Analyses using existing efforts

Synthesize results for species and ecological systems

|dentify important habitat factors for species and ecological
systems

Use process model outputs to inform vulnerability




Existing Efforts

“We will focus on the coarser biodiversity levels in order to make
initial progress” Land facets, vegetation lifeforms, and ecological system types
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Existing Efforts

Potter et al.,, McKenney et al., and Iverson et al. (maybe

Crookston) contain sufficient # of spp. for reasonable aggregation
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Existing Efforts

e South Central Interior Mesophytic Forest

— Acer saccharum (sugar maple), Fagus grandifolia (american beech),
Liriodendron tulipifera (tulip poplar), Tilia americana (american
basswood), Quercus rubra (red oak), Magnolia acuminata
(cucumbertree), and Juglans nigra (black walnut). Tsuga canadensis
(eastern hemlock) may be a component of some stands.
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Existing Efforts

Quantitative, spatial comparisons and uncertainty
assessments will be useful but difficult because of differences
in modeling approaches

Could obtain uncertainty estimates along with spp.
distribution maps

Inter-comparisons probably most defensible if at larger
extents

Data accessibility an issue




Identify important habitat factors for species and
ecological systems

Extend climate envelope models with fine scale habitat
information

Habitat factors as predictors in model or as post modeling
NENS

Need to consider the scale of habitat variability as it relates to
the ecological requirements of a species or system

— e.g. in complex terrain, topoclimate varies at a finer spatial
scale

What variables operate at particular scales?




Identify important habitat factors for species and
ecological systems

Geographic Resistance

Distance from current to new habitat
Topography

Land facets

Vegetation fragmentation

Land use




Identify important habitat factors for species and
ecological systems

Geographic Resistance

Distance from current to new habitat
Topography

Land facets

Vegetation fragmentation

Land use

SCALE DOMAIN Pearson et al. 2004
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Fig.5 Schemaric example of how different factors may affect the distribution of species across varying spartial scales. Characteristic ‘scale
domains’ are proposed within which certain variables can be identified as having a dominant control over species distributions. Approximate

spatial extents have been assigned to categories of scale based in part on Willis 8 Whittaker (2002). It is assumed thart large spatial extents are
associated with coarse data resolutions, and small extents with fine data resolutions.



Identify important habitat factors for species and
ecological systems

e Field observations could be helpful

. - vegetation plot database of the
Ecological Society of America's Panel on Vegetation
Classification

e Landfire public reference database
e GAP
° FIA?
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Use process model outputs to inform vulnerability

TOPS outputs - Soil moisture / vegetation water stress,
Primary productivity GPP/NPP

Biological factors (Matthews et al. 2010) — CO2
productivity, CO2 water use efficiency, shade tolerance,
edaphic specificity, env/habitat specificity, dispersal,
seedling establishment, vegetative reproduction, fire
regeneration

Disturbance — disease, insect pests, browse, invasive
plants, drought, flood, ice, wind, fire topkill, harvest,
temperature gradients, pollution




Use process model outputs to inform vulnerability
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Use process model outputs to inform vulnerability

Table 1 Niche-based models used in this study

Model
no. Abbreviation Method References

1. RF (random forest) A machine-learning method — a combination of tree  Breiman (2001)
predictors such that each tree depends on the
values of a random vector sampled
independently and with the same distribution for
all trees in the forest.

2. CTA (classification tree analysis) A classification method — a 50-fold cross-validation Breiman et al. (1984)
to select the best trade-off between the number of
leaves of the tree and the explained deviance.

3. GBM (generalized boosting A machine-learning method — combines a boosting Ridgeway (1999)

model) algorithm and a regression tree algorithm to
construct an ‘ensemble’ of trees.
MARS (multivariate adaptive A nonparametric regression method, mixing CTA Friedman (1991)
regression splines) and GAM.
5. GAM (generalized additive A regression method, with 4 degrees of freedom and  Hastie & Tibshirani (1990)
model) a stepwise procedure to select the most
parsimonious model.
6. MDA (mixture discriminant A classification method - based on mixture models. Hastie & Tibshirani (1990)
analysis)
7. GLM (generalized linear model) A regression method, with polynomial terms for McCullagh & Nelder (1989)

which a stepwise procedure is used to select the
most significant variables.

8. ANN (artificial neural networks) A machine-learning method, with the mean of three  Ripley (1996)
runs used to provide predictions and projections.

9. SER (surface range envelope) A simple rectilinear envelope, that takes into account ~ Busby (1991)
the whole range of conditions in which the
species is present.

Quercus ilex Pinus sylvestris Pinus halepensis
(b : - a Keenen et al. 2010
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Fig. 6 The spatially explicit change (percentage per pixel) in average per period net primary production (NPP) (GOTILWA +) and
estimated Suitability (multi-niche-based model ensemble), between the periods 1950-1980 and 2050-2080, considering both GOTIL-
WA + simulations with (gray) and without (black) an atmospheric CO; increment. Lines represent linear regressions.



Conclusions

e Existing efforts include enough spp. and cover
enough area to allow aggregation to coarser
biological levels and for useful summaries

Differences in modeling approaches limit our ability
to make quantitative comparisons

Use fine scale habitat info, ecological process
outputs, spp. requirements from extensive literature
reviews to extend and refine existing efforts




Statistical Models

e GLM — parametric extension of linear regression able
to handle non-normally distributed response
variables, logit link usually used for SDMs

— Assumes independent Ys that belong to one of several
distributions (gaussian, poisson, binomial, neg. binomial,
gamma)

e GAMs — non-parametric smoothing functions replace
the coefficients in GLM, can be spatially
implemented in GRASP




Machine Learning Approaches

e Decision trees — binary recursive splitting

— Flexible, hierarchical, non-parametric, results in intuitive
rule sets

e Ensemble trees — bagging, boosting, random forests

— Bagging — sample the data with replacement, developing a
tree for each sample, average the predictions for
regression, trees cast votes for classification

— Boosting — bagging with unequal sample probability,
higher probability for “problem” observations

— RFs — construct large number of decorrelated trees using
random data samples and random subset of predictor
variables, average the predictions




Machine Learning Approaches

* ANN — high start up costs, black box

— works well for high dimensional problems

 Genetic algorithms — GARP

— Search for conditional probabilities to generate
classification rules which are then subject to “natural
selection”, evolving a rule set with high fitness

— works well with complex relationships between variables




Machine Learning Approaches

Multivariate adaptive regression splines

— Relate predictors to response via piecewise linear
splines

— A decision tree like approach is used to place “knots”
along a predictor’s range between which splines are
estimated

— Basis functions, i.e. the splines on either side of a
knot, that contribute little to model fit are removed

— Potential advantage is ability to model local variable
interactions but can be prone to overfitting




Machine Learning Approaches

e Maxent — works well for presence only

— Relies on the ratio of the “conditional density of
covariates at presence sites” to the “density of
covariates across the study area”

— Provide appropriate background samples

— Account for sample bias if possible

Elith et al. 2011
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Figure 1 A diagrammatic representation of the probability densities relevant to our statistical explanation, using data presented in case

study 1. The maps on the left are two example mapped covariates (temperature and precipitation). In the centre are the locations of the
presence and background samples. The density estimates on the right are not in geographic (map) space, but show the distributions of values
in covariate space for the presence (top right) and background (bottom right) samples. These could represent the densities f;(z) and f(z) for a
simple model with linear features.




Machine Learning Approaches

e Support vector machines

— One class SVMs, e.g. presence only, fit
hyperplanes around the data points

— Has potential but tools for visualization and
interpretation are limited

Franklin and Miller 2009




Combining Models

e Ensembles

— BIOMOD - implemented in R, includes GLM, GAM,
DT, ANN, BRT, combines using PCA

— ModEco — SVM, BioClim, Domain, GLM, ML, ANN,
Rough Set, Maxent, Classification trees, ensembles

— Weighted ensembles using true skill statistic
(Keenen et al. 2010)




Other Approaches

Habitat suitability indices - e.g. geometric means of
important factors

Ecological niche factor analysis
Environmental distance — e.g. Mahalanobis distance

— Work best when “organisms are using optimal
habitat, are well-sampled in environmental space,
and when habitat variables are not dynamic”
Franklin and Miller 2009

Environmental envelope models — e.g. BIOCLIM
Resource selection functions

GDM - Generalized dissimilarity modeling




Other Issues

* Need to understand how each algorithm
extrapolates outside the data range

— Maxent extrapolates in a horizontal line from extremes,
“clamping”

— GLM extrapolates along the fitted function (e.g. cubic or
guadratic)

— Decision tree approaches extrapolate at constant values
from extremes

e Some approaches can overfit in data sparse regions
— E.g. GLM, GARP

e Pseudoabsences an active research area
Elith et al. 2011




Abundance vs.
presence absence

Other Issues

Acer saccharum (Sugar Maple)

Abundance models Presence Absence models

Y Abundance
Core

HaaHi i
v

-3

4 - 10

-0

-
Figure 2. The large disparity ol outcomes for sugar ma-
ple when comparing abundance-based models to binary
(presence/absence) models. “Current” indicates the
modeled current abundance or range extent, whereas the
“HadHi"" maps are based on the HadleyCM3 GCM muodel
(high CO2 sens v} and high emissions (AIfi) scenar-
ins. Abundance score is an importance value based on
basal area and number of stems, Iverson and others

Iverson et al. 2011




Uncertainty
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Uncertainty
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Figure 3. Proporton of the total sum of squares accounted for l}}' SDM (A), AOGCM (B) and the interaction between these factors (C).

Diniz-Fihlo et al. 2009




Uncertainty

Matthews et al. 2010 — take a different approach

Biological factors — CO2 productivity, CO2 water use efficiency,
shade tolerance, edaphic specificity, env/habitat specificity,
dispersal, seedling establishment, vegetative reproduction,
fire regeneration

Disturbance — disease, insect pests, browse, invasive plants,
drought, flood, ice, wind, fire topkill, harvest, temperature
gradients, pollution

Climate scenarios




Uncertainty

Eastern Tree Spp.
Biological factors suggest overall a potential for adaptation,

Certain factors like shade tolerance important, e.g. for Acer rubrum
— projected loss of suitable habitat but shade tolerance may explain
its current expansion and mitigate predicted changes

GCM emissions — no clear pattern in variability by species but
largest differences in emissions scenarios was at northern range
boundaries

Novel climates — generally emerge in southern portion of the study
area

Long distance dispersal — identified tree species with a large
proportion of future suitable climates > 200km from currently
JINELIEEEES

Matthews et al. 2010




Spatial Autocorrelation

Decreased precision of coefficients increase incidence of
Type | error

Variable selection skewed towards auto-correlated
predictors

Broad scale predictors often selected over fine scale
predictors

AlIC based model selection will tend toward models with
more predictors (because of variance structure of residuals)




Spatial Autocorrelation

Spatial models my de-emphasize broad scale predictors
Most spatial models do not explicitly handle non-stationarity

Spatially correlated residuals may be indicative of model mis-
specification rather than autocorrelation

R package “mboost” — Functional gradient descent algorithm
(boosting) for optimizing general risk functions utilizing
component-wise (penalised) least squares estimates or
regression trees as base-learners for fitting generalized linear,
additive and interaction models to potentially high-
dimensional data




ALCC Science Needs




Eastern Plant Communities of Concern

Appalachian Highlands Vital Signs Report from 2005
Cliffs/Rock Outcrop Communities

Native Grasslands/Savannas

Grassy balds

Bogs and fens

Spruce-Fir Forest — balsam wooly adelgid

Northern Hardwood/Beech Gaps

Rich Cove Hardwood

Pine-Oak Heath

Hemlock/Acid Cove — hemlock wooly adelgid

Riparian Forests

Tributaries, Streamheads, Seeps & Vernal Pools
Cobblebar Communities

Rare Plants - poaching




ALCC Science Needs

In December of 2011, the Interim Steering Committee of the
LCC adopted the top five ranked science needs and these are
under the general topics of: 1) Ecological Flows, 2) Resource
Extraction, 3) GIS/IT Needs, 4) Species and Habitat
Distributions, and 5) Vulnerability Assessments. Ten project
descriptions were developed to address these top science

needs, and six of these were selected by the Interim Steering
Committee for soliciting Requests for Applications in February
of 2012.

REQUEST FOR APPLICATIONS (RFA) — February 2012
Appalachian Landscape Conservation Cooperative




ALCC Science Needs

Ecological flows

Aquatic habitats
Terrestrial landscapes
Energy extraction
Rare endemics
Climate change




ALCC Science Needs

 These are fairly general but provide insight into the
thinking of folks at the LCC.

 Emphasis on aquatic habitats and populations,
hydrologic processes, fine scale mapping,
disturbance and succession, habitat structure,
dispersal linkages




ALCC Science Needs

Ecological Flows

Thematic Area Goal:

Quantitatively describe current and future hydrologic and structural
habitat conditions and aquatic population trends, and set conservation
goals for both, in order to maintain native habitats and endemic aquatic
species in their current locations or support these as they migrate with
land use and climate changes in the future.

Specific Science Support Need:

Assemble the necessary scientific information or conduct the necessary
studies required to develop a rigorous understanding of the relationships
among ecological flows and hydrology (discharge, seasonal, etc.), habitat
(temp, geology, physical space, etc.), and aquatic biota/communities in
order to assess how alterations to systems will affect their sustainability.



ALCC Science Needs

Aquatic Habitats

Thematic Area Goal:

Quantitatively describe current and future hydrologic and structural
habitat conditions and aquatic population trends, and set conservation
goals for both, in order to maintain native habitats and endemic aquatic
species in their current locations or support these as they migrate with
land use and climate changes in the future.

Specific Science Support Need:

Assemble the necessary scientific information or conduct the necessary
studies required to develop a rigorous understanding of the relationships
among ecological flows and hydrology (discharge, seasonal, etc.), habitat
(temp, geology, physical space, etc.), and aquatic biota/communities in
order to assess how alterations to systems will affect their sustainability.



ALCC Science Needs

Terrestrial Landscapes

Thematic Area Goal:

Assemble the necessary information or conduct studies necessary to
develop and implement comprehensive regional strategies to conserve
and manage forest/working forest communities across jurisdictions by
inventorying significant regional forest communities, evaluating the
condition, importance, and regional threats impacting these communities.

Specific Science Support Need:

Understanding representative/priority/focal species and population

distributions across the region, their habitat relationships, and effective
movement/dispersal linkages.



ALCC Science Needs

Terrestrial Landscapes continued

 National and regional maps “are often at a resolution too
coarse or a precision too inaccurate to be utilized at the scale
of on-the-ground habitat conservation delivery”

“need mapping products with units developed at a resolution
necessary to take into account or respond predictably to
successional dynamics and disturbance regimes”

e They want products that “identify habitat structural
characteristics (e.g., canopy cover, layer stratification)” which
“are critical to better understanding habitat condition and
determining suitability for specific species”




ALCC Science Needs

Energy Extraction

Thematic-Area Goal:

Collaboratively identify ways and opportunities to meet economic
development and conservation management goals through the
understanding of potential land use changes, economic impacts and
pressures on the resources of the AppLCC region to improve decision-
making and management.

Specific Science Support Need:

Using a suite of analytical tools, forecast future spatial footprint of energy
production, mineral extraction, and associated
infrastructure/transmission/transportation in coming decades (in 20
years) in light of changes to demand, technology, policy, and regulation,
including econometric models to better understand the impacts on

resources (species and habitats).



ALCC Science Needs

e Rare Endemics

e Thematic Area Goal:

Assemble the necessary information or conduct studies necessary to
develop and implement comprehensive regional strategies to conserve
and manage forest/working forest communities across jurisdictions by
inventorying significant regional forest communities, evaluating the
condition, importance, and regional threats impacting these communities.

Specific Science Support Need:

Understanding representative/priority/focal species and population
distributions across the region, their habitat relationships, and effective
movement/dispersal linkages.




ALCC Science Needs

Climate Change

Thematic Area Goal:

Work with partners and stakeholders to determine climate change
adaptation and mitigation strategies that can be implemented and
coordinated across multiple scales by applying the best available
projections of how the regional climate will change and estimates of the
impacts those changes will have on the region's natural and cultural
resources.

Specific Science Support Need:

Support multi-scale vulnerability assessments that incorporate species-
specific physiological data to identify habitats and species that would be
most vulnerable to climate change in the LCC, especially range-
limited/endemic species.



People/Projects Of Interest

Kevin McGarigal (UMASS Landscape Ecology Lab)

Assessment of Landscape Changes in the North Atlantic Landscape
Conservation Cooperative: Decision-Support Tools for Conservation

climate change, urban growth, succession and assessing coarse filter
(landscape intactness, connectivity) to fine filter (representative species)
impacts. Appears to be in the pilot phase right now.

Mark Anderson (TNC — Dir of Conservation Science, Eastern North America
Conservation Division)

has done a lot of work in the northeast on geophysical correlates of
biodiversity (e.g. land facets) and structural connectivity using resistant
kernel methods and Circuitscape flow analysis

Richard Pearson (AMNH)

co-l on related projects, source of expert advice on SDMs, offered use of
amphibian SDM outputs (~40 T+E spp., patch based dynamic population
models driven by climate envelope models)



