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The Landscape Climate Change Vulnerability Project (LCCVP) 
aims to assess the vulnerability of terrestrial landscapes in two 
Landscape Conservation Cooperatives (Appalachian [ALCC] 
and Great Northern [GNLCC]) to climate and land use 
change, with an emphasis on lands managed by the National 
Park Service (NPS). Our approach uses projections of climate 
and land use change to explore possible ecosystem and species 
level responses to those changes and the implications for man-
agement of high priority park resources.

We are currently focusing our efforts in the ALCC on three 
eastern US NPS units, Great Smoky Mountains National Park 
(GRSM), Shenandoah National Park (SHEN), and Delaware 
Water Gap National Recreation Area (DEWA), at three spatial 
scales: NPS unit, Protected Area Centered Ecosystem (PACE; 
Hansent et al. 2011), and Landscape Conservation Coopera-
tive (LCC).

In late 2012 and early 2013, the LCCVP team met with eastern 
NPS collaborators to identify ecological systems that are 
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Figure 1. A framework for climate adaptation planning (Glick et al. 2011).
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potentially vulnerable to climate and land use change. These 
include pine-oak, spruce-fir, cove hardwood, northern hard-
wood, oak-hickory, mixed mesophytic, montane alluvial, and 
eastern hemlock. We then began a set of analyses that corre-
spond to step two of the Glick et al. (2011) climate adaptation 
framework (Figure 1) and are focused on assessing sensitivity - 
as well as the interaction of sensitivity with exposure (potential 
impact) - of species and ecological systems to climate change.

Our analysis thus far can be divided into two parts:

1. A summary of spatial data underpinning published studies 
of modeled tree species response to climate change in the 
eastern US.

2. Species distribution modeling for a subset of tree species 
and ecological systems using new, downscaled climate 
datasets from collaborators at the NASA Ames Ecological 
Forecasting Lab (http:// ecocast.arc.nasa.gov/) (Thrasher 
et al. in review).
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Part 1. Synthesis of published studies on modeled tree species response to climate change across NPS 
units and PACEs within the ALCC

There is agreement between recent modeling efforts, using a 
variety of climate models and emissions scenarios (Table 1), 
that many tree species in the ALCC will lose suitable climate 
space. There is weaker agreement on which species will gain 
climate space and the amount gained (Figure 2) (Iverson et al. 
2008, McKenney et al. 2011).

The predicted redistribution of individual tree species’ climate 
space varies by LCC, NPS unit, and PACE (Figure 3, 4). At the 
PACE scale, there are considerable differences in modeled 
trends of tree expansion, persistence and decline (Figure 4). 
The modeling algorithm, spatial resolution, predictor variables, 
and GCMs considered by each study most likely explain the 
observed differences. Iverson et al. (2008) used the Random 

Forests algorithm to model tree species distributions with 36 
predictor variables including soil, climate, elevation, land use, 
and fragmentation. McKenney et al. (2011) used ANUCLIM 
to fit and project climate envelopes for each species based on a 
set of 19 bioclimatic variables. Differences in species included 
in each study are small and therefore unlikely to account 
for the large differences in outcomes. In the eastern US, the 
large range shifts (i.e., hundreds of km) and minimal overlap 
between current and future climate space predicted by some 
model forecasts suggest considerable challenges to the natural 
migration of tree species to newly suitable areas, including 
those that are within or adjacent to NPS units or their associ-
ated PACEs (Figure 5).

Figure 2. Range of change in suitable climate space 
(SCS) predicted by all six GCMs under (A) average high 
emissions and (B) average low emissions (Table 1). The 
data represent SCS change by 2100 for 36 tree spe-
cies across the ALCC (Iverson et al. [2008], McKenney 
et al. [2011.]) Squares represent median SCS and the 
vertical stippled line represents the change threshold, 
values above and below which indicate an increase 
and decrease in SCS (i.e. > 1.0 and < 1.0, respectively). 
For example, 0.5 = ½ of existing area, 1 = no change, 
2 = doubling in area.  * = max SCS > 2; ** = max SCS 
> 10; *** = max and median SCS > 10. †Species data 
were available from McKenney et al. (2011) only. Data 
shared by L. Iverson (USFS) and D. McKenney (Cana-
dian Forest Service). Data processing and analyses 
conducted by Woods Hole Research Center.

Table 1. General Circulation Models (GCMs) and emission scenarios considered in each study, and the predicted temperature increases associ-
ated with each emissions scenario. Emission scenarios provide projections of the amount and timing of CO2 emissions under different assump-
tions of future economic growth. Changing CO2 concentrations are key drivers of GCMs, which model physical processes like oceanic and atmo-
spheric circulation, and provide gridded projections of temperature and precipitation.

Author General Circulation Models (GCMs) *Emissions Scenario †Temp (˚C)

Iverson et al. (2008) Parallel Climate Model (PCM), Geophysical Fluid Dynamics 
Laboratory (GFDL), HadleyCM3

A1fi 4.7

B1 2.4

McKenney et al. (2011) CSIRO-Mk3.5, CGCM3.1, CCSM3.0 A2 3.9

B1 2.4

*A1fi emissions scenario represents an economically-driven, globalized future with intensive fossil fuel consumption.
*A2 represents a future defined by regionally-driven economic development.
*B1 represents an environmentally-friendly, regionalized future that is relatively more ecologically friendly.
†Temperature increase in 2090 - 2099 relative to 1980 - 1999 (best estimate, °C, approximated from Rogelj et al. [2012]).
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Figure 3. Jaccard distance metric between current modeled suitability and forecasted suitability for 2100 (HadleyCM3 A1fi climate scenario) for 
35 tree species from Iverson et al. (2008). Jaccard distance is a metric of dissimilarity in species composition between two sites or at the same 
site at different points in time. For each pixel, we compared the set of species for which current conditions are suitable against the set of spe-
cies for which future conditions are suitable. Values approaching 1, corresponding to dark blue on the map, indicate increasing dissimilarity. 
Dark brown outlines correspond to NPS units, red outlines correspond to protected area centered ecosystems, and the green outline corre-
sponds to the Appalachian Landscape Conservation Cooperative.

Part 1. Synthesis of published studies on modeled tree species response to climate change across NPS 
units and PACEs within the ALCC (continued)
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Part 1. Synthesis of published studies on modeled tree species response to climate change across NPS 
units and PACEs within the ALCC (continued)

Figure 4. Trends in the relative change of species’ persistence (by 
2100, based on SCS change) under HadleyCM3 (A1fi; Iverson et al. 
[2008]) and CGCM3.1 (A2; McKenny et al. [2011]) climate scenarios are 
in cluded as pie charts for the PACE associated with each park unit. 
DEWA, SHEN, and GRSM refer to Delaware Water Gap National Recre-
ation Area, Shenandoah National Park, and Great Smoky Mountains 
National Park, respectively.  The modeling approach and predictor 
variables considered by each study most likely explain the observed 
differences.  Iverson et al. (2008) use Random Forests to model future 
tree species redistribution based on 36 predictor variables including 
soil, climate, elevation, land use, and fragmentation.  McKenney et al. 
(2011) used ANUCLIM, a multivariate non-parametric surface fitting 
approach, to create climate maps using 19 bioclimatic variables relat-
ing to temperature and precipitation. Differences in species included 
in each study are small and therefore unlikely to account for the large 
differences in outcomes.

Figure 5. Current and future predicted 
ranges of Balsam fir across the eastern US.  
The “migration envelope” delineates a rea-
sonable migration distance (50 km, based 
on the literature) within which tree species 
might migrate to the future range (exclud-
ing multiple factors; e.g., fragmentation).  
Data shared by D. McKenney; data process-
ing and analyses conducted by Woods Hole 
Research Center.  Spatial data for 2100 
considered the CGM3.1 A2 climate scenario.
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Part 1. Synthesis of published studies on modeled tree species response to climate change across NPS 
units and PACEs within the ALCC (continued)

Part 2. New species distribution modeling using new, downscaled climate data

Figure 6. Current richness of species predicted to be new in the DEWA PACE by 2100, under HadleyCM3 (A1fi) and CGCM3.1 (A2) (Iverson et al. 
[2008] and McKenney et al. [2011], respectively).  Note the different species abundances in each dataset.

Since we last met, we have made several advances in our mod-
eling efforts:

We expanded our suite of predictors from 19 to 29 variables 
for all ecological systems (Figure 7).  Our first models con-
tained only bioclimatic variables.  In addition to the original 
variables, our new “kitchen sink” models utilize several soils 
layers (e.g., pH, available water capacity, sand-silt-clay com-
ponents, etc.), a topographical wetness index, growing degree 
days, and solar radiation. Solar radiation is the most important 
factor explaining the current distribution of cove forests but 
holds relatively little explanatory power for spruce-fir forest 
types, for example, highlighting the importance of including a 
suite of variables that capture the distinct climatic and topo-
graphic conditions that help structure the spatial distribution 
of vegetation communities.

We have generated these “kitchen sink” models for several 
ecological systems in GRSM: spruce-fir, hemlock (typic type), 
hemlock (white pine type), spruce-hemlock, oak-hickory (red 
oak type), and cove forests (Figure 8).  We are still working 
on generating the forecasts for some of these systems and are 
eager to start modeling additional systems.

Additionally, we have increased the temporal frequency of our 
forecasts.  Initially, we were modeling at 3 time steps in the 
future: 2006-2035, 2036-2065, and 2066-2095.  We continue 
to forecast to 30-year averages, but we are now incrementing 
yearly (e.g., 2006-2035, 2007-2036, 2008-2037, etc.).

Figure 7. Variable importance plot generated by the Random Forests 
algorithm for cove forests in GRSM. Variables near the top of the plot 
are most important for explaining the current distribution of cove 
forests.
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Part 2. New species distribution modeling using new, downscaled climate data (continued)

Figure 8. (A, Top map) Modeled distribution of cove forests in GRSM derived from NPS vegetation mapping program data and trained on cur-
rent climate conditions (1980 – 2010). (B, Bottom map) Pro jected cove forest distribution for a period centered on 2050 using ensemble mean 
climate projections for RCP 8.5 at 800 m resolution (Table 2, Rogelj et al. 2012). Lighter blue colors correspond to higher cover values and are 
assumed to be more suitable for cove forests. Very little of the current mapped cove forest extent overlaps with suitable areas in 2050. Climate 
projections used in the published studies synthesized in part 1 are driven by SRES scenarios while the climate projections we used for modeling 
cove forest distributions in GRSM are driven by RCPs. Each RCP or SRES contains specific assumptions about the degree and timing of climate 
change. SRES A2 (see Table 1), for example, represents a global temperature increase of 3.9 °C while RCP 8.5 represents an increase in global 
temperature of 4.6 °C. RCPs differ from SRES scenarios in that they do not use particular socioeconomic narratives in order to arrive at levels of 
radiative forcing associated with changing CO2 concentrations. Rather, RCPs represent a range of possible radiative forcings that can be arrived 
at by any number of pathways of socioeconomic growth and change.
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Table 2. Similarities and differences between Special Report on Emissions Scenarios (SRES) and Representative Concentration Pathways (RCPs) 
(from Rogelj et al. 2012).

Part 2. New species distribution modeling using new, downscaled climate data (continued)

Synthesizing current knowledge to assess vulnerability: 
We are in the process of assembling data and scripts to allow 
summaries and comparisons between NPS station data and 
gridded PRISM climate. We will use these summaries to gen-
erate spatially explicit maps of exposure to climate change. 
Part of this analysis will include an assessment of error and 
bias associated with gridding and interpolating climate station 
data. This will help inform park managers of the strengths and 
weaknesses of the datasets underpinning our analyses. 

We will continue to work on a manuscript that details our syn-
thesis of published studies of tree species response to climate 
change. We have agreement from collaborators to supply addi-
tional tree species models, which will improve our mapping of 
potential source zones for tree species moving into PACEs.

New Science: Our collaborators at NASA Ames have gener-
ated downscaled climate projections and projections of eco-
system processes which we will begin to summarize across dif-
ferent spatial scales in the eastern US. We also plan to optimize 
our species distribution modeling efforts by integrating both 
automated and expert-driven variable selection procedures to 
ensure that redundant or unnecessary variables are excluded. 

In the examples presented for cove forest, we chose an arbi-
trary threshold of 20% for display, below which we surmise 
that other ecological factors would make establishment or per-
sistence less likely. We will be investigating objective ways of 
calculating this ecological threshold. Although validation data 
are difficult to acquire, vegetation databases associated with 
state natural heritage programs, the USGS national GAP analy-
sis program, and the USFS Landfire mapping program provide 
opportunities for assessment of model performance. 

As we finish model development, we will begin to generate 
and forecast models for a larger group of ecological systems 
that emerged from our meeting with collaborators: pine-oak, 
spruce-fir, cove hardwood, northern hardwood, oak-hickory, 
mixed mesophytic, montane alluvial, and eastern hemlock. 

To complement these park-scale distribution models, we have 
assembled a set of predictor variables for the eastern US that 
we will use for range-wide distribution models for a subset of 
tree species that appear to be most at risk from climate change. 
This subset will be based on our analysis of published studies 
and models of ecological systems.

Landscape Climate Change Vulnerability Project
http://www.montana.edu/lccvp/index.html

Woods Hole Research Center
http://www.whrc.org/

NASA Ames Ecological Forecasting Lab
http://ecocast.arc.nasa.gov/
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