens by breed, but this empirical test
did not evaluate how well STRUCTURE could cluster
individuals into groups of related populations. Evanno
et al. (2005) addressed this later question using simulated
data and showed that STRUCTURE was able to do this
successfully. However, Evanno et al. (2005) used a
hierarchical island model of gene flow which made the
biologically simplistic assumption that all groups of
populations were equally different from each other.
Real populations are expected to show more complex
relationships, and this may affect the manner in which
STRUCTURE assigns individual to clusters. Lastly,
Schwartz and McKelvey (2008) showed that when
individuals were distributed continuously on a two-
dimensional landscape, and mated preferentially with
neighboring individuals, STRUCTURE sometimes clus-
tered individuals in unpredictable ways. This clearly
showed that STRUCTURE does not work well when
individuals do not belong to distinct Hardy–Weinberg
populations, but does not offer much insight to how well
STRUCTURE works for taxa whose individuals belong to
distinct populations—as is often the case.

The goals of this paper are twofold. First, I will use
computer simulation to examine whether STRUCTURE
can correctly group individuals into clusters when
populations have had a history of fragmentation and
isolation. This is one of the simplest types of histories
that a set of populations might have, and one of the most
commonly used models to describe genetic relationships
among natural populations. Second, I will explore two
previously published data sets of human genetic
diversity to determine whether problems identified in
the simulations have influenced depictions of human
population structure.

Simulations

The first goal of this investigation is to examine how
well STRUCTURE can summarize population structure
for a simple model of population fragmentation. To do
this, I simulated microsatellite genotypes in a four-
population model of divergence, in which an ancestral
population was repeatedly and instantaneously split into

descendant populations that thereafter did not exchange
members (Figure 1). In this evolutionary model, popula-
tions A and B are closely related to each other,
population C is less closely related to A and B (but
still more closely related to A and B than to D) and
population D is the most genetically divergent popula-
tion. If STRUCTURE was told to partition individuals
from these populations into two clusters, and STRUC-
TURE works as its users expect, individuals from
populations A, B and C should be placed into one
cluster, and individuals from population D should be
placed into the other cluster.

Coalescent methods were used to simulate microsa-
tellite genotypes for the evolutionary history shown in
Figure 1. While doing this, I assumed that the effective
population size of all populations (including ancestral
populations) was 2000 individuals. I used a single-
stepwise model of mutation, with a mutation rate of
2� 10�4. Given these parameters, the expected hetero-
zygosity within populations is 0.51, and expected
pairwise FST (Weir and Cockerham, 1984) between
populations ranges from 0.02 to 0.14 (Table 1). Data sets
were simulated for 50 diploid individuals per population
with 1000 unlinked loci per individual. I used a large
number of loci because I wanted to test whether
STRUCTURE has an inherent tendency to cluster
individuals in an inappropriate manner, not whether
sampling error affects clustering. Selected results were
checked by simulating data with the publically available
computer program SimCoal2 (http://cmpg.unibe.ch/
software/simcoal2/) using the same evolutionary para-
meters. STRUCTURE version 2.2 was used to group
individuals from these four populations into two
clusters. (A beta version of new release of STRUCTURE
(version 2.3) has recently become available, but the
authors recommend that the methods implemented in
version 2.2 be used when data sets are ‘highly informa-
tive’ so these are the results that I present here. I obtained
similar results using STRUCTURE 2.3 using sampling
locations as priors (LOCPRIOR option)). Default para-
meters values were used while running STRUCTURE,
including assuming that allele frequencies were corre-
lated and that individuals could be classified as hybrids.
A burn in period of at least 10 000 Markov-chain Monte-
Carlo steps was used, followed by at least 20 000 steps for
the actual clustering. Four to eight data sets were
simulated for each of the evolutionary histories shown
in Figure 1, and results were averaged across data sets.

Two specific questions were addressed in the simula-
tions. First, I investigated whether the relative amount of
divergence among the populations affected the ability of
STRUCTURE to correctly identity which populations
were most similar. I tested this by varying the relation-
ship of population C to populations A and B (Figure 1).
Second, I investigated whether variability in sample size
affected clustering. I did this by varying the number of
individuals sampled from populations C and D (N¼ 25,
50, 100 diploid individuals), while keeping the sample
sizes for populations A and B constant (N¼ 50 diploid
individuals).

Results from the simulations showed that the cluster-
ing arrangements produced by STRUCTURE were
affected by the relative amount of differentiation among
the populations, and that in some circumstances,
STRUCTURE produced clusters that were not consistent
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with the main evolutionary divisions within the popula-
tions. For example, Figure 1 shows that STRUCTURE
created evolutionarily accurate clusters when popula-
tions A, B and C were closely related to each other (for
example, divergence times: 100/200/800). However,
when population C was less closely related to popula-
tions A and B—but still more related to A and B than to
D—STRUCTURE clustered individuals from population
C with population D (Figure 1, evolutionary history
100/700/800).

I selected three evolutionary histories to explore how
variation in sample size affected clustering: 100/400/800,
100/600/800 and 100/700/800. These specific evolution-
ary histories were chosen because they spanned the
range of evolutionary histories for which STRUCTURE
produced evolutionarily appropriate and inappropriate
results. Results from these simulations showed that the
clustering arrangements produced by STRUCTURE were
strongly affected by variation in sample size (Table 2).
This is best illustrated for the evolutionary history with

population divergence times 100/600/800 (Table 2).
Depending on the sample sizes for populations C and
D, STRUCTURE produced very different clustering
arrangements. These included clustering all individuals
from population C with population D, clustering all
individuals from population C with populations A and B
(the appropriate solution), and putting all the indivi-
duals from population C into their own cluster. Inter-
mediate results were also obtained.

A potential explanation for STRUCTURE’s inappropri-
ate results is that some of the population structures that I
examined were intrinsically difficult to analyze. Other
methods for describing population structure might have
the same problems. I tested this hypothesis by re-
analyzing the phylogenies that STRUCTURE did not
describe well using traditional methods for describing
population structure. Specifically, I calculated pairwise
FST (Weir and Cockerham, 1984) and checked the matrix
of genetic distances to see if it contained the same error
as STRUCTURE (having population C be more similar to
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Figure 1 The effect of evolutionary history on clustering. The numbers to the left of the six phylogenies are divergence times measured in
generations before present (for example, populations A and B diverged 100 generations ago). Above each phylogeny are the sample sizes
taken from each population (N), and the proportion of ancestry from those samples attributed to K¼ 2 clusters (P1 and P2) by the program
STRUCTURE 2.2.
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population D than to A or B). I did this 1000 times for the
phylogeny in Figure 1 with divergence times 100/700/
800. With this phylogeny, the FST matrix showed
population C to be more similar to population A and B
than to D approximately 99% of the time (992 out of
1000 simulations). This shows that this genetic data for
these populations are not intrinsically difficult to work
with. The problem seems to be with how STRUCTURE
analyzes the data.

The results above show that if the value of K used to
run STRUCTURE is less than the actual number of
populations, STRUCTURE will sometimes place indivi-
duals from unrelated populations into the same cluster.
The fact that STRUCTURE does this should not be
surprising, for, as mentioned above, the mathematical
model used by STRUCTURE was designed to place
individuals into Hardy–Weinberg/linkage equilibrium
populations—not to identify relationships among groups
of populations. Therefore, we would expect that

STRUCTURE would create better clusters if more
realistic values of K were used. I tested this hypothesis,
by reanalyzing the most challenging data sets identified
above using a range of values for K (K¼ 2, 3, 4 and 5). In
every case, STRUCTURE easily identified that a value of
K¼ 2 was too low, and that individuals from populations
C and D belonged in their own cluster. This shows that
the evolutionarily inappropriate clustering observed was
caused by using a value of K that is too small.

STRUCTURE uses a mathematically sophisticated
algorithm to assign individuals to clusters, and I am
not able to provide a definitive explanation of what is
causing the pathological results described above. How-
ever, I suspect that the problem is that the probability of
the genotypic data is maximized by placing as many
individuals as possible into genetically homogeneous
clusters—with little regard to how the remaining
individuals are clustered. Consider the sample size
experiment depicted in Table 2. When the samples size

Table 2 The effects of sample size upon clustering by STRUCTURE for three different evolutionary histories: 100/400/800, 100/600/800 and
100/700/800 (Figure)

ND

25 50 100

100/400/800
25 1.00, 1.00, 0.66, 0.00 1.00, 1.00, 0.82, 0.00 1.00, 1.00, 0.85, 0.00

NC 50 1.00, 1.00, 0.33, 0.00 1.00, 1.00, 0.99, 0.00 1.00, 1.00, 0.98, 0.00
100 1.00, 1.00, 0.00, 0.93 1.00, 1.00, 1.00, 0.00 1.00, 1.00, 1.00, 0.00

100/600/800
25 1.00, 1.00, 0.24, 0.00 1.00, 1.00, 0.56, 0.00 1.00, 1.00, 0.72, 0.00

NC 50 1.00, 1.00, 0.00, 0.01 1.00, 1.00, 0.35, 0.00 1.00, 1.00, 0.85, 0.00
100 1.00, 1.00, 0.00, 0.64 1.00, 1.00, 0.00, 0.99 1.00, 1.00, 1.00, 0.00

100/700/800
25 1.00, 1.00, 0.00, 0.00 1.00, 1.00, 0.39, 0.00 1.00, 1.00, 0.65, 0.00

NC 50 1.00, 1.00, 0.00, 0.21 1.00, 1.00, 0.00, 0.00 1.00, 1.00, 0.80, 0.00
100 1.00, 1.00, 0.00, 0.65 1.00, 1.00, 0.00, 0.83 1.00, 1.00, 1.00, 0.00

NC and ND are the samples sizes for populations C and D, respectively. Populations A and B had a sample size of 50 individuals for all of
simulations. The data within the table shows the proportions of genetic ancestry within samples from populations A, B, C and D that was
assigned to each of two clusters. The evolutionarily appropriate clustering arrangement is 1.00, 1.00, 1.00, 0.00, which indicates that all the
genes from populations A, B and C were assigned to one cluster, and all the genes from population D were assigned to the second cluster.

Table 1 Expected values of pairwise FST (Weir and Cockerham, 1984) for the evolutionary histories examined in this study

100/200/800 100/300/800 100/400/800

A B C A B C A B C

A — A — A —
B 0.024 — B 0.024 — B 0.024 —
C 0.045 0.045 — C 0.065 0.065 — C 0.083 0.083 —
D 0.141 0.141 0.141 D 0.141 0.141 0.141 D 0.141 0.141 0.141

100/500/800 100/600/800 100/700/800

A B C A B C A B C

A — A — A —
B 0.024 — B 0.024 — B 0.024 —
C 0.099 0.099 — C 0.114 0.114 — C 0.128 0.128 —
D 0.141 0.141 0.141 D 0.141 0.141 0.141 D 0.141 0.141 0.141

The numbers in bold (e.g., 100/200/800) are the population divergence times for the evolutionary histories examined (Figure 1) FST values
were estimated from one million simulated loci. The data sets used in the simulations described in this paper had 1000 loci, so FST values for
these data varied slightly.
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of population C was large relative to the samples from
the other populations (that is, NC¼ 100), STRUCTURE
had a tendency to place all the individuals from
population C into a cluster of their own, and to place
all of the individuals from the other populations into a
second cluster. For STRUCTURE to do this, the prob-
ability of the data for this clustering arrangement must
be higher than the probability of the data for a clustering
arrangement that places individuals from population C
into a cluster with individuals from populations A and B.
This is plausible. If 100 individuals from population C
are placed into their own cluster, loosely speaking, there
will be a close match between the allele frequencies in
the cluster and the genotypes of the individuals in the
cluster. More formally, a homogenous cluster composed
of individuals from population C will maximize the
probability of observing the genotypes of these indivi-
duals from the allele frequencies in the cluster. Placing
individuals from additional populations into the same
cluster as C will change the allele frequencies in the
cluster so that they less closely match any of the
genotypes in the cluster (or more formally, will decrease
the probability of observing the genotypes of the
individuals assigned to the cluster given the allele
frequencies in the cluster). STRUCTURE seeks an
arrangement of individuals that maximizes the global
likelihood, so it is easy to envision how creating one
homogenous cluster could more than compensate for
placing all of the other individuals into a heterogeneous
wastebasket cluster.

Reanalysis of human population structure

The hallmark of the problems described above is that
individuals from genetically divergent populations are
clustered together—even though they are genetically
more similar to individuals in other clusters. It is difficult
to estimate how often this may have happened in
empirical studies. Here, I will look at two landmark
human data sets (Rosenberg et al., 2005; Tishkoff et al.,
2009) to see whether STRUCTURE has obscured genetic
similarities and differences among populations.

The evolutionary history of Europeans and Africans is
probably similar to the phylogenies that I used to test
STRUCTURE (Figure 1). There is a consensus that
modern humans originated in Africa 100 000–200 000
years ago, and that the rest of the world was colonized

by a modest number of Africans that left Africa some
time later (Weaver and Roseman, 2008). The source of the
migration out of Africa is not known, but microsatellite
data suggests Europeans are more closely related to
present-day African farmers than to African hunter
gatherers (Zhivotovsky et al., 2003). Given this evolu-
tionary history, populations A and B in the simulations
that I performed (Figure 1) may represent European
populations, population C may represent African farm-
ers from whose ancestors Europeans are descended, and
population D may represent African hunter gatherers. If
this scenario is correct, and there has been a long term
separation between contemporary farmers and hunter
gatherers in Africa (as suggested by Zhivotovsky et al.,
2003), we would predict that contemporary African
farmers would be genetically more similar to Europeans
than to African hunter gathers. This is exactly what a
reanalysis of the microsatellite data of Rosenberg et al.
(2005) shows. I calculated the average degree of allele
sharing between all individuals in each pair of popula-
tions examined by Rosenberg et al. (2005), and found
several African populations (Kenyan Bantu, Mandenka,
Yoruba) shared more alleles with Europeans than with
the San or Mbuti hunter gatherers (Table 3). I obtained
the same result using Jxy (Nei, 1978) and FST (Weir and
Cockerham, 1984).

The genetic similarities between Europeans and some
Africans that I found are not evident in the output of
STRUCTURE (Rosenberg et al., 2005). STRUCTURE
clustered all sub-Saharan Africans into a single cluster
and all Europeans into another cluster (Rosenberg et al.,
2005)—which suggests that the peoples of each of these
continents are genetically more similar to each other than
to peoples on other continents. Previous analyses of
genetic diversity in humans do not seem to have noted
the genomic similarity of Europeans and present-day
African farmers. It has been shown for mitochondrial
DNA (Ingman et al., 2000) and for Y-chromosomes (for
example, Underhill and Kivisild, 2007), but apparently
has not been recognized for autosomal loci which make
up the majority of human genome.

Tishkoff et al. (2009) recently presented a comprehen-
sive analysis of genetic diversity in Africa. Their data
included 121 African populations genotyped at 848
microsatellite loci. Tishkoff et al. relied heavily on
STRUCTURE to analyze their data, and this may have
influenced their results. For example, when I repeated

Table 3 Two measures of genetic similarity for Europeans and Africans calculated from the microsatellite data of Rosenberg et al. (2005)

Russian Basque French Italian Bantu South
Africa

Bantu
Kenya

Mandenka Yoruba Biaka
Pygmy

Mbuti
Pygmy

San

Russian — 0.3781 0.3795 0.3788 0.3064 0.3182 0.3144 0.3109 0.3024 0.2964 0.2902
Basque 0.0126 — 0.3839 0.3828 0.3043 0.3187 0.3118 0.3088 0.2994 0.2936 0.2926
French 0.0050 0.0062 — 0.3825 0.3071 0.3209 0.3154 0.3115 0.3018 0.2936 0.2925
Italian 0.0059 0.0070 0.0012 — 0.3085 0.3208 0.3164 0.3128 0.3015 0.2937 0.2923
Bantu (S. Africa) 0.0561 0.0636 0.0546 0.0516 — 0.3373 0.3373 0.3378 0.3206 0.3115 0.3094
Bantu (Kenya) 0.0485 0.0544 0.0463 0.0450 0.0090 — 0.3417 0.3418 0.3242 0.3141 0.3053
Mandenka 0.0539 0.0620 0.0534 0.0510 0.0117 0.0123 — 0.3454 0.3246 0.3100 0.3038
Yoruba 0.0549 0.0625 0.0545 0.0520 0.0095 0.0095 0.0087 — 0.3234 0.3105 0.3019
Biaka pygmy 0.0625 0.0709 0.0631 0.0619 0.0251 0.0257 0.0283 0.0268 — 0.3102 0.3006
Mbuti pygmy 0.0728 0.0811 0.0749 0.0743 0.0380 0.0406 0.0464 0.0437 0.0441 — 0.2977
San 0.0819 0.0872 0.0802 0.0800 0.0422 0.0506 0.0547 0.0532 0.0542 0.0632 —

The average degree of allele sharing between individuals is shown above the diagonal. Weir and Cockerham’s version of FST (1984) is shown
below the diagonal. The Biaka, Mbuti and San are hunter gathers.

Evaluating STRUCTURE
ST Kalinowski

5

Heredity



the allele sharing analysis that I performed for the data of
Rosenberg et al. (2005), I found many sub-Saharan
African populations were more similar to European
populations (as measured by allele sharing, JXY, or FST)
than to African hunter gatherers. In addition, I compared
genetic differences between populations measured by
FST with STRUCTURE results, and this suggested that
clustering artifacts could have influenced the conclusion
of Tishkoff et al. (2009) that the San of South Africa and
the Mbuti pygmies of Central African have shared
ancestry. The strongest evidence for this conclusion was
that STRUCTURE clustered these populations together.
However, as measured by pairwise FST (Weir and
Cockerham, 1984) the San and Mbuti are two of the
most genetically different populations within Africa
(Table 3). It is possible, therefore, that the similarity of
the San and Mbuti indicated by STRUCTURE is a
clustering artifact and not due to recent common
ancestry. Further work on this question is warranted.

Discussion

The simulations presented above show that in some
simple evolutionary models of population fragmenta-
tion, the computer program STRUCTURE does not
cluster the most genetically similar individuals into the
same cluster. The problem seems to be caused by forcing
the program to cluster individuals into an inappropri-
ately small number of clusters. Reanalysis of two
microsatellite data sets in humans suggest that this
may have affected depictions of human population
structure.

In my discussion of human genetic diversity above, I
argued that the evolutionary history of Europeans and
Africans could be represented by simple bifurcating
phylogeny (Figure 1) in which present-day African
farmers and African hunter gathers diverged from each
other a long time ago and remained reproductively
isolated since then. I believe this is a reasonable model
for the evolutionary history of Africans, but realize this
question is the focus of ongoing research and do not
intend to take a strong stance on this question. I will
admit, for example, the possibility of recent gene flow
between African farmers (or their ancestors) and African
hunter gatherers as suggested by Quintana-Murci et al.
(2008). Uncertainty regarding the evolutionary history of
humans does not affect my main conclusion regarding
human genetic diversity. The most important point that I
made concerning human genetic diversity is that there
are genetic similarities between Europeans and Africans
(and genetic differences among Africans) that are not
evident in the output of STRUCTURE. This is an
empirical observation that does not depend on knowing
the actual evolutionary history of humans. If humans
have had an evolutionary history different from the
model that I used in my simulations, it means that there
is at least one other evolutionary history for which
STRUCTURE produces misleading results.

I hope the results presented here motivate additional
research on how STRUCTURE and other individual
clustering algorithms (for example, Corander et al., 2008;
Santafé et al., 2008; Zhang, 2008) behave in a wide range
of evolutionary scenarios. Users of these clustering
algorithms might also reconsider whether individual-
based clustering is the best way to describe genetic

relationships among populations. STRUCTURE is
invaluable for studying individuals whose population
of origin is not known, but the program is ill suited for
describing relationships among populations. The stan-
dard output of STRUCTURE—a color-coded plot of the
ancestry of each individual (Rosenberg, 2004)—contains
only a limited amount of information regarding popula-
tion structure. These plots are often not effective for
showing the amount of genetic similarity or difference
within clusters; nor do they indicate genetic relationships
among clusters. Both of these issues are evident in the
papers describing human population structure that I
have discussed above (Rosenberg et al., 2005; Tishkoff
et al., 2009). For example, the ancestry plots produced by
STRUCTURE do not show that there are much larger
genetic differences between many sub-Saharan African
populations than between Western European popula-
tions (Rosenberg et al., 2005, Figure 2), or that native
Americans are more similar to Asians than to Europeans.

In STRUCTURE’s defense, no single analysis is
appropriate for all data, nor can a single analytic method
be expected to reveal all patterns in data. Furthermore,
the simulations presented here show that in many
circumstances, STRUCTURE will produce evolutionarily
appropriate clusters. If this wasn’t true, STRUCTURE
probably wouldn’t be as widely used as it is. However,
when the goal of a genetic study is to summarize genetic
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Figure 2 Unrooted neighbor-joining tree of the microsatellite data
of Rosenberg et al. (2005). Weir and Cockerham’s (1984) FST was
used as a genetic distance. Most of the unlabeled populations in the
center of the tree are populations in Pakistan, India and surround-
ing areas. The San and Mbuti are hunter gatherers of sub-Saharan
Africa. The Surui, Karitiana, Columbian, Maya and Pima are Native
Americans.
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similarities and differences among populations, and the
individuals sampled come from discrete populations,
traditional methods for describing population structure
may often be more useful. For example, an unrooted,
neighbor-joining tree (Saitou and Nei, 1987) constructed
from an unbiased genetic distance (for example, Nei,
1978; Weir and Cockerham, 1984) can be very effective
for displaying population structure, even when popula-
tions have not had a hierarchical history of population
fragmentation (Kalinowski, 2009). Such a tree (Figure 2)
contains much more information about population
structure in humans than results from STRUCTURE.
For example, it clearly shows the genetic uniqueness of
hunter-gatherer populations in Africa (Mbuti and San,
Figure 2), the large amount of genetic differentiation
among native American populations, and the genetic
similarity of peoples living on adjacent continents.
Furthermore, the R2 value for the tree (Kalinowski,
2009) is 0.98, which indicates that the tree provides a
good fit to the data used to construct it. However, even a
tree with a R2 of 0.98 does not accurately depict all of the
relationships between populations. A close look at the
branch lengths in the neighbor-joining tree of humans
(Figure 2) shows that it depicts all sub-Saharan African
populations as being more similar to each other than to
European populations. Thus, the genetic similarities
noted above between some African and European
populations are not evident.

Figure 2 might easily be interpreted as showing
human population structure consists of five evolutionary
units, each roughly corresponding to a continent (as
identified by Rosenberg et al. (2002) using STRUCTURE).
However, what cannot be seen from Figure 2, is that the
populations sampled are geographically clustered. On a
global scale, genetic diversity in humans is largely clinal
(Manica et al., 2005; Lawson Handley et al., 2007), so
populations that are close to each are usually genetically
similar. The five primary clusters on the tree are largely a
byproduct of isolation-by-distance and geographic cluster-
ing. A tree made from the geographic distance between
these populations looks very similar (results not shown).

Evolutionary trees, of course, are not the only alter-
native methods for describing population structure.
Space does not permit a review of all the methods
available, but principle component analysis, multidimen-
sional scaling, and related methods (for example,
Patterson et al., 2006) deserve mention. Such analyses
can describe relationships among individuals that do not
belong to discrete populations (for example, Novembre
et al., 2008) and for populations that have an isolation-by-
distance structure (for example, King et al., 2001).
Whatever methods are used to describe population
structure, care must be taken that they provide a fair
representation of population structure.
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