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ORIGINAL ARTICLE

How well do evolutionary trees describe genetic
relationships among populations?

ST Kalinowski

Department of Ecology, Montana State University, Lewis Hall, Bozeman, MT, USA

Bifurcating evolutionary trees are commonly used to describe
genetic relationships between populations, but may not be
appropriate for populations that did not evolve in a hierarch-
ical manner. The degree to which bifurcating trees distort
genetic relationships between populations can be quantified
with R2, the proportion the variation in a matrix of genetic
distances between populations that is explained by a tree.
Computer simulations were used to measure how well the
unweighted pair group method with arithmetic mean (UP-
GMA) and neighbor-joining (NJ) trees depicted population
structure for three evolutionary models: a hierarchical model
of population fragmentation, a linear stepping-stone model of

gene flow and a two-dimensional stepping-stone model of
gene flow. These simulations showed that the UPGMA did an
excellent job of describing population structure when popula-
tions had a bifurcating history of fragmentation, but severely
distorted genetic relationships for the linear and two-dimen-
sional stepping-stone models. The NJ algorithm worked
well in a broader range of evolutionary histories, including
the linear stepping-stone model. A computer program for
performing the calculations described in this study is available
for download at www.montana.edu/kalinowski.
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Introduction

One of the primary goals of population genetics is to
describe genetic differences among populations of the
same species. This can be challenging because popula-
tions often have complex evolutionary histories. We can
often safely assume that species have a tree-like
phylogeny, and, therefore can be clustered into hierar-
chies. However, when gene flow and genetic drift shape
intraspecific population structure, the resulting genetic
relationships can be decidedly nonhierarchical. For
example, if the rate of gene flow between populations
is inversely related to the geographic distance separating
populations, an isolation-by-distance pattern may
evolve, in which populations will be genetically similar
to their closest neighbors. In this circumstance, popula-
tions cannot easily be clustered into groups, because each
population is similar to a different set of populations.
Despite the fact that populations are frequently not
expected to cluster nicely into hierarchical sets, bifurcat-
ing trees are one of the most commonly used statistical
tools to summarize genetic relationships between popu-
lations. For example, in an earlier investigation (Gutiér-
rez-Espeleta et al., 2000), I used a unweighted pair group
method with arithmetic mean (UPGMA) tree to describe
genetic relationships between populations of desert
bighorn sheep populations in the American South-
west—even though there was a strong isolation-by-
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distance relationship in the data. It is reasonable to ask
whether this UPGMA tree accurately depicted genetic
relationships between these populations or whether the
tree imposed a hierarchical pattern upon data that did
not have one, and thereby distorted relationships
between the populations. Trees have been used to
describe genetic relationships among populations for
decades (for example, Edwards and Cavalli-Sforza,
1964), and their usefulness is beyond question. However,
there may be some populations for which bifurcating
trees cannot accurately describe genetic relationships. It
would be useful to identify such populations.

The goals of this investigation are threefold. First, I
show how R? values for evolutionary trees can be used to
assess how faithfully trees depict genetic differences
between populations. Next, I use computer simulation to
explore how well bifurcating trees describe genetic
relationships among populations having three different
types of evolutionary histories. Last, I introduce a
computer program to perform the calculations described
in this study.

Tree construction

A brief review of how trees are read and how they are
constructed will illustrate why some trees may not be
able to accurately summarize genetic relationships
among populations. Trees are interpreted by summing
up the length of the branches separating populations. If
the lengths of the branches are short, the tree describes
the populations as being genetically similar; if the
branches separating two populations are long, the tree
describes the populations as being genetically different.
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Population structure is usually inferred from allele
frequency data, and distance-based approaches are
normally used to make trees (see Felsenstein (2004) for
a readable introduction). Distance-based tree construc-
tion algorithms begin by calculating a genetic distance,
such as Weir and Cockerham’s (1984) Fgt or Nei’s (1978)
standard distance (1978), between each pair of popula-
tions. This matrix of genetic differences is the raw data
from which a tree is made. The goal of a tree construction
algorithm is to construct a tree, so that the distance
between each pair of populations along the branches of
the tree is equal to the genetic distance between the
populations in the genetic distance matrix.

The two most commonly used distance-based methods
for building trees are the UPGMA, and the neighbor-
joining (N]) method (Saitou and Nei, 1987; see Felsen-
stein (2004) for a detailed description of both methods).
Both methods build trees by searching the genetic
distance matrix for the most similar populations, and
then connecting these populations at a node. The main
difference between the algorithms is how branch lengths
are defined. UPGMA trees implicitly assume an equal
rate of evolution in all populations, and assign equal
branch lengths from a node to all the populations
connected to the node. When displayed as a rooted tree,
the tips of a UPGMA tree are all at the same distance
from the root (which gives the characteristic right-
aligned appearance for the rooted UPGMA trees when
display in a rectangular manner). The NJ algorithm does
not assume equal rates of evolution, and allows branch
lengths to vary. If two populations are joined to a node,
the branch connecting one population to the node may
be shorter than the other. Because NJ trees have more
parameters, they should be able to more faithfully match
the genetic distance matrix.

Calculating R? for trees

The degree of fit of a tree to a matrix of genetic distances
can be quantified with R? the proportion of variation in
the genetic distance matrix that is explained by the tree.
This familiar statistic is calculated for trees as follows.
Let D;; represent the estimated genetic distance between
populations i and j in the genetic distance matrix. Let d;;
represent the distance between populations i and j
through the branches of a tree. If the tree fits observed
data well, the genetic distances between each pair of
populations in the tree will be approximately equal to the
observed genetic distance between them. R? is calculated
in the usual manner

1 2 (Dy — dy)?
(D - D)?
where summation is taken over all pairs of populations
and D is the average of D. If R? is near 1.0, the tree
represents a good summary of the genetic relationships
shown in the distance matrix. If R? is not near 1.0, the tree
does not represent a good summary of the genetic
relationships among populations and probably should
not be used to depict population structure.
Sokal and Rohlf (1962) introduced the method de-
scribed above for quantifying how well evolutionary

trees fit genetic distance data. Their calculation measured
genetic distance in the tree differently, and instead of

R? = (1)
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reporting R” values, they calculated a correlation
coefficient (which they called the cophenetic correlation
coefficient) between observed and fitted distances, but
the concept is identical. The cophenetic correlation
coefficient was widely used by numerical taxonomists
in the 1960s, but is not frequently used by contemporary
molecular ecologists.

An empirical example

An empirical example shows the usefulness of calculat-
ing R? values for trees. Let us consider the bighorn sheep
data of Gutiérrez-Espeleta et al. (2000) mentioned above.
Gutiérrez-Espeleta et al. (2000) genotyped 10 microsate-
llite loci for 279 sheep distributed among 13 locations in
North America, most of which were in the deserts of
Southern California and Arizona. The standard distance
of Nei (1978) was used as a genetic distance. The R? value
for the UPGMA tree published by Gutiérrez-Espeleta
et al., 2000, calculated according to Equation (1), is 74%.
R? for an NJ tree was higher (89%) which shows that
the authors’ choice to use a UPGMA tree imposed a
moderate amount of distortion of the relationships
among the populations of sheep. The biggest difference
between the two trees is the placement of the population

a UPGMA .
R =074 Alberta Sheep River
San Ysidro Mt. Nutt
Lost Cabin
Red Rock Mt. Davis
Stewart
Kofa San Gorgonio
Castle e
OldDad —29¢
b NJ Sheep Rver
R2=0.89
Alberta
San Ysidro Mt. Nutt

Red Rock
Lost Cabin
Mt. Davis

Stewart

Kofa

San Gorgonio

Old Dad

Figure 1 UPGMA (a) and NJ (b) trees for bighorn sheep
populations studied by Gutiérrez-Espeleta et al., 2000. The standard
genetic distance of Nei (1978) was used. NJ, neighbor joining;
UPGMA, the unweighted pair group method with arithmetic mean.
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from the Eagle Mountains (Figure 1). The UPGMA tree
clustered this population with populations from San
Gorgonio and the Old Dad Mountains, whereas the NJ
tree placed the Eagle population as intermediate between
a San Gorgonia/Old Dad cluster and the rest of the
populations. Had Fsr been used a genetic distance, the
difference between UPGMA and NJ trees would have
been more extreme. A UPGMA tree for this data using
pairwise Fsras a genetic distance has an R?of 0.61, and an
NJ tree has an R? of 0.91.

Methods

Simulated genetic data were used to investigate how
well evolutionary trees depict genetic relationships
between populations. Three evolutionary models were
examined: a hierarchical model of population fragmen-
tation (Figure 2a), a linear stepping-stone model of gene
flow (Figure 2b), and a two-dimensional stepping-stone
model of gene flow (Figure 2c). Two general questions
were explored. First, can evolutionary trees accurately
reflect the genetic structure of these populations? This
was explored by assuming that the true genetic distances
between populations was known and constructing trees
from this matrix of genetic distances. R? values for these
trees were then calculated to evaluate how much trees
distorted the genetic relationships among populations.

a1 2 3 4 5 6 7 8

I

OO0 002000000

Figure 2 The three evolutionary models used in this investigation
(a—c). The top figure (a) shows a hierarchical history of population
fragmentation in which an ancestral population is repeatedly split
into descendant populations that do not exchange migrants. The
middle figure (b) shows a linear stepping-stone model of gene flow
in which only adjacent populations exchange migrants. The bottom
figure (c) shows a two-dimensional stepping-stone model of gene
flow.
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The true genetic distances among natural populations
will seldom be known. Therefore, the second question
that was explored was how sampling error (of the
genetic distance matrix) and tree construction interact.

In the hierarchical model of population fragmentation,
genotypes were simulated for eight populations des-
cended from an ancestral population that split into two
populations, each of which later simultaneously split
into two additional populations, which, in turn, each
later split into two populations (Figure 2a). I assumed
that population fragmentation was instantaneous and
that after fragmentation, populations were completely
isolated from each other. The following parameters were
used in these simulations. The effective population size
for all populations (including each ancestral and descen-
dant populations) was 2000. Divergence times for the
populations were (50, 100 and 200), (200, 400 and 800)
and (800, 1600 and 3200) generations before sampling,
where these numbers refer to the timing of the three
fragmentation events that gave rise to the eight popula-
tions (Figure 2a).

For the linear stepping-stone model of evolution,
genotypes were simulated for eight populations ar-
ranged in a line (Figure 2b). Each population received
immigrants from adjacent populations (and only adja-
cent populations), so that the rate of gene flow into
populations was m from each neighbor. The two
populations at the end of the line received half as many
immigrants as the six populations in the middle. The
effective population size for each of the eight populations
was 1000. The migration rate into each population was
varied from 0.01 to 0.0001.

The two-dimensional stepping-stone model (Figure 2c)
had a similar pattern of gene flow among 16 populations
arranged in a four-by-four grid. The rate of gene flow
was varied from 0.01 to 0.001. The effective population
size among the populations was 1000.

For all three models, coalescent methods (for example,
Hudson, 1991) were used to simulate genotypes for
microsatellite loci having a stepwise mutation rate of
2x107* Samples were simulated for 100 diploid
genotypes at 6, 12 or 24 unlinked loci. Once the data
were simulated, Weir and Cockerham’s (1984) Fgt and
Nei’s (1978) standard distance (Ds) were used as a
pairwise genetic distances. The true genetic distance
between each pair of populations in each model was
estimated by simulating 100 diploid genotypes for 10 000
independent loci and calculating Fsy and Ds for these
large data sets. These estimates can be used as true
values because with 10000 loci, sampling error will be
negligible.

The UPGMA and NJ trees were constructed for each
evolutionary model using the computer programs TreeFit
(described below) and TreeView (Page, 1996). R? values
were calculated as above (Equation (1)). One thousand
samples were simulated for each combination of three
parameters (evolutionary model, degree of divergence
and number of loci). Lastly, a two-way error decomposi-
tion was performed as described below.

When evolutionary trees are constructed from esti-
mates of genetic distances between populations, there
are two sources of error: sampling error in the genetic
distance matrix, and distortion of this matrix by the tree
construction algorithm. The amount of error attributable
to each source can be measured when the true genetic



distances between populations is known (for example, in
computer simulations). This can be done as follows: let
D;; represent the true genetic distance between popula-
tions i and j; the sum of squared errors caused by
estimating genetic distances (SSEpjstance) is calculated as

SSEDistance = Z:izjqﬁi (Dij - Dif)z (2)

where summation is taken over all pairs of populations.
The total sum of squared errors, which contains error
caused by estimating genetic distances and making a tree
from them, SSEt..;, can be calculated as

SSEtotal = ZiZjsi (Dij — Elij)z (3)

Once SSEpjsiance and SSEt.i1 have been calculated, the
amount of error attributable to the tree construction
algorithm, SSEyee, can be calculated from the difference

SSETree = SSETotal - SSEDistance (4)

If a tree produces estimates of genetic distance that are
more accurate than the matrix of genetic distance
estimates, SSEqe. will be negative. This would be
expected to happen when tree construction successfully
‘smoothed’ out sampling error in the genetic distance
matrix. SSEre values are more easily interpreted when
they are expressed relative to the genetic distance
sampling error.

SSETree
ERelative = ﬁ (5)

The quantities in this error partition were estimated by
averaging results across 1000 simulated data sets.

Resulis

The degree to which evolutionary trees could describe
genetic relationships between populations varied greatly,
depending on the method used to construct the tree and
the evolutionary history of the populations (Table 1 and
Figure 3). When the true genetic distance between
populations was used to construct trees (Figure 3), and
the populations had a strictly hierarchal history of
population fragmentation with constant population size,
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both NJ and UPGMA algorithms produced trees with a
perfect R? of 1.00. This is not surprising, evolutionary
trees describe population structure in a hierarchical
manner, and this assumption was met in this model of
population fragmentation. The two-dimensional step-
ping-stone model produced a similarly predictable
result. When true genetic distances were used to
construct evolutionary trees for the two-dimensional
stepping-stone model, R? values were low—in the
neighborhood of 0.35 for UPGMA trees and 0.80 for NJ
trees. This is not surprising because the two-dimensional
stepping-stone model is a decidedly unhierarchical
model.

The linear stepping-stone model revealed an impor-
tant difference between the UPGMA and NJ algorithms
(Table 1 and Figure 3), and provides a good example of
why caution must be used when using evolutionary trees
to describe the genetic structure of populations. Popula-
tions in the linear stepping-stone model had a nearly
perfect isolation-by-distance pattern (not shown), and
intuition might suggest that hierarchical evolutionary
trees would distort these relationships beyond recogni-
tion. For UPGMA trees, this was true. UPGMA trees
constructed from true genetic distances had low R?
values (in the range of 0.45-0.60, Table 1) and topologies
that severely distorted the parametric genetic structure of
the populations (Figure 3). In contrast, NJ trees showed
an almost a perfect fit to the true genetic distance matrix
for the linear stepping-stone model with R? values
usually greater than 0.96. This surprising result is readily
explained. Branch lengths in NJ trees are free to vary, and
if the terminal branches of the interior populations have
lengths of near 0, an NJ tree can successfully depict an
isolation-by-distance genetic structure for populations in
a linear stepping-stone arrangement (Figure 3).

Similar results were obtained for trees estimated from
realistic amounts of data (6, 12 or 24 loci) as for trees
constructed from true genetic distances (Table 2). NJ trees
constructed from samples had high R? values for the
hierarchical model and the linear stepping-stone model,
and low R? values for the two-dimensional stepping-stone
model—ijust as they did when trees were constructed from

Table 1 Parameters for the three evolutionary models used in this investigation

Model Heyy R? for tree
Range of genetic distances UPGMA NJ
FST DS FST DS FST DS
Hierarchical fragmentation
t=50, 100, 200 0.51 (0.01, 0.05) (0.01, 0.05) 1.00 1.00 1.00 1.00
t=200, 400, 800 0.51 (0.05, 0.14) (0.05, 0.19) 1.00 1.00 1.00 1.00
t=2800, 1600, 3200 0.51 (0.14, 0.29) (0.19, 0.56) 1.00 1.00 1.00 1.00
Linear stepping stones
m=0.01 0.71 (0.01, 0.07) (0.03, 0.20) 0.45 0.46 1.00 1.00
m =0.003 0.69 (0.04, 0.17) (0.08, 0.50) 0.45 0.51 0.99 1.00
m=0.001 0.64 (0.09, 0.30) (0.18, 0.91) 0.45 0.55 0.96 0.98
m =0.0001 0.49 (0.34, 0.52) (0.69, 2.01) 0.46 0.59 0.82 0.89
Two-dimensional stepping stones
m=0.01 0.80 (0.007, 0.02) (0.05, 0.12) 0.32 0.30 0.82 0.81
m =0.003 0.78 (0.02, 0.07) (0.10, 0.27) 0.33 0.32 0.82 0.80
m=0.001 0.74 (0.06, 0.15) (0.23, 0.60) 0.34 0.37 0.83 0.77

The average expected heterozygosity within populations is denoted by H,,.

»» and the genetic distance of Nei 1978 is denoted by Ds.
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Figure 3 UPGMA and NJ trees constructed from the actual genetic
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distances (Nei, 1978) between populations in the three evolutionary

models examined in this study. NJ, neighbor joining; UPGMA, the unweighted pair group method with arithmetic mean.

Table 2 Average values of R? for UPGMA and NJ trees fit to simulat

ed data sets having 6, 12 or 24 loci

Model UPGMA NJ
Fsr Ds Fsr Ds
Hierarchical fragmentation
t=50, 100, 200 (0.63, 0.82) (0.62, 0.82) (0.90, 0.95) (0.89, 0.95)
=200, 400, 800 (0.66, 0.85) (0.64, 0.84) (0.91, 0.96) (0.90, 0.96)
t=800, 1600, 3200 (0.66, 0.83) (0.62, 0.81) (0.90, 0.95) (0.86, 0.93)
Linear stepping stones
m=0.01 (0.54, 0.50) (0.54, 0.51) (0.95, 0.98) (0.94, 0.98)
m=0.003 (0.56, 0.51) (0.55, 0.52) (0.94, 0.98) (0.93, 0.98)
m=0.001 (0.59, 0.53) (0.56, 0.55) 0.92, 0.94) (0.90, 0.95)
Two-dimensional stepping stones
m=0.01 (0.41, 0.45) (0.44, 0.40) (0.76, 0.78) (0.74, 0.77)
m=0.003 (0.46, 0.40) (0.43, 0.38) (0.78, 0.80) (0.74, 0.76)
m=0.001 ([0.48, 0.42) (0.43, 0.39) (0.80, 0.80) 0.71, 0.72)

Each interval shows values for 6 and 24 loci. Results from 12 loci were intermediate. Two genetic distances are used, Fsy estimated by Weir

and Cockerham’s (1984) and the standard distance (Ds) estimated by Nei (1978).

parametric genetic distances. The only notable difference
between trees constructed from true distances and trees

constructed from estimated genetic distances was the case

of UPGMA trees constructed from populations having a
hierarchical model of population fragmentation. In this

Heredity

case, UPGMA trees constructed from true genetic dis-
tances had an R? of 1.0. The R? for trees calculated from
estimated genetic distances ranged from 0.62 to 0.85,
depending on the number of loci sampled. R? values were

higher when more loci were sampled.



Table 3 The amount error introduced by tree fitting algorithms
relative to sampling error accumulated while estimating genetic
distances from 12 loci

Model

UPGMA NJ

FST DS FST DS

Hierarchical fragmentation, eight populations

t=50, 100, 200 —0.53 —0.47 —-0.12 —-0.11

t =200, 400, 800 —0.50 —0.47 —0.10 —0.12

t=2800, 1600, 3200 —0.44 —0.48 —0.09 —0.15
Linear stepping stones, eight populations

m=0.01 2.77 2.25 —0.19 —0.20

m=0.003 2.80 2.26 —0.14 —0.20

m=0.001 2.16 1.33 0.04 —0.20
Two-dimensional stepping stones, 16 populations

m=0.01 0.37 0.30 0.06 0.06

m=0.003 0.82 0.58 0.17 0.17

m=0.001 0.76 0.40 0.17 0.17

Negative values indicate that the tree fitting algorithm reduced the
average squared error (that is, improved estimates; Equation (1)).

The error decomposition showed that the genetic
distances within trees could be either more or less
accurate than the matrix of genetic distances that the tree
was constructed from (Table 3). For example, when
UPGMA trees were constructed from populations in a
linear stepping-stone structure, the relative error intro-
duced by the tree construction algorithm was usually
twice as large as the error caused by the estimation of the
genetic distances. This is a substantial distortion of the
tree relationships among populations. On the other hand,
when populations had a hierarchical history of fragmen-
tation, the estimates of genetic distances produced by
UPGMA trees were more accurate than the raw estimates
in the genetic distance matrix. In fact, UPGMA trees were
able to remove approximately 50% of the squared error
of the genetic distance matrix. NJ trees showed similar
results. Genetic distances within NJ trees for the
hierarchical model were more accurate than the raw
matrix, but the degree of improvement was smaller than
for the UPGMA trees. This is probably because the
inherent flexibility of NJ algorithm allows it to fit branch
lengths to sampling error within the genetic distance
matrix, and do less smoothing. However, NJ trees were
also capable of improving estimates of genetic distance
in the linear stepping-stone model. In this case, NJ trees
had up to 21% less squared error than the raw estimates
of genetic distance. This compares very favorably to the
UPGMA trees, which as mentioned above, usually more
than doubled the amount of error in the matrix.

In general, results were similar for trees constructed
from Fsr as for Ds. The only notable distinction is how
each genetic distance handled the challenging case of
highly differentiated populations. The linear stepping-
stone model with very low migration rates (m =0.0001)
provides a good case study. Dg was ineffective for
describing population structure in this model, because it
is undefined when samples do not share any alleles, and
this frequently happened when samples had only 6 or 12
loci. Fst had more subtle problems. When the rate of
gene flow in the linear stepping-stone model was 0.0001,
Fst between neighboring populations was approximately
0.35. Given this level of differentiation, the NJ algorithm
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Figure 4 A rectangular (left) and radial (right) NJ tree constructed
from the true genetic distances (Nei, 1978) of the linear stepping-
stone model (i =0.01). Both trees have the same topology and same
branch lengths. NJ, neighbor joining.

would ‘want’ to separate each pair of adjacent popula-
tions by branches having a length of 0.35. If there were
eight such populations lined up in a row, this would
cause populations 1 and 8 to be separated in the tree by a
genetic distance of 7 x 0.35=2.45. Fs1, however, cannot
take a value greater than 1.0, so the fitted distance in the
tree would be much greater than the genetic distance
observed between populations 1 and 8. This reduces the
R? value for the tree (Tables 1 and 2). The problem is
actually more acute than this, because the maximum
value of Fsr is equal to the homozygosity of the
populations being compared (Kalinowski, 2002; Hedrick,
2005), which in this case was 0.51.

An incidental lesson that arose from these results is
that the style in which a tree is displayed can affect the
ease in which it is interpreted (Figure 4). Unrooted trees
(such as UPGMA and NJ) can be displayed in either a
radial or a rectangular format (Figure 4). Both types of
trees show the same topology with the same branch
lengths, but a radial tree can more clearly illustrate
isolation by distance.

Software

A Window-based computer program, TreeFit, is available
from the author for calculating R? for UPGMA and NJ
trees. TreeFit also provides the user with a list of observed
and fitted genetic distance for all pairs of populations.
This allows the user to construct a scatter plot of these
values and identify where the largest discrepancies are.
TreeFit reads matrixes of genetic distances provided by
the user, so any genetic distance can be used to construct
trees. The program was checked for accuracy by
comparing results to trees described by Felsenstein
(2004) and Swofford et al. (1996). TreeFit is available for
download at the author’s website www.montana.edu/
kalinowski.

Discussion

The results show that evolutionary trees can be a useful
tool for describing genetic relationships among popula-
tions, but that they must be used with care because
populations connected by gene flow may have a genetic
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structure that cannot be represented with a tree.
Particular caution must be exercised using UPGMA
trees. UPGMA trees assume that all the populations
clustered in two nodes are equally different from each
other, and this assumption can severely distort genetic
relationships between populations. Branch lengths
in NJ trees are more flexible, and NJ trees can faithfully
depict genetic structure for some populations that have
an isolation-by-distance population structure. This was
seen with the NJ trees constructed for the linear
stepping-stone model. However, the flexibility of the NJ
algorithm has its limits, and it fails for the two-
dimensional stepping-stone model (as does the UPGMA
algorithm).

The results suggest that R? should be useful for
deciding whether to use a tree to summarize population
structure. Establishing a threshold for deciding how high
R? should be to use a tree requires making an arbitrary
decision, and I suggest that if R? is much less than 0.90,
evolutionary trees should probably not be used to
describe population structure. More stringent criteria
are probably not appropriate because tree construction
algorithms can compensate for sampling error and
improve estimates of genetic distances within a tree.
This is desirable, but reduces the R? value of the tree. If
the NJ algorithm is used to make trees, this decrease in R?
is usually less than 0.10. If a less stringent criterion was
used for deciding whether to use a tree, this would
accept trees constructed from two-dimensional stepping-
stones models of evolution, and such trees do not
provide a useful picture of population structure. If the
R? value for a tree is low, other statistical method should
be used to describe population structure (for example,
multidimensional scaling).

The results from this investigation clearly show that R?
values should not be used as a test for whether
populations have had a hierarchical evolutionary his-
tory—especially if the NJ algorithm is used to construct
the tree. NJ trees can have a high R’ even when
populations display an isolation-by-distance population
structure (for example, linear stepping stones). R? should
be interpreted, therefore, not as a test for how popula-
tions evolved, but as a measure of how well an
evolutionary tree summarizes a genetic distance matrix.
R? measures how well an evolutionary tree describes the
genetic structure of a set of populations, but not the
evolutionary process that created the structure.

Bootstrapping is frequently used to measure statistical
confidence in the topology of evolutionary trees (for
example, Felsenstein (2004), chapter 20, and references
therein). High bootstrap support and high R? values are
desirable if a tree is to be used to describe population
structure, but they measure different quantities and the
distinction is important. The goal of bootstrapping is to
assess the statistical support for each interior branch in
the tree. The concern is that the topology of the tree has
been influenced by sampling error caused by sampling a
limited number of loci. If the number of loci genotyped is
increased, trees should approach the correct topology
and the level of support is expected to increase. The goal
of calculating R’ is to determine whether a tree’s
topology and branch lengths accurately reflect the
genetic distances in the genetic distance matrix. The
concern is that imposing a bifurcating topology onto the
populations distorts the actual relationships among
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Tree “A” Tree “B” Tree “C”
1 2 3 1 3 1 3

Figure 5 Branches from hypothetical trees that have different
topologies and branch lengths.

populations. This value is not expected to increase if
more loci are genotyped. A tree could have high
bootstrap values, but a low R? value. This would happen
if a large number of loci were genotyped, and there was
consistent population structure across the loci, but the
population structure was fundamentally incompatible
with a tree topology.

The NJ trees constructed from populations in the linear
stepping-stone model illustrate that evolutionary trees
do not always cluster populations—at least not in a
evolutionarily meaningful way—and that the branch
lengths in a tree can be at least as important as a tree’s
topology. Consider the NJ tree for the linear stepping-
stone model (Figure 3). This tree was created by forming
a series of clusters, but because of the way branch lengths
were assigned, the final tree does not cluster populations
into recognizable groups. In fact, what it shows is that
most populations are genetically intermediate between
their neighbors (which is appropriate, because popula-
tions in this model are genetically intermediate between
their neighbors). The importance of branch lengths in a
tree is illustrated with a second example (Figure 5). In
Figure 5, trees, ‘A’ and ‘B’ have the same topology, but
have very different biological interpretations. Tree ‘A’
depicts populations 1 and 2 as a cluster, whereas tree ‘B’
depicts population 2 as having a genetic composition
intermediate between populations 1 and 2 (although a
little more similar to population 1). Tree ‘C’ has a
topology different from ‘A’ and ‘B’, but would often be
interpreted the same way as tree ‘B’.

There are many reasons to describe the genetic
structure of populations, ranging from indentifying
management units to inferring the evolutionary pro-
cesses that gave rise to current patterns of genetic
diversity. For each of these purposes, it is helpful to
have a simple and accurate summary of the genetic
relationships among populations. This is not always an
easy task, because genetic data are notoriously multi-
variate, and populations can have complex patterns of
genetic structure. In my experience, it is useful to explore
several different methods for describing population
structure, including making trees, and then to select a
method that conveys the pattern that emerges from these
analyses most succinctly. There is some art to this
process, and I hope that the R? values described in this
study will be useful.
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