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Abstract In the speeded word fragment completion task, par-
ticipants have to complete fragments such as tom_to as quick-
ly and accurately as possible. Previous work has shown that
this paradigm can successfully capture subtle priming effects
(Heyman, De Deyne, Hutchison, & Storms Behavior
Research Methods, 47, 580–606, 2015). In addition, it has
several advantages over the widely used lexical decision task.
That is, the speeded word fragment completion task is more
efficient, more engaging, and easier. Given its potential, we
conducted a study to gather speeded word fragment comple-
tion norms. The goal of this megastudy was twofold. On the
one hand, it provides a rich database of over 8,000 stimuli,
which can, for instance, be used in future research to equate
stimuli on baseline response times. On the other hand, the aim
was to gain insight into the underlying processes of the speed-
ed word fragment completion task. To this end, item-level
regression and mixed-effects analyses were performed on
the response latencies using 23 predictor variables. Since all
items were selected from the Dutch Lexicon Project
(Keuleers, Diependaele, & Brysbaert Frontiers in

Psychology, 1, 174, 2010), we ran the same analyses on lexical
decision latencies to compare the two tasks. Overall, the re-
sults revealed many similarities, but also some remarkable
differences, which are discussed. We propose that both tasks
are complementary when examining visual word recognition.
The article ends with a discussion of potential process models
of the speeded word fragment completion task.

Keywords Speeded word fragment completion task . Lexical
decision task . Visual word recognition

In the last decade, the field of visual word recognition has seen
a surge in so-called megastudies (see Balota, Yap, Hutchison,
& Cortese, 2012, for an overview). Generally speaking, a
typical megastudy comprises several thousand items for
which lexical decision, naming, and/or word identification
responses are collected. The rationale behind megastudies is
that they complement (traditional) factorial studies in which
stimuli are selected on the basis of specific lexical or semantic
characteristics. That is, factorial studies require one to exper-
imentally control for a number of variables that could poten-
tially obscure the effect(s) of interest. Megastudies, on the
other hand, aim to gather data for as many stimuli as possible,
without many constraints. The idea is that one can then statis-
tically control for confounding variables by conducting a mul-
tiple regression analysis. In addition, continuous variables
such as word frequency need not be divided into distinct cat-
egories (i.e., high-frequency vs. low-frequency words). This is
a critical advantage of the megastudy approach, because arti-
ficially dichotomizing continuous variables has been shown to
reduce power and increase the probability of Type I errors
(Maxwell & Delaney, 1993).

In the present study we sought to build on this work, and
we describe a megastudy involving the speeded word
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fragment completion task (Heyman, De Deyne, Hutchison, &
Storms, 2015). Each trial in this task features a word from
which one letter has been deleted (e.g., tom_to).1

Participants are asked to complete each word fragment as
quickly and accurately as possible by pressing a designated
response key. Heyman and colleagues used two variants of
this task: one in which one of five vowels could be missing
(i.e., a, e, u, i, or o), and one in which one of two vowels could
be missing (i.e., a or e). It is important to note that there was
always only one correct completion, such that items like b_ll
were never used. Heyman et al.’s main purpose was to devel-
op a task that could successfully capture semantic priming
effects. The idea was that the speeded word fragment comple-
tion task requires more elaborate processing than do tradition-
al paradigms such as lexical decision and naming. This would,
in turn, allow the prime to exert its full influence, and thus
produce more robust priming effects. Indeed, Heyman et al.
found a strong priming effect for short, highly frequent words,
whereas the lexical decision task failed to show a significant
effect for those items.

In addition, Heyman and colleagues (2015) identified some
other advantages over the lexical decision task. Specifically,
the task is more efficient than lexical decision because it re-
quires no nonwords, and participants rate it as more engaging
and easier than the lexical decision task (Heyman et al., 2015).
Given the promising results and potential advantages, it would
be fruitful to build a database of speeded word fragment com-
pletion responses. Having such norms readily available
would, for instance, be invaluable when conducting studies
with a between-items manipulation. That is, most researchers
aim to equate their stimuli on baseline response times in such
instances, to avoid finding spurious effects. This is especially
relevant in the semantic priming domain, because the magni-
tude of the priming effect correlates with the baseline response
times to both the primes and targets (Hutchison, Balota,
Cortese, & Watson, 2008). As a consequence, databases such
as the Dutch Lexicon Project (henceforth DLP; Keuleers,
Diependaele, & Brysbaert, 2010) and the English Lexicon
Project (Balota et al., 2007) are frequently used in studies
examining semantic priming (e.g., Hutchison, Heap, Neely,
& Thomas, 2014; Thomas, Neely, & O’Connor, 2012).
Likewise, a speeded word fragment completion database
could be used by semantic priming researchers to derive prime
and target baseline latencies for this task.

Besides compiling a large database, another goal of the
present study was to gain more insight into the processes
underlying the speeded word fragment completion task.
Although Heyman and colleagues (2015) provided a first,
modest indication of potentially relevant factors, their

analyses were based on a limited item sample and considered
only five predictor variables. To extend this previous work, a
large-scale norming study was conducted involving a total of
8,240 stimuli. Participants were assigned to one of two task
versions, each featuring over 4,000 stimuli. Both variants re-
quired participants to make a two-alternative forced choice
decision. The response options were a and e, in one version,
and i and o, in the other. As was the case for Heyman et al.,
participants were instructed to respond as quickly and accu-
rately as possible. The resulting response times were then used
as the dependent variable in item-level regression and mixed-
effects analyses featuring 23 predictor variables. All stimuli
were selected from the DLP (Keuleers, Diependaele, &
Brysbaert, 2010), which allowed us to run the same analyses
on lexical decision data, thereby providing a benchmark to
evaluate the speeded word fragment completion results. In
the remainder of the introduction, we will describe the 23
predictors that were used in the analyses. For the sake of
clarity, we divided the predictors into six groups, such that
every variable got one of the following labels: standard
lexical, relative distance, word availability, semantic, speeded
word fragment completion, or interaction. The first four cate-
gories all comprise variables derived from the visual word
recognition literature. The speeded word fragment completion
variables, on the other hand, are based on preliminary work by
Heyman et al. and the researchers’ own intuitions about the
task. Finally, the sixth set of variables consists of theoretically
motivated interaction terms. Each of the six variable groups
will be discussed in turn.

Standard lexical variables

Length Word length, expressed in terms of number of char-
acters, is one of the most studied variables in the visual word
recognition literature (see New, Ferrand, Pallier, & Brysbaert,
2006, for an overview). Despite the plethora of research, no
clear picture has emerged. That is, both inhibitory and null
effects have been reported, as well as facilitatory effects under
very specific conditions.2

Quadratic lengthNew et al. (2006) attributed these diverging
results to the lack of a linear relation between length and word
recognition response times. Instead, they found a U-shaped
relation such that length had a facilitatory effect for words of
three to five letters, had no effect for words of five to eight
letters, and had an inhibitory effect for words of eight to 13
letters. Because of this quadratic pattern, we included quadrat-
ic length (based on standardized length values) as a variable in
the present study.

1 All of the actual items in Heyman et al. (2015) and in the present study
were in Dutch, but analogous examples in English are given as
illustrations.

2 In the context of this article, we use the term Beffect^ without necessar-
ily implying a causal relation.
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Number of syllables Whereas the two previous variables
measure orthographic word length, counting the number of
syllables of a word provides a phonological word length mea-
sure. Previous studies have shown an inhibitory effect of num-
ber of syllables when statistically controlling for orthographic
word length (New et al., 2006; Yap& Balota, 2009). The DLP
database only featuresmono- and bisyllabic words; thus, num-
ber of syllables was a binary variable in this case.

Summed bigram frequency This variable measures the or-
thographic typicality of the target word (e.g., tomato, when the
word fragment is tom_to). Every word consists of N – 1
bigrams, where N is the number of characters of a word
(e.g., to, om, ma, at, and to for tomato). Evidence is mixed
as to how bigram frequency relates to visual word recognition.
More specifically, studies have found a positive relation (Rice
& Robinson, 1975; Westbury & Buchanan, 2002), a negative
relation (Conrad, Carreiras, Tamm, & Jacobs, 2009), and no
relation (Andrews, 1992; Keuleers, Lacey, Rastle, &
Brysbaert, 2012; Treiman, Mullennix, Bijeljac-Babic, &
Richmond-Welty, 1995) between bigram frequency and re-
sponse times. In the present study, we estimated the occur-
rence frequency of every bigram using the SUBTLEX-NL
database, featuring only letter strings with a lemma contextual
diversity above 2 as a corpus (Keuleers, Brysbaert, & New,
2010). All those letter strings were split up in bigrams with the
orthoCoding function of the R package ndl (Shaoul, Arppe,
Hendrix, Milin, & Baayen, 2013). The frequency of occur-
rence of the word, operationalized as its contextual diversity
(Adelman, Brown, & Quesada, 2006), was taken into account
when calculating bigram frequencies, such that bigrams
appearing in highly frequent words were given a greater
weight. For example, the word the has a contextual diversity
count of 8,070, so the bigrams th and he were considered to
occur 8,070 times (just for the word the).3 The employed
procedure did not take the position of the bigram into consid-
eration, meaning that the bigram to in, for instance, store did
count toward the bigram frequency of to in tomato. This
yielded a frequency table for all bigrams, which was then used
to derive the summed bigram frequencies for all target words.

Summed monogram frequencyMonogram frequency is the
analogue of bigram frequency for individual letters. Even
though it is conceivable that monogram and bigram frequency
are correlated (unless they are disentangled in a hypothetical
factorial experiment), none of the studies cited above focused
on the potential confounding influence of monogram frequen-
cy. Andrews (1992) explicitly acknowledged this by noting
that Beven though the samples were selected according to
bigram frequency, they were also relatively equivalent in
single-letter frequency^ (p. 237). In the present study, we

sought to address this issue by entering both variables simul-
taneously in the analyses.

Relative distance variables

Orthographic Levenshtein distance 20 (OLD20) OLD20, a
variable introduced by Yarkoni, Balota, and Yap (2008), mea-
sures the orthographic neighborhood density of the target
word (e.g., tomato). Levenshtein distance reflects the number
of deletions, substitutions, insertions, and transpositions that
are necessary to transform one letter string into another. For
instance, the closest orthographic neighbors for call are hall,
calls, all, ball, . . . (i.e., their Levenshtein distance is 1), where-
as bell, called, mail, . . . are more distant neighbors (i.e., their
Levenshtein distance is 2). OLD20 expresses the average
Levenshtein distance of a target word to its 20 closest ortho-
graphic neighbors. In general, words are recognized faster
when their orthographic neighborhood size is relatively large
(Yarkoni et al., 2008). Even though there are different ways to
look at the orthographic neighborhood (e.g., counting the number
of words of the same length that can be formed by changing one
letter of the target word; Coltheart, Davelaar, Jonasson, &
Besner, 1977), in the present study we used OLD20 because
Yarkoni and colleagues’ results suggested that this measure ex-
plained more variance in word recognition response times.
OLD20 values were calculated using the R package vwr
(Keuleers, 2011) with the SUBTLEX-NL database featuring on-
ly letter strings with a lemma contextual diversity above 2 as a
corpus (Keuleers, Brysbaert, & New, 2010).

Phonological Levenshtein distance 20 (PLD20) PLD20 is
the phonological analogue of OLD20. Yap and Balota (2009)
found a positive relation between PLD20 and lexical decision
and naming latencies when controlling for a host of other
variables including OLD20 (for which they also found a pos-
itive relation with response times). Note, however, that the
orthography-to-phonology mapping is more opaque in
English than it is in Dutch. Yap and Balota examined data
from the English Lexicon Project (Balota et al., 2007), so
the question is whether their findings might generalize to a
shallower language such as Dutch. To calculate PLD20 mea-
sures, a lexicon of word forms in DISC notation was created
with WebCelex (Max Planck Institute for Psycholinguistics,
2001). Then, PLD20 estimates were again calculated using the
vwr package (Keuleers, 2011).

Word availability variables

Contextual diversityWord frequency has proven to be one of
the most potent predictors of response times in visual word
recognition studies (e.g., Balota, Cortese, Sergent-Marshall,3 Accents, apostrophes, and diaereses were omitted.
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Spieler, & Yap, 2004). Words that occur often are recognized
faster, presumably because repeated exposure increases acces-
sibility. However, Adelman and colleagues (2006) suggested
that contextual diversity (i.e., the number of different contexts
in which a word occurs) is a better predictor of response times.
Moreover, word frequency did not have a facilitatory effect
when contextual diversity and length were accounted for,
whereas contextual diversity did have a facilitatory effect
when controlling for word frequency and length (Adelman
et al., 2006). Contextual diversity values were obtained from
the SUBTLEX-NL database (Keuleers, Brysbaert, & New,
2010) and were log-transformed (as was also the case in
Adelman et al., 2006).

Age of acquisitionThe estimated age at which a particularword
was learned has been shown to be strongly correlated with var-
ious word frequency measures (Brysbaert & Cortese, 2011).
Nevertheless, several studies have shown a positive relation be-
tween age of acquisition and word recognition response times
when statistically controlling for word frequency, suggesting that
age of acquisition has a unique effect (Brysbaert & Cortese,
2011; Juhasz, Yap, Dicke, Taylor, & Gullick, 2011; Kuperman,
Stadthagen-Gonzalez, & Brysbaert, 2012). Estimates of age of
acquisition were obtained from Brysbaert, Stevens, De Deyne,
Voorspoels, and Storms (2014).

Cue centrality Previous work by De Deyne, Navarro, and
Storms (2013) has shown that centrality measures derived
from word associations can explain variability in lexical deci-
sion latencies when controlling for contextual diversity and
word frequency. On the basis of a large word association da-
tabase, De Deyne and colleagues created a network of con-
nected nodes (see also De Deyne & Storms, 2008). Various
cue centrality statistics could then be computed for every in-
dividual node in the network, where a node corresponds to a
word. Perhaps the two most obvious measures are in-degree
(i.e., the number of incoming links) and out-degree (i.e., the
number of outgoing links). Yet, in this article, we will use the
clustering coefficient implemented by Fagiolo (2007).
Although it is related to in- and out-degree, this measure is
argued to be more sophisticated, since it also captures the
connectivity of the neighboring nodes (De Deyne et al., 2013).

Semantic variable

Concreteness Generally speaking, semantic variables such as
the concreteness of a word, but also its imageability andmean-
ingfulness, have been found to be related to word recognition
response times (Balota et al., 2004; Schwanenflugel, 1991).
That is, concrete words are recognized faster than abstract
words, but only when deeper semantic processing is required
by the task (Schwanenflugel, 1991). Hence, if the speeded

word fragment completion task indeed involves more elabo-
rate processing, as was suggested by Heyman et al. (2015),
one would expect a stronger relation between judged con-
creteness and response times. Concreteness ratings were again
obtained from Brysbaert et al. (2014).4

Speeded word fragment completion variables

Orthographic Levenshtein distance 20 distractor
(OLD20D) In this context, the term Bdistractor^ refers to the
nonword formed by filling in the incorrect letter (e.g., tometo).
Thus, OLD20D quantifies the orthographic neighborhood
density of the distractor in a similar way as for the target
(i.e., OLD20). Because the target and distractor are identical
except for one letter, both measures will be highly correlated.
Nevertheless, the potential importance of this variable was
illustrated by Heyman et al. (2015), who found a strong inhib-
itory effect of the neighborhood size of the distractor when
controlling for the neighborhood size of the target. That is,
response times were slower when the distractor had many
close orthographic neighbors.

Relative position deleted letter This variable expresses the
relative position of the deleted letter within the word. Its values
are obtained by dividing the absolute position of the deleted letter
by the word length (e.g., for tom_to it is 4/6 or .67). Given the
reading direction, which is from left to right for Dutch, onemight
expect a negative correlation between this metric and response
times. The rationale was that omitting a letter at the beginning of
a word would be more disruptive than deleting a letter at the end.
That is, in the latter case, participants could use the first
(unfragmented) part of the word to better predict the actual word,
and thus also the deleted letter.

Quadratic relative position deleted letter Analogous to the
word length effect, we also anticipated a (potential) quadratic
relation between response latencies and the relative position of
the deleted letter. Concretely, one might expect an inverted U-
shaped relation. The reason is that when the deleted letter is
located toward the boundaries of the word, a relatively long
substring is preserved. For instance, suppose the target word is
orange and the word fragment is _range or orang_. In either
case, a long substring remains intact (i.e., range and orang,
respectively). However, when the deleted letter is located to-
ward the middle of the word, as in or_nge, the resulting
substrings, or and nge, appear less revealing when it comes
to deciding which letter is omitted. As was the case for word

4 Age of acquisition, cue centrality, and concreteness estimates were not
available for all stimuli (this was mostly the case for inflected forms such
as belongs). To have a maximal number of data points in the analyses, we
used the estimates for the dominant lemma (e.g., belong) instead.
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length, quadratic relative position deleted letter was calculat-
ed after first standardizing the values of the relative position
deleted letter variable.

Local bigram frequency Whereas the summed bigram fre-
quency counts all bigrams of a word (see above), the local
bigram frequency specifically focuses on the bigram(s) that con-
tain the missing letter (e.g.,ma and at in tom_to). The idea is that
people might restrict their attention to the letter(s) that immedi-
ately surround the blank. As a consequence, their response times
might be influenced by the so-called local bigrams, such that
responses to stimuli with a higher local bigram frequency are
faster. Naturally, local bigram frequencies will be correlated with
summed bigram frequencies, yet it is important to disentangle
their effects by adding them both to the regression equation. For
one thing, the variables might have opposite effects: facilitatory
for local bigram frequency, and null or even inhibitory for
summed (global) bigram frequency. Local bigram frequencies
were obtained in a way similar to that for summed bigram fre-
quencies. Word fragments with a missing letter at the word
boundary (e.g., orang_) have only one local bigram, and thus
their frequency estimates would be lower in comparison to other
word fragments, such as or_nge. Therefore, the average bigram
frequency was computed in the latter cases [e.g., for or_nge:
(bigram frequency of ra + bigram frequency of an)/2].

Deleted letter There were two variants of the speeded word
fragment completion task: one in which the deleted letter was
a or e, and one in which the deleted letter was i or o. The
variable deleted letter indicated the correct response to each
word fragment. We used a dummy coding scheme, such that
the letters a and i served as the baseline in the analyses of,
respectively, the a/e and i/o data. If there were a consistent
response bias across participants or if omitting one specific
letter were more detrimental than the other, this would show
up in the regression weight for this predictor. Note, however,
that we tried to eliminate response bias by selecting equal
numbers of stimuli per response option. Also note that this
variable will be related to summed monogram frequency in
the a/e version of the task, because the letter e occurs consid-
erably more often than the letter a in Dutch. Consequently, the
monogram frequency variable only captured the (potential)
effect of the nondeleted letters in a regression analysis with
deleted letter as another predictor.

Alternative completion The premise of the speeded word
fragment completion task is that there is always only one
correct response. However, in some cases other completions
could be possible if they were permitted as a response option.
For instance, the correct completion of p_int is paint and not
peint, but filling in the letter rwould yield the orthographically
legal word print. Despite the fact that the letter r was not
allowed as a response, it might still create conflict, and thus

slow down response times. Furthermore, the degree of re-
sponse conflict might depend on the occurrence frequency
of the alternative completion such that highly accessible alter-
natives would have more adverse effects. To evaluate these
assumptions, the alternative completion variable was added to
the equation. This is a categorical variable with three possible
values: 0, indicating that there are no alternative completions;
1, indicating an alternative completion with a low occurrence
frequency; and 2, indicating an alternative completion with a
high occurrence frequency. The frequency of occurrence was
again operationalized as the log-transformed contextual diver-
sity (Adelman et al., 2006), where values below 2 were con-
sidered low. When there were two or more alternative com-
pletions (e.g., print and point for p_int), the one with the
highest contextual diversity was used.

Vowel type This variable concerns the vowel configuration of
which the missing letter is a part. The deleted letter in the present
experiment was always a vowel. Consequently, it could be
surrounded by consonants (e.g., tom_to) or it could be part of a
double, triple, or quadruple vowel (e.g., p_int, s_eing, or
qu_uing). Here, we distinguished three types: single vowels (as
in tom_to), repeated double vowels (as in b_etle), and an Bother^
category that included nonrepeated double vowels, triple vowels,
and quadruple vowels. The repeated double vowels category
served as the baseline in the dummy coding scheme used here.
Previous work from Heyman et al. (2015) suggested that word
fragment completion takes longer when the missing letter is part
of a double vowel than when it is a single vowel. However, these
results came from a word fragment completion task with five
response options, and the authors made no distinction between
repeated and nonrepeated double vowels.

Interaction variables

In theory, we could include all two-way interactions as well as
all higher-order interactions. However, this would yield a very
complex model, which could lead to convergence issues when
conducting mixed-effects analyses. Therefore, we only added
five theoretically motivated two-way interactions.

Contextual Diversity × Length Several previous studies
have examined the (potential) interaction between word fre-
quency and word length (Balota et al., 2004; Weekes, 1997;
Yap & Balota, 2009). However, as was the case for the main
effect of word length, no clear picture has emerged. On the
one hand, Balota and colleagues found an inhibitory length
effect that diminished whenword frequency increased. In con-
trast, even though Weekes initially observed a similar pattern,
no significant length effect remained for both low- and high-
frequency words when covariates such as neighborhood size
were introduced. Yap and Balota’s results were also mixed, in
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particular they found a significant Frequency × Length inter-
action in the naming task, but the interaction did not reach sig-
nificance in the lexical decision analysis (despite going in the
same direction). In the present study, we further explored this
apparent discrepancy using the contextual diversity measure ad-
vocated by Adelman et al. (2006) instead of word frequency.

Contextual Diversity × Quadratic LengthA potential expla-
nation for the lack of a consistent Frequency × Length interaction
is that there is no linear length effect in the first place. As we
discussed above, New and colleagues (2006) found a quadratic
effect of word length. It is theoretically possible that this effect
varies with word frequency such that, for instance, mainly (or
only) low-frequency words show this U-shaped relation. A study
from Hyönä and Olson (1995) examining eye fixation patterns
when reading aloud provided some suggestive evidence for such
an interaction. First-fixation durations showed the typical qua-
dratic length effect, but only when medium- and low-frequency
words were considered. High-frequency words, on the other
hand, showed an inverted U-shaped length effect. One might
wonder whether this is a general pattern that would also emerge
in a speeded two-alternative forced choice task such as word
fragment completion.

Contextual Diversity × OLD20 Several studies in the visual
word recognition domain have examined whether word fre-
quency and orthographic neighborhood size interact
(Andrews, 1992; Balota et al., 2004; Sears, Hino, & Lupker,
1995; Yap & Balota, 2009). The general finding is that neigh-
borhood size facilitates lexical decision and naming perfor-
mance for low-frequency words. The picture for high-
frequency words is less clear. The common understanding is
that high-frequency words do not benefit as much from ortho-
graphic neighbors as low-frequency words do. However, con-
sidered in isolation, facilitatory and inhibitory effects of neigh-
borhood size have been reported for high-frequency words (as
well as null effects). Yarkoni et al. (2008) suggested that a
more powerful metric such as OLD20 could resolve these
inconsistencies. Their analyses indeed showed a significant
Frequency × OLD20 interaction that explained more variance
than the traditional Frequency × Neighborhood Size interac-
tion. Given that contextual diversity explains more variance
than word frequency (Adelman et al., 2006), one might expect
the Contextual Diversity × OLD20 interaction to be even
more potent in this regard.

Contextual Diversity × PLD20 To clearly disentangle ortho-
graphic and phonological neighborhood density effects, we
also included a Contextual Diversity × PLD20 interaction.
There has been some debate as to the nature of neighborhood
density effects, because both density measures are usually
strongly correlated (e.g., Mulatti, Reynolds, & Besner,
2006). Mulatti and colleagues argued that phonological

neighborhood density, but not orthographic neighborhood
density, affects naming performance. So, when examining
the potential influence of orthographic neighborhood density,
it is important to control for phonological neighborhood
density.

Contextual Diversity × ConcretenessAswe discussed above,
concrete words tend to be recognized faster than abstract words.
However, this effect mainly (or only) manifests itself in low-
frequency words (Schwanenflugel, 1991). In a similar vein,
Strain, Patterson, and Seidenberg (1995) suggested that atypical
low-frequency words benefit more from a rich semantic repre-
sentation than do high-frequency words. It should be noted,
though, that more recent evidence has cast some doubt on this
conclusion. For instance, Balota et al. (2004) did not find a sig-
nificant interaction between word frequency and semantic vari-
ables (see also Yap & Balota, 2009).

Method

Participants

Forty paid volunteers participated in the experiment (eight men,
32women;mean age 21 years). The experiment consisted of two
separate 1-h sessions, and participants received a payment of €16
when they completed both sessions. All participants were native
Dutch speakers. The study was approved by the Ethical
Committee of the Faculty of Psychology and Educational
Sciences of the University of Leuven, and participants provided
written informed consent before starting the experiment.

Materials

The stimuli for the speeded word fragment completion task
were words from which one letter had been deleted (e.g.,
tom_to). The omitted letter was always either an a, e, i, or o.
The rationale behind using these specific letters was that they
all had a high occurrence frequency in Dutch, which would
allow us to select as many stimuli as possible. To make the
task similar to other two-alternative forced choice tasks, we
decided to make two separate item pools. One set contained
only words from which the letter a or e had been deleted, and
the other set contained words fromwhich an i or an o had been
deleted. There was one restriction in the selection of stimuli, in
that only word fragments with a single correct completion
were used. For example, a stimulus such as m_n was unsuit-
able because both response options, in this example the letters
a and e, would be plausible (yielding, respectively, man and
men). In contrast, a stimulus such as l_ck was a good candi-
date for the a/e version of the task, because lack is an existing
word but leck is not. Note, though, that in this particular in-
stance the word fragment would have other correct
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completions if the design had no response restrictions (i.e.,
lock, luck, or lick; see the alternative completion variable
above). Yet, within the context of the a/e task, there was only
one correct response.

All stimuli were chosen from the DLP (Keuleers,
Diependaele, & Brysbaert, 2010), which made it possible to
compare the present data with lexical decision data. Stimulus
selection occurred as follows. First, all words were removed
that contained no as, es, is, or os. For the remainder of the
stimuli, we checked whether the distractor was an existing
word. The term Bdistractor^ here refers to the stimulus formed
by filling in the nontarget letter. The stimulusmanwould yield
m_n as its word fragment and men as a distractor, whereas
lack would yield l_ck as the word fragment and leck as a
distractor. Since the distractor in the former case is an existing
word, it was removed from the candidate pool. To check
whether distractors were indeed nonwords, we used the
SUBTLEX-NL database listing all letter strings with a lemma
contextual diversity greater than 2 (Keuleers, Brysbaert, &
New, 2010). Thus, only stimuli with a distractor that was not
listed in this database were used. One additional restriction
applied to words that contained the same target letter more than
twice (e.g., repressed). Whether the distractor was an existing
word was only assessed for the first two occurrences of the target
letter. That is, for repressed, we checked whether rapressed and
reprassed existed, but not whether repressad existed.

In a next step, all stimuli were divided in two pools: the a/e
pool and the i/o pool. Some stimuli could be part of both pools
(e.g., tomato could be put in the a/e pool, tom_to, or the i/o pool,
t_mato). The majority of those stimuli were randomly assigned
to one pool, except for 800 stimuli that were placed in both pools.
Each letter combination (i.e., a+ o as in tomato, a+ i, e+ o, and e
+ i) occurred 200 times in those 800 common stimuli.

Then, the stimuli within a pool were assigned to a target
letter. In some instances there was no choice (e.g., for lack),
but in others both letters, either a and e or i and o, could be
deleted (e.g., deaf could yield the word fragments de_f, in
which a was the target letter, and d_af, in which e was the
target letter). Once stimuli had been assigned to a unique let-
ter, the position of the deleted letter might need to be deter-
mined. Again, this only applied to a subset of the stimuli—that
is, words containing the same target letter twice (e.g.,
repressed could yield the word fragments r_pressed and
repr_ssed). We opted to delete the first letter (as in r_pressed)
in 75 % of those instances if the target letter were e or i, and in
50% of the cases if the target letter were a or o. The reason for
this unequal distribution was to keep the average position of
the deleted letter more or less similar within an item pool,
because in Dutch, many verbs and plurals end in -en, and
many adjectives end in -ig.

Finally, all remaining stimuli were manually checked to
make sure that the distractor was indeed a nonword and that
no proper names were included. To assure that participants

would be unbiased, equal numbers of stimuli per response
option were selected. This ultimately led to 4,200 stimuli in
the a/e item pool, half of which required an a response, and 4,
040 stimuli in the i/o item pool, half of which required an i
response. Because the experiment consisted of two sessions,
each item pool was split up in two lists (henceforth, List A and
List B). Stimuli were randomly assigned to a list, with equal
numbers of stimuli for both response options.

Procedure

The entire experiment consisted of two sessions that lasted ap-
proximately 1 h each. Participants were tested individually, and
the time between the sessions was minimally one day and max-
imally two weeks. They were informed that the experiment in-
volved completing words fromwhich one letter had been deleted
as quickly and accurately as possible. In addition, the instructions
stated that only two response options were possible (i.e., a/e or
i/o) and that there was always only one correct completion.
Participants used the arrow keys to respond.

We created eight different versions of the experiment,
resulting from combining three between-subjects factors:
Item Pool (a/e vs. i/o), List Order (List A in the first session
vs. List B in the first session), and Response Keys (left arrow
corresponding to a or i vs. left arrow corresponding to e or o).
Experiment version was counterbalanced across participants.
On every trial, a word fragment was shown until the partici-
pant responded, and the intertrial interval was 500 ms. The
order of the stimuli within a session was random. Each session
was split into 14 blocks of 150 stimuli (except the last block of
the i/o version, which consisted of only 70 stimuli). After each
block, participants were allowed to take a self-paced break,
and they also received feedback about their performance. If
their accuracy for a certain block dropped below 85 %, they
were encouraged to be more accurate. Before the start of each
session, participants got a practice block comprising 30 differ-
ent trials, 15 per response option. In contrast to the actual
experiment, during the practice phase participants got imme-
diate feedback if they made an error (i.e., the message BWrong
answer^was displayed for 1,000ms). The experiment was run
on a Dell Pentium 4 computer with a 17.3-in. CRT monitor
using PsychoPy (Peirce, 2007).

Results

Reliability and descriptive statistics

First, the reliability of the response times was assessed by calcu-
lating Cronbach’s α. The a/e and i/o datasets yielded αs of,
respectively, .83 and .82. Log-transforming the response times
slightly increased α to .87 for both datasets; however, all further
analyses were performed on the untransformed response times.
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The obtained reliability estimates are comparable to those report-
ed in lexical decision megastudies (Keuleers, Diependaele, &
Brysbaert, 2010; Keuleers et al., 2012). Note though, that in the
present study only 20 participants were required in order to reach
such high reliability estimates, whereas the latter lexical decision
megastudies needed about twice that number.

In a next step, outliers and errors were excluded, after which
the average response time per item was calculated. Outliers were
removed in two steps. First responses faster than 250 ms or
slower than 4,000 ms were omitted, as well as erroneous re-
sponses. Then, participant-specific cutoff values, defined as the
mean plus three standard deviations, were calculated. Response
times exceeding this criterion were also discarded. As a result of
this procedure, 4.8 % and 8.1 % of the data were removed from
the a/e and i/o datasets, respectively. The resulting average re-
sponse times per item as well as the standard deviation and
accuracy are available as a supplementary Excel file. The re-
sponse times averaged across items were 739 and 823 ms, for,
respectively, the a/e and i/o items. The average accuracies were,
respectively, 95.2 % and 94.7 %. Despite the high overall accu-
racy, some item-level accuracies were as low as 5 % (e.g., t_am,
which should be completed as team, an English loanword).
Because the averaged response times for such items were only
based on a limited number of data points, all further analyses
were performed on items for which the accuracy was higher than
70 %. As a result, 106 and 103 items were omitted from the a/e
and i/o lists, respectively.

Item-level regression analyses

In order to understand the underlyingmechanisms of the speeded
word fragment completion task, we sought to relate a number of
predictors to the response times obtained in this norming study.
Some of the predictors were derived from the existing word
recognition literature, whereas others were selected on the basis
of our intuitions about the nature of the speeded word fragment
completion task itself. Before turning to the actual regression
analyses, we first wanted to explore the relation between the
speeded word fragment completion task and the lexical decision
task. From previous research (Heyman et al., 2015), one would
expect a statistically significant correlation between the response
times in both tasks. Yet, if both tasks partly differ in their under-
lying processes, one would only expect a small to moderate
correlation. The analyses revealed correlations of .36 {a/e items:
t(4092) = 24.78, p < .001, 95%CI [.33, .39]} and .41 {i/o items:
t(3935) = 28.25, p < .001, 95 % CI [.38, .44]}. Both correlations
were subsequently corrected for attenuation (Spearman, 1904)
using the reliabilities reported above and in Keuleers,
Diependaele, and Brysbaert (2010). The resulting disattenuated
correlations were .44 for a/e items and .51 for i/o items. To test
whether the disattenuated correlations were imperfect, we ap-
plied Kristof’s (1973, Case II) method. This procedure required
trial-by-trial data from both the lexical decision and the speeded

word fragment completion task. First, errors and outliers were
removed using the criteria described earlier. Then, the partici-
pants were randomly split into two groups to create two parallel
halves of each task. This was done for both the a/e and i/o
versions separately. ApplyingKristof’s test showed that we could
reject the null hypothesis, meaning that the disattenuated corre-
lations differed significantly from 1 [t(4093) = 45.76, p < .001,
for a/e items; t(3936) = 41.89, p < .001, for i/o items]. Taken
together, the results confirmed that there are both similarities and
differences between lexical decision and word fragment
completion.

In addition, we examined the response times to the items
that occurred in both the a/e and i/o lists. The correlation
between the speeded word fragment completion response
times to those items was .34 {t(767) = 9.94, p < .001, 95 %
CI [.27, .40]}. Applying Spearman’s correction for attenuation
with the reliability estimates reported above resulted in a cor-
relation of .41 [Kristof’s test: t(768) = 20.73 p < .001]. We
interpreted these findings to mean that word-specific variables
can only explain a limited amount of variance in the word
fragment completion response times.

To examine in more detail which variables were related to
the response times, a multiple regression analysis was per-
formed. All 23 variables were simultaneously entered into
the regression equation (because of missing values for some
predictors, the actual analyses were performed on a subset of
the data; see Table 1 for summary statistics on the predictors,
and Tables 2 and 3 for zero-order correlations). The three
categorical variables (i.e., deleted letter, alternative comple-
tion, and vowel type) were dummy coded, whereas all other
variables were standardized. This resulted in 25 regression
weights being estimated, since the variables alternative
completion and vowel type both comprised three categories.
In order to limit the Type I error probability, only p values
below .002 (.05/25) were considered to provide significant
evidence against the null hypothesis. Furthermore, the data
from the two item pools were analyzed separately to give us
an idea about the generalizability of the effects. The results are
summarized in Table 4. Overall, they are very consistent across
item pools and fit nicely with the predictions from the word
recognition literature (see below for a more detailed evaluation).

In order to directly compare the speeded word fragment com-
pletion task with the lexical decision task, additional analyses
were conducted using the DLP lexical decision latencies as the
dependent variable. All 23 predictor variables were again includ-
ed in these analyses, even though the speeded word fragment
completion variables are senseless in a lexical decision context.
This was done to ensure that the latter variables were indeed
specific to the fragment completion task and that they do not
measure some general word recognition property. Also, to assure
comparability, the a/e and i/o division was kept in the analyses,
despite the fact that this distinction is actually irrelevant in the
lexical decision task. The results, summarized in Table 5, are a bit
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surprising in some ways. Considered as a whole, the findings
were rather consistent across the item pools, but the regression
weights for some variables did not follow the predicted pattern.
More specifically, the length variables (i.e., quadraticword length
and number of syllables) and the Levenshtein distance measures

(i.e., OLD20 and PLD20) seemed to have either no effect or an
unexpected facilitatory effect. Onemight argue, however, that the
inclusion of the speeded word fragment completion variables
and/or the interaction terms somehow distorted the results of
the lexical decision analyses. To address this concern, we

Table 1 Means and standard deviations for the predictors in the regression analyses

Predictor a/e (N = 3,379) i/o (N = 3,082)

Mean SD Mean SD

Length 6.19 1.42 6.29 1.51

Quadratic length 0.90 1.27 0.92 1.23

Number of syllables 1.80 0.40 1.77 0.42

Summed bigram frequency (×10–6) 2.60 1.47 2.15 1.37

Summed monogram frequency (×10–7) 2.62 0.77 2.39 0.85

Orthographic Levenshtein distance 20 1.79 0.56 1.93 0.61

Phonological Levenshtein distance 20 1.63 0.45 1.71 0.47

Contextual diversity (log) 2.23 0.90 2.00 0.84

Age of acquisition 7.61 2.11 8.02 2.16

Cue centrality (×103) 1.14 0.60 1.25 0.64

Concreteness 3.37 1.07 3.42 1.07

Orthographic Levenshtein distance 20 distractor 2.04 0.54 2.11 0.61

Relative position deleted letter 0.58 0.24 0.52 0.21

Quadratic relative position deleted letter 0.96 0.81 0.94 1.00

Local bigram frequency (× 10–5) 6.80 5.05 3.02 1.34

Predictors for which it is senseless to calculate means are excluded (e.g., vowel type).

Table 2 Zero-order correlations between predictors and dependent variables for a/e items (N = 3,379)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1. Length – .00 .57 .39 .61 .74 .58 –.30 .17 .11 –.04 .80 –.11 .15 .03 –.24 .19

2. Quadratic length – –.34 –.16 –.15 .13 .09 .03 .00 .03 .00 .08 .03 –.08 –.12 .08 –.02

3. Number of syllables – .37 .51 .38 .34 –.22 .16 .12 –.06 .44 –.04 .37 .13 –.07 .17

4. Summed bigram frequency – .75 –.05 –.12 .09 –.10 –.08 –.08 .10 –.04 .04 .62 –.04 .04

5. Summed monogram frequency – .21 .10 –.04 –.06 –.02 –.08 .34 –.13 .13 .33 –.08 .10

6. Orthographic Levenshtein distance 20 – .84 –.35 .32 .27 –.03 .84 –.14 .14 –.24 –.16 .18

7. Phonological Levenshtein distance 20 – –.28 .31 .27 –.04 .67 –.16 .13 –.26 –.09 .11

8. Contextual diversity (log) – –.41 –.35 –.32 –.28 .07 –.04 .21 –.24 –.62

9. Age of acquisition – .37 –.27 .22 –.07 .02 –.14 .16 .42

10. Cue centrality – .08 .18 –.04 .01 –.11 .14 .32

11. Concreteness – –.04 .02 –.07 –.06 .07 .06

12. Orthographic Levenshtein distance 20 distractor – .00 .21 .02 –.35 .16

13. Relative position deleted letter – .10 .32 –.11 –.02

14. Quadratic relative position deleted letter – .10 –.15 .06

15. Local bigram frequency – –.18 –.06

16. Speeded word fragment completion response time – .34

17. Lexical decision response time –

Interaction variables were not included.
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reanalyzed the lexical decision data using only the regular word
recognition variables (see Table 6). Taken together, the results
remained essentially the same when removing the speeded word
fragment completion and interaction variables.

Thus far, the analyses allowed us to evaluate the roles of the
different variables, yet it remained unclear how much total vari-
ance they explain. To get an idea about the contributions of the
six variable groups, hierarchical regression analyses were per-
formed. Contrary to the previous analyses, inwhich all predictors
were entered at once, we now added predictors in a stepwise
fashion. In a first step, only the standard lexical variables were
included, and the resulting R2 was calculated. Then, the other
groups were added in the following order: relative distance var-
iables, word availability variables, semantic variable, word frag-
ment completion variables, and interaction variables. The R2

estimates, calculated after each step and separated by task and
item pool, are reported in Table 7. The proportion of variance
explained by all predictors was slightly lower in the speeded
word fragment completion task than in the lexical decision task
(i.e., respectively, .421 vs. .475 for a/e items, and .399 vs. .471 for
i/o items). Intriguingly, the word availability variables accounted
for the vast majority of the variance explained in the lexical
decision task, whereas in the speeded word fragment completion
task the proportion of explained variance was more evenly

distributed across the standard lexical variables, the word avail-
ability variables, and the variables specific to speeded word frag-
ment completion. The fact that the latter variable group contrib-
uted only very meagerly toward the total R2 in the lexical deci-
sion task confirms that these variables do not tap into general
word recognition processes.

Mixed-effects analyses

The previous set of analyses required us to collapse over
participants to obtain the average response time per item.
Not only does such an approach ignore (potential) inter-
individual differences, it also neglects longitudinal effects.
For instance, practice and/or fatigue can influence re-
sponse times, but these effects go undetected when one
averages over participants. A key advantage of mixed-
effects modeling is that it allows researchers to statistical-
ly control for such longitudinal effects (Baayen,
Davidson, & Bates, 2008). Therefore, we reanalyzed the
speeded word fragment completion and lexical decision
latencies using mixed-effects models. Again, the analyses
were split up per task and item pool, but now the trial-by-
trial data were used. In addition to the independent vari-
ables that were used before, we also included trial number

Table 3 Zero-order correlations between predictors and dependent variables for i/o items (N = 3,082)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1. Length – –.15 .61 .50 .70 .78 .63 –.25 .10 .09 –.03 .78 –.16 .06 .15 –.17 .15

2. Quadratic length – –.40 –.23 –.28 .02 –.01 .08 –.06 .03 .05 .03 .15 .06 –.02 .05 –.06

3. Number of syllables – .46 .62 .46 .44 –.23 .18 .10 –.09 .43 –.22 .13 –.03 –.01 .14

4. Summed bigram
frequency

– .78 .09 –.01 –.02 –.07 –.02 –.02 .09 –.23 –.11 .26 .08 .08

5. Summed monogram
frequency

– .34 .24 –.15 .00 .02 –.04 .31 –.21 –.04 .27 .08 .15

6. Orthographic Levenshtein
distance 20

– .85 –.28 .24 .21 –.02 .92 –.05 .23 .03 –.20 .14

7. Phonological Levenshtein
distance 20

– –.23 .27 .22 –.05 .79 –.01 .25 –.01 –.16 .09

8. Contextual diversity (log) – –.39 –.32 –.31 –.21 .05 –.03 .10 –.28 –.64

9. Age of acquisition – .31 –.30 .22 .07 .12 –.08 .18 .40

10. Cue centrality – .10 .17 .03 .10 –.03 .12 .28

11. Concreteness – –.06 .00 –.06 –.09 .03 .06

12. Orthographic
Levenshtein distance 20
distractor

– –.02 .20 .07 –.31 .09

13. Relative position deleted
letter

– .35 –.05 .05 –.03

14. Quadratic relative
position deleted letter

– –.04 –.06 –.03

15. Local bigram frequency – –.16 –.07

16. Speeded word fragment
completion response time

– .42

17. Lexical decision response
time

–

Interaction variables were not included
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as a predictor.5 The three categorical variables (i.e., delet-
ed letter, alternative completion, and vowel type) were
dummy coded, and all other variables were standardized.
One notable difference was that we no longer included
speeded word fragment completion variables in the anal-
yses of lexical decision latencies, because the item-level
regression analyses confirmed that those variables are
meaningless within the context of a lexical decision task.
The results of the mixed effects analyses are shown in

Table 8, for speeded word fragment completion, and
Table 9, for lexical decision.6

Summary

The item-level regression and mixed-effects analyses yielded
very similar outcomes. Looking at the speeded word fragment

5 The operationalization of the trial number variable differed slightly
across tasks. The trial count was reset to 1 for the second session of the
speeded word fragment completion task, whereas an incremental trial
count across sessions was used for DLP. This was done because a carry-
over practice effect from one session to the next was less likely to emerge
in the present study, since it only comprised two sessions.

6 The analyses were carried out in R (version 3.1.2; R Development Core
Team, 2014) using the lme4 package (Bates, Maechler, Bolker, &Walker,
2014). We took an approach similar to that described in “Bates, Kliegl,
Vasishth, and Baayen, submitted” to determine the random part of each
model.More specifically, everymodel initially included by-participant and
by-item random intercepts, as well as all possible random slopes. Then,
random slopes were gradually removed, as was advocated by Bates and
colleagues (2015), until there was a significant loss of goodness of fit.
Tables 8 and 9 indicate which random slopes were eventually retained.

Table 4 Item-level regression results for the speeded word fragment completion task

Predictor a/e i/o

Beta p Value Beta p Value

Standard Lexical Variables

Length –.20 <.001 –.15 <.001

Quadratic length .15 <.001 .12 <.001

Number of syllables .08 <.001 .01 .591

Summed bigram frequency .16 <.001 .06 .016

Summed monogram frequency .09 .005 .23 <.001

Relative Distance Variables

Orthographic Levenshtein distance 20 .29 <.001 .25 <.001

Phonological Levenshtein distance 20 .01 .602 .03 .250

Word Availability Variables

Contextual diversity (log) –.32 <.001 –.33 <.001

Age of acquisition .08 <.001 .12 <.001

Cue centrality .05 .002 .02 .116

Semantic Variable

Concreteness –.05 .003 –.09 <.001

Speeded Word Fragment Completion Variables

Orthographic Levenshtein distance 20 distractor –.52 <.001 –.51 <.001

Relative position deleted letter –.01 .548 .11 <.001

Quadratic relative position deleted letter –.15 <.001 –.09 <.001

Local bigram frequency –.17 <.001 –.07 <.001

Deleted letter .23 <.001 .27 <.001

Low-frequency alternative completion .30 <.001 .20 <.001

High-frequency alternative completion .54 <.001 .62 <.001

Single vowel .60 <.001 .58 <.001

Other double, triple, or quadruple vowel .50 <.001 .68 <.001

Interaction Variables

Contextual Diversity (log) × Length .06 .003 .05 .036

Contextual Diversity (log) × Quadratic Length .03 .023 .01 .608

Contextual Diversity (log) × Orthographic Levenshtein Distance 20 –.05 .121 –.03 .445

Contextual Diversity (log) × Phonological Levenshtein Distance 20 .00 .952 –.07 .010

Contextual Diversity (log) × Concreteness –.02 .160 –.03 .082
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completion results, we see that 11 variables were consistently
related to the response latencies. That is to say, 11 variables
showed a significant effect across both item pools and analysis
methods (using a significance level of .002; see above):
length, quadratic length, OLD20, contextual diversity, age of
acquisition, OLD20D, quadratic relative position deleted let-
ter, local bigram frequency, deleted letter, alternative comple-
tion, and vowel type. Turning to the lexical decision task, only
four variables yielded consistent effects: contextual diversity,
age of acquisition, cue centrality, and concreteness.
Obviously, speeded word fragment completion variables are
meaningless in the context of lexical decision, but it is remark-
able that several other predictors did not show the expected
effects. For one, neither (quadratic) word length nor number
of syllables consistently predicted response times in the lexical

decision task. In contrast, we did observe a significant U-
shaped relation between word length and speeded word frag-
ment completion latencies (see Fig. 1). Similarly, we found a
significant inhibitory OLD20 effect in the speeded word frag-
ment completion task, but not in the lexical decision task (we
will elaborate on this issue in the Discussion section). It is also
noteworthy that the theoretically motivated interaction effects
were never consistently significant in either the speeded word
fragment completion task or the lexical decision task.

Discussion

In the present study, we gathered speeded word fragment com-
pletion data for 8,240 stimuli. The goal of this undertaking

Table 5 Item-level regression results for the lexical decision task

Predictor a/e i/o

Beta p Value Beta p Value

Standard Lexical Variables

Length –.01 .753 .01 .820

Quadratic length .02 .211 .00 .954

Number of syllables –.04 .053 –.08 <.001

Summed bigram frequency .03 .311 .04 .135

Summed monogram frequency .14 <.001 .12 <.001

Relative Distance Variables

Orthographic Levenshtein distance 20 –.06 .080 .03 .558

Phonological Levenshtein distance 20 –.14 <.001 –.08 .003

Word Availability Variables

Contextual diversity (log) –.59 <.001 –.61 <.001

Age of acquisition .19 <.001 .16 <.001

Cue centrality .08 <.001 .07 <.001

Semantic Variable

Concreteness –.08 <.001 –.09 <.001

Speeded Word Fragment Completion Variables

Orthographic Levenshtein distance 20 distractor .05 .111 –.06 .148

Relative position deleted letter .04 .015 .02 .288

Quadratic relative position deleted letter .02 .082 –.05 .001

Local bigram frequency .01 .788 –.05 .002

Deleted letter –.15 .001 .00 .891

Low-frequency alternative completion .07 .076 –.03 .428

High-frequency alternative completion –.01 .872 .05 .322

Single vowel .19 <.001 .01 .889

Other double, triple, or quadruple vowel .10 .067 .00 .927

Interaction Variables

Contextual Diversity (log) × Length .05 .010 .05 .033

Contextual Diversity (log) × Quadratic Length .03 .029 .02 .221

Contextual Diversity (log) × Orthographic Levenshtein Distance 20 –.14 <.001 –.10 .002

Contextual Diversity (log) × Phonological Levenshtein Distance 20 .03 .177 –.01 .711

Contextual Diversity (log) × Concreteness –.06 <.001 –.03 .029
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was twofold. On the one hand, we sought to provide norms
that can be used in subsequent studies—for instance, to match
stimuli on baseline response time and accuracy. The other aim
of this megastudy was to gain more insight into the underlying
processes of the speeded word fragment completion task. To
this end, item-level regression and mixed-effects analyses
were carried out on the response times using 23 predictor
variables. In addition, since all stimuli were selected from
the DLP (Keuleers, Diependaele, & Brysbaert, 2010), a direct
comparison with the lexical decision task was possible. The
results showedmoderate correlations between lexical decision
latencies and speeded word fragment completion latencies,
indicating that the tasks have both similarities and differences.
When the same analyses were performed on the lexical deci-
sion data, some remarkable discrepancies emerged. In what
follows, we first offer some explanations for the diverging
findings. Then we close with a discussion of potential
(nonimplemented) process models of the speeded word frag-
ment completion task.

Comparing speeded word fragment completion
with lexical decision

As we mentioned above, some variables did not show the
predicted relation with lexical decision performance. This
was especially the case for the relative distance measures
OLD20 and PLD20. Not only were these variables not con-
sistently related to lexical decision times, the obtained regres-
sion weights were nearly always numerically negative. In con-
trast, OLD20 was a reliable predictor of speeded word

fragment completion response times. More specifically, a
fragment was completed faster when the target word (e.g.,
tomato for tom_to) had a small OLD20 value, which is indic-
ative of a dense orthographic neighborhood.

Our unexpected findings for the lexical decision task could
potentially be due to a multicollinearity issue. Indeed, Yap,
Tan, Pexman, and Hargreaves (2011) found no significant
effects of OLD20 and PLD20, which they attributed to the
high correlations among the predictor variables. Note that
Yap and colleagues (Yap & Balota, 2009; Yap et al., 2011)
also included number of orthographic neighbors and number
of phonological neighbors as predictors, thereby potentially
aggravating the multicollinearity issue. To assess whether
our parameter estimates were distorted as a consequence of
multicollinearity, variance inflation factors (henceforth, VIFs;
Freund, Wilson, & Sa, 2006) were calculated for the 11-
variable analysis (see Table 6). All VIFs were smaller than
7, where values of 10 or higher are generally considered prob-
lematic. This suggests that the results for the lexical decision
task were not distorted because of multicollinearity.

Another possibility is that the unexpected findings are due
to the specific stimulus selection procedure used here. As we
described in the Method section, the stimuli for the speeded
word fragment completion task had to meet certain criteria.
The resulting item pool is thus a selective sample of all pos-
sible word stimuli. One might therefore argue that the unchar-
acteristic results for the lexical decision task are due to a bi-
ased set of stimuli. However, it is important to recognize that
the majority of the DLP word stimuli were included and that
the analyses were performed on over 3,000 stimuli per item
pool. Even though this sample could potentially be biased in
one way or another, the number of stimuli is nevertheless
substantial. Furthermore, although a biased item pool could
in principle explain differences between the present lexical
decision results and those observed in other studies, it is not
clear how such an explanation resolves the inconsistencies
between the lexical decision and speeded word fragment com-
pletion results. The analyses involved exactly the same stim-
ulus set, so if this explanation were true, one would expect the
effects of word-specific variables such as OLD20 to be
distorted in both tasks. This was clearly not the case, as can
be seen in Tables 4 and 5 and Tables 8 and 9.

Finally, one might speculate that the speeded word frag-
ment completion task is better-equipped than the lexical deci-
sion task to capture certain effects, perhaps because partici-
pants rely on different strategies to optimize their perfor-
mance. Specifically, the nature of the nonwords could play a
pivotal role in the lexical decision task. For instance, if words
on average have a denser orthographic neighborhood (indicat-
ed by lower OLD20 values) than nonwords, participants
might become aware of this contingency and use it to their
advantage. If it is the other way around (i.e., lower OLD20
values for nonwords), a dense orthographic neighborhood

Table 6 Item-level regression results for the lexical decision task
without the speeded word fragment completion and interaction variables

Predictor a/e i/o

Beta p Value Beta p Value

Standard Lexical Variables

Length .00 .953 –.02 .621

Quadratic length .04 .008 .01 .478

Number of syllables .02 .238 –.07 <.001

Summed bigram frequency .05 .011 .04 .108

Summed monogram frequency .05 .023 .11 <.001

Relative Distance Variables

Orthographic Levenshtein distance 20 –.04 .255 .00 .932

Phonological Levenshtein distance 20 –.12 <.001 –.09 <.001

Word Availability Variables

Contextual diversity (log) –.59 <.001 –.61 <.001

Age of acquisition .17 <.001 .15 <.001

Cue centrality .09 <.001 .07 <.001

Semantic Variable

Concreteness –.08 <.001 –.09 <.001
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would be indicative of a nonword. In the latter case, it is not
unthinkable for OLD20 to have no or even a facilitatory effect
on response times for word stimuli. Some of the observed
inconsistencies might thus be attributed to differences in the
task characteristics.

Taken together, we proposed three possible explanations for
the discrepancies between the speeded word fragment comple-
tion task and the traditionally used lexical decision task. We
would emphasize, though, that there are also parallels between
the tasks, so both are in a sense complementary.More important-
ly, none of the three suggestions invalidates the results obtained
with the speeded word fragment completion paradigm. This is a
critical conclusion, because it affirms that the proposed paradigm
can be used not only within the context of semantic priming, but
also to examine visual word recognition in general. In this regard,
it is noteworthy that the present paradigm is more efficient than
the lexical decision task. That is to say, it does not require non-
words, so the number of stimuli is reduced by half (assuming that
equal numbers of words and nonwords are used in lexical deci-
sion). Moreover, one needs about half the number of participants
to obtain reliability estimates similar to those in the lexical deci-
sion task. Yet, several decades of research using the lexical deci-
sion task have offered insight into its underlying processes,
whereas not much is known about the speeded word fragment
completion task. In the remainder of the discussion, we try to
provide a first step in the direction of uncovering themechanisms
that play a role in the latter task. Concretely, we will first sum-
marize the findings regarding the speeded word fragment com-
pletion variables. Then we will put forth a set of explanations of
the task and discuss their validity in light of the data.

Speeded word fragment completion variables

The set of seven variables that were designed to measure spe-
cific aspects of the speeded word fragment completion task
indeed accounted for a considerable amount of variance in this
task. That is, R2 estimates increased from .23–.26 to .40–.42
(see Table 7), values that are comparable to those obtained for
the lexical decision task (i.e., .46–.47). As expected, adding

these variables to the analyses of the lexical decision data did
not improve the model predictions much. Given this observa-
tion, and the fact that we observed no consistent effects across
item pools, one can safely assume that these variables are
indeed irrelevant to lexical decision. The remainder of this
section will therefore focus only on the results for the speeded
word fragment completion task.Wewill summarize the results
here, but defer a discussion about the underlying processes to
the last section of this discussion.

OLD20D A very potent predictor of word fragment comple-
tion response times was the orthographic neighborhood den-
sity of the distractor (e.g., OLD20 of tometo when the frag-
ment was tom_to). Responses to word fragments were rela-
tively slower when the distractor had a dense orthographic
neighborhood. Note that we did not derive a similar measure
for the phonological neighborhood of the distractor, because
Dutch does not have exact spelling-to-sound mapping. As a
consequence, it was not always clear how one would pro-
nounce the distractor.

Relative position deleted letter The results provided evi-
dence for an inverted U-shaped relation between the relative
position of the deleted letter within the word fragment and
response times. Responses were faster when the omitted letter
was located toward the boundaries of the word (e.g., _range or
orang_). This is illustrated in Fig. 2. It depicts the model pre-
dictions for the different values of the relative position deleted
letter variable when controlling for all other variables. As we
suggested in the introduction, one might explain this finding
in terms of substrings that are more or less intact. Substrings in
the word fragment completion task are created by the blank
(e.g., tom and to in tom_to). Unless the deleted letter is the first
or last letter of a word, there are always two substrings. The
proposal is that a longer substring puts more constraints on the
identity of the complete word, which in turn results in faster
response times. To illustrate this, consider again the three po-
tential word fragments for orange: or_nge, _range, and
orang_. The latter two word fragments yield longer intact

Table 7 R-squared values at each
step of the hierarchical item-level
regression analysis, with R-
squared changes in parentheses

Predictors a/e i/o

SWFCT LDT SWFCT LDT

Standard lexical variables .086 .045 .117 .031

Relative distance variables .093 (.007) .054 (.008) .118 (.001) .037 (.005)

Word availability variables .225 (.131) .454 (.400) .255 (.137) .454 (.417)

Semantic variable .225 (.000) .458 (.004) .256 (.001) .460 (.006)

Speeded word fragment completion variables .419 (.194) .465 (.007) .395 (.139) .464 (.005)

Interaction variables .421 (.002) .475 (.009) .399 (.005) .471 (.006)

BSWFCT^ and BLDT^ stand for, respectively, Bspeeded word fragment completion task^ and Blexical decision
task^
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substrings (i.e., range and orang) that readily elicit the com-
plete word, whereas shorter substrings (i.e., or and nge) ap-
pear more equivocal in this respect.

Local bigram frequency Local bigram frequency facilitated
responses, such that word fragments with local bigrams that
occurred often were completed faster. This was taken to mean
that the letter(s) closest to the blank play a special role.
Participants seem to rely somehow on the co-occurrence fre-
quency of the target letter with the surrounding letter(s).

Deleted letter The sign of the corresponding regression weights
indicated that the a and i responses were given faster than the e
and o responses. This could imply that word fragments in which
the a or i was deleted were easier to complete (after controlling
for a host of other variables). Alternatively, participants could
have had a systematic preference for one letter. With regard to
the latter possibility, it is noteworthy that the occurrence frequen-
cy of the letter was inversely related to response times in the a/e
case. If participants were to use the base rate to guide their re-
sponses, one would expect a bias in favor of the letter e, because
it is by far the most prevalent letter in Dutch.

Table 8 Mixed-effects results for the speeded word fragment completion task

Predictor a/e i/o

Beta p Value Beta p Value

Standard Lexical Variables

Length –.10* <.001 –.08* <.001

Quadratic length .07* <.001 .06 <.001

Number of syllables .04* <.001 .01 .537

Summed bigram frequency .08 <.001 .03 .017

Summed monogram frequency .05 .003 .12* <.001

Relative Distance Variables

Orthographic Levenshtein distance 20 .14 <.001 .12 <.001

Phonological Levenshtein distance 20 .01* .500 .01* .349

Word Availability Variables

Contextual diversity (log) –.16* <.001 –.17* <.001

Age of acquisition .04* <.001 .06* <.001

Cue centrality .02 .003 .01 .107

Semantic Variable

Concreteness –.02 .003 –.04* <.001

Speeded Word Fragment Completion Variables

Orthographic Levenshtein distance 20 distractor –.26* <.001 –.25* <.001

Relative position deleted letter .00* .682 .06* <.001

Quadratic relative position deleted letter –.07* <.001 –.04* <.001

Local bigram frequency –.09 <.001 –.03 <.001

Deleted letter .11* <.001 .14* <.001

Low-frequency alternative completion .15* <.001 .10* .001

High-frequency alternative completion .27* <.001 .31* <.001

Single vowel .29* <.001 .29* <.001

Other Double, triple, or quadruple vowel .25* <.001 .34* <.001

Interaction Variables

Contextual Diversity (log) × Length .03 .003 .03 .032

Contextual Diversity (log) × Quadratic Length .02 .024 .00 .528

Contextual Diversity (log) × Orthographic Levenshtein Distance 20 –.03 .099 –.01 .410

Contextual Diversity (log) × Phonological Levenshtein Distance 20 .00 .952 –.04* .011

Contextual Diversity (log) × Concreteness –.01 .188 –.01 .097

Control Variable

Trial number –.10+* <.001 –.10+* <.001

To derive p values, t statistics were treated as z statistics (Barr, Levy, Scheepers, & Tily, 2013). * Indicates that by-participant random slopes were
included in the final model. + Indicates that by-item random slopes were included in the final model
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Alternative completion Word fragments with alternative, yet
unacceptable, solutions are responded to more slowly than frag-
ments with only a single legal completion. For some stimuli (e.g.,
p_int), one can create an existing word by filling in a letter that
was not part of the response options. For instance, inserting r
would yield the word print, but because only a and e were
allowed as responses, the correct answer is paint in this case.
Furthermore, a distinction was made between low- and high-
frequency alternative completions. The alternative seemed to in-
terfere more if it occurred in many different contexts.

Vowel typeWediscerned three vowel types: single vowels (e.g.,
tom_to), repeated double vowels (e.g., b_etle), and an Bother^
category consisting of nonrepeated double vowels, triple vowels,
and quadruple vowels (e.g., p_int, s_eing, or qu_uing). The re-
sults revealed that word fragments from the second group (i.e.,
repeated double vowels) were completed faster. There appeared
to be no systematic difference between the single-vowel category
and the Bother^ category. The observed effects can be explained
in several ways. One possibility is related to the local bigram
frequency effect. The repeated double-vowel bigram (e.g., ee in
b_etle) occurs considerably more often in Dutch than the

equivalent distractor vowel combination (e.g., ae). This is not
so pronounced, or is even reversed, for the simple-vowel and
Bother^ categories. When participants rely to a certain extent on
the frequency of local bigrams and factor in the distractor letter, it
becomes clear why such a vowel-type effect would occur.
Alternatively, the sound of the vowels may have an impact
(too). In Dutch, there is generally no uncertainty about how a
repeated double vowel is pronounced, but this is not true for all
vowel types. For instance, the letters a in the words taken
(Btasks^ in English) and takken (Bbranches^) are pronounced
differently (i.e., their phonetic transcriptions in the International
Phonetic Alphabet are [ta:kən] and [tɑkən], respectively). This
might potentially lead to confusion and slower responses.

Toward a process model of the speeded word fragment
completion task

The goal of this study was not to provide a complete, theoret-
ically sound model of the workings of the speeded word frag-
ment completion task. Still, the present results do give us
insight into the underlying processes, and also rule out some
a priori plausible models. In this section, we put forth a

Table 9 Mixed-effects results for the lexical decision task

Predictor a/e i/o

Beta p Value Beta p Value

Standard Lexical Variables

Length .01* .589 .00* .885

Quadratic length .01 .039 .00 .415

Number of syllables .01 .208 –.02* .004

Summed bigram frequency .02* .015 .02* .072

Summed monogram frequency .02 .019 .03* <.001

Relative Distance Variables

Orthographic Levenshtein distance 20 –.02* .075 –.01* .389

Phonological Levenshtein distance 20 –.04* <.001 –.03* .006

Word Availability Variables

Contextual diversity (log) –.20* <.001 –.22* <.001

Age of acquisition .07* <.001 .06* <.001

Cue centrality .03 <.001 .02 <.001

Semantic Variable

Concreteness –.03* <.001 –.03* <.001

Interaction Variables

Contextual Diversity (log) × Length .02 .018 .02 .008

Contextual Diversity (log) × Quadratic Length .01 .035 .00 .505

Contextual Diversity (log) × Orthographic Levenshtein Distance 20 –.04 <.001 –.03* .004

Contextual Diversity (log) × Phonological Levenshtein Distance 20 .01 .299 –.01 .431

Contextual Diversity (log) × Concreteness –.02 <.001 –.01 .002

Control Variable

Trial number –.06* <.001 –.06* <.001

To derive p values, t statistics were treated as z statistics (Barr et al., 2013). * By-participants random slopes were included in the final model
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(nonexhaustive) set of explanations of the task and discuss
their validity in light of the data.

One might view the speeded word fragment completion task
as a word identification task augmented with a late decisional

component. Deleting a letter from a word is conceivably a form
of visual degradation. The only difference is that participants
would ultimately have to decide between two response options.
In this sense, it involves a mostly bottom-up process, since task
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specificities enter relatively late in the decision. Such an account
would predict the striking similarities observed between our re-
sults and those obtained with other visual word recognition par-
adigms. It can also explain the alternative completion effect.
Initially, for instance, paint, print, and point all emerge as poten-
tial completions of the word fragment p_int, with perhaps a pref-
erence for the word with the highest occurrence frequency. Only
during the final decision stage is the sole suitable completion
selected (i.e., paint), which is arguably more time-consuming
when there are multiple candidates. Crucially, the distractor
(peint, in this example) plays no role in this explanation, an
assumption that seems untenable, given its strong inhibitory or-
thographic neighborhood density effect. The latter effect suggests
that the distractor is at least considered at some point in the word
fragment completion process. In other words, it cannot be a pure-
ly bottom-up process. A complete account of the speeded word
fragment completion task needs a top-down component (too).

Another approach to the two-alternative speeded word frag-
ment completion task is to fill in both letters and check which
option yields an existing word (e.g., paint or peint). This could
be done in a serial or a parallel fashion. That is, one might
consider only one potential completion at a time, or evaluate
them concurrently. The former account resembles a lexical deci-
sion task in which inserting a certain letter yields an existing
word or a nonword. Depending on the outcome, either the con-
sidered letter or the alternative optionwill be given as a response.
Such an account could explain a response bias by assuming that
the same letter is always filled in and that affirmations (Byes this
is a word^) result in faster (or slower) responses. The other
possibility is that both completions are taken into account simul-
taneously. This is also a form of lexical decision, since partici-
pants have to select the actual, legal word out of the two possible
completions. If the speeded word fragment completion task is
indeed some sort of lexical decision task in disguise, one would
expect the pattern of results observed here, which was largely
consistent with other word recognition studies. This top-down
account, in both its serial and parallel variants, can even clarify
why the orthographic neighborhood of the distractor has an im-
pact. Namely, a distractor with many neighbors is more word-
like, which probably complicates the decision, leading to slower
response times. However, if the speeded word fragment comple-
tion task is purely top-down-driven, what about the effect of the
deleted letter’s relative position? Why would responses to frag-
ments such as or_nge be slower than those to _range or orang_?
All three examples yield the same word (i.e., orange); hence,
lexical decision latencies should be similar. Put differently, the
place of the blank should not matter, unless one was to assume
that it would affect the insertion process. Given the quadratic
trend of the effect, the latter claim would entail that filling in a
letter at the boundary of a word requires less time than filling in a
letter toward the middle of a word.

To account for the complete pattern of results observed in
the present study, one could also envision a Bcompromise^

model with both top-down and bottom-up processes. A key
characteristic of the speeded word fragment completion task
is that it requires a decision between two alternatives.
Therefore, one might view the two-alternative speeded word
fragment completion as a diffusion process, which encom-
passes both top-down and bottom-up influences. Previous re-
search has already successfully applied the diffusion model to
the lexical decision task (Ratcliff, Gomez, & McKoon, 2004;
Wagenmakers, Ratcliff, Gomez, &McKoon, 2008). One could
extend this approach to the speeded word fragment completion
task, though some modifications would be in order. The diffu-
sion model postulates the existence of two decision boundaries,
which determine the amount of evidence necessary for a certain
response option (Ratcliff, 1978). In the lexical decision task, the
two boundaries correspond to word and nonword. The central
premise of the diffusion model is that information is accumu-
lated over time until one of the boundaries is reached. The
response option associated with this boundary is then selected.
The speed with which information is accumulated is called the
Bdrift rate^, and previous research has shown that it is influ-
enced by word frequency in the lexical decision task (Ratcliff
et al., 2004; Wagenmakers et al., 2008). A translation to the
speeded word fragment completion task would involve chang-
ing the boundaries fromword/nonword to a/e or i/o. The idea is
that words with high values for contextual diversity would have
high absolute drift rates. Similarly, low values for age of acqui-
sition and OLD20 would result in high absolute drift rates.
Note that this is markedly different from the application of
the diffusion model in the context of a lexical decision task.
In the latter case, one could unambiguously say that high-
frequency words are associated with higher drift rates (when
Bword^ responses correspond to the upper boundary; the direc-
tion of the relation is reversed when Bword^ responses corre-
spond to the lower boundary). Here, one needs to consider the
absolute values of the drift rate. The reason is that half of the
trials have the letter a as the target letter, whereas in the other
trials it is the distractor letter. Consequently, when the upper
boundary is associated with, for instance, the letter a, one
would expect a positive relation between contextual diversity
and drift rate when a is the correct response, and a negative
relation when e is the correct response. Note that the direction
of the relations would reverse if the upper boundary
corresponded to the letter e. Put differently, it is assumed that
contextual diversity influences the decision process, but that the
direction of the drift rate depends on the correct response.

In contrast to contextual diversity, OLD20, and the like,
other variables would reduce the absolute drift rate. For ex-
ample, having alternative completions presumably curtails
drift rate, which results in slower response times. In addition,
the diffusion model can easily explain a response bias in favor
of the letter a by assuming that the starting point of the diffu-
sion process is located closer toward the a boundary. Taken
together, the diffusion model could potentially provide a good
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account of the speeded word fragment completion data. Even
though such an approach would not grant us direct insight into
the underlying lexical and semantic processes (Ratcliff et al.,
2004), it would offer a solid starting point.
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