

LCCVP – Bozeman meeting

David M. Theobald, Ph.D. Department of Fish, Wildlife, and Conservation Biology Colorado State University Fort Collins, Colorado, USA 80523-1474

Outline

- Land use change (SERGoM v2)
 - Updates, modifications
 - Linkages with impervious surface and TOPS
 Schedule
- Landscape facets (w/Bill M.)

Vulnerability framework

Figure 1.1. Framework for Developing Climate Change Adaptation Strategies

SERGoM v2

- Updates of data:
 - 2010 census, TIGER 2010, NLCD 2006, LEHD, PAD-US, groundwater wells
- Modifications
 - 90 m, registered with NLCD 2006 extent (~30 m?)
 - Transportation infrastructure replace travel time with capacity (lanes x speed limit)
 - Beyond housing density \rightarrow land *use* classes
 - Expose empirical transition probabilities to allow scenario generation

Land use classes

Land use classes in the ICLUS/SERGoM v2 model.

Co	Code Group		Class Name	Description	Chip	NRI class
	0	L	River, stream	Running waters	water	Water
	1	Water	Lake	Natural "standing" waters	Water	Water
	2	Ŵ	Reservoir	"Standing" water with dam or other human structure controlling flow	Water	water
	3	Rec/conse rvation	Recreation	Parks, natural areas, campgrounds, wilderness, etc.	Undeveloped /Recreation	Federal, state, local, CRP?
	4		Extractive timber	Timber production	Resource ext	Forest
	5	Extractive	Extractive grazing	Grazing (and other resource extraction e.g. oil & gas)	Resource extraction	Rangeland
	6	<u>t</u>	Extractive pastureland	Pasture	Agriculture	Pastureland
	7	B	Extractive cropland	Cropland	Agriculture	Cropland
	8		Extractive mining	Mineral resources	Resource ext	?
	9		Urban parks/open space	Parks with structures (fields, courts, golf courses, cemeteries). No housing units.	Residential	Urban (large)
	10		Residential (exurban low)	Exurban housing density 1 per 10-40 ac)	Residential	?
	11		Residential (exurban)	Exurban housing density 1 per 2.5-10 ac)	Residential	Urban (large)
	12	t-u	Residential (suburban)	Housing density 1 per 0.6-2.5 ac		Urban (small)
	13	uil	Residential (medium)	Housing density 1 per 0.1-0.6 ac	Residential	Urban (small)
	14	_ 4 ∕r	Residential (high)	Housing density 1 per >0.1 ac	Residential	Urban (small)
	15	Urban/built-up	Mixed residential and commercial	Residential housing medium or higher and density of employees > xx	Mixed use	Urban (small)
	16		Commercial and Institutional	Commercial complexes, office buildings, schools, churches, govt., military	Mixed use – institutional	Urban (small)
	17		Industrial and utility	Industrial parks, factories, power plants, land fills, transportation	Mixed use - industrial	Urban (small)
	18	Trans.	Transportation	Interstates, highways, railways, airports	Trans.	Trans.

GNLCC

- Links to TOPS and impervious surface...
- Housing density → impervious surface
- Land use \rightarrow impervious surface
- Transportation vs. Urban
- Directly connected impervious area vs. total impervious
- Best Management Practices
 - 15-95% effective in disconnecting
 - Adoption rates?
- Scale 1 km

Schedule

- Preliminary LUC of 2010 and 2000 [March]
- Historical classes (to ~1900)
- Forecast (base-case to 2100)
- Scenarios A1, A2, B1, B2

[March] [May] [June] [Aug]

questions

- Used NASA NGA resources?
- Sampling network to coordinate efforts, example from WGA Expert Survey

Landscape facets

- Map/measure "landscape facets"
- Immediate opportunities for national analysis

Figure 4: Ecological Land Unit Components

Elevation

Geology

Landform

Code	Range (ft)	Code	Туре	Code	Туре
1000	0-800	100	Acidic Sedamentary/Metased.	4	Steep Slope
2000	800 - 1700	200	Acidic Shale	5	Cliff
3000	1700 - 2500	300	Calcareous Sedamentary/Metased.	11	Flat Summit/Ridge top
4000	2500 - 4000	400	Moderately Calc. Sed/Metased.	13	Slope Crest
		500	Acidic/Granitic	21	Low Hilltop (flat)
		600	Mafic/Intermediate Granitic	22	Low Hill (gentle slope)
		700	Ultramafic	23	N-Facing Side slope
		800	Outwash forest/wetland	24	S-Facing Side slope
		900	Fine Sediments	30	Dry Flat
				31	Wet Flat
				32	Valley/Toe Slope
				41	Bottom of Steep Slope
				43	N-Facing Cove/Draw
				44	S-Facing Cove/Draw

ELU = Elevation Code + Geology Code + Landform Code

Our approach

- Landscape units attempt to capture general spatial variation of physiography, and the intent is to use the number of unique types as a broad surrogate of biodiversityare comprised of three major physiographic variables:
 - lithology (parent material),
 - landform, and
 - aspect

We used the lithology dataset from the 14

Surficial Materials Lithology

Carbonate Residual Material Non-Carbonate Residual Material Alkaline Intrusive Volcanic Rock Silicic Residual Material Extrusive Volcanic Rock Colluvial Sediment Glacial Till, Clayey Glacial Till, Loamy Glacial Till, Coarse-Textured

Landscape units methods

- Aspect from a 90 m resolution DEM
- Classified three aspect classes: dominantly south-facing aspects (SW, S, and SE), dominantly north-facing (NW, N, and NE), and low slope (< 3%) or E/W.
- Combined but constrained the combinations logically so that alluvial/colluvial lithology types would not reasonably co-occur with high mountains/canyons, and conversely valley bottoms
- 646 unique combos

Landscape unit richness - HUC12

The end (of land change)

Outline

- Connectivity
 - Emphasis on multiple-levels of ecological organization (esp. landscape)
 - WGA comparison of modeling approaches
 - Terrestrial, riparian, ecological systems, climate dynamics and movement
 - !Aquatic, riparian

Yale framework

	Levels of Ecological Organization					
Adaptation Strategies:	Species and populations	Ecosystems	Landscapes			
Protect current patterns of biodiversity (baseline)			Ecoregions			
Project future patterns of biodiversity	Ronge of Grand Fir 1975 2085	Current	Sea Level Risks - Florida			
Maintain Ecological Process			The second			
Maintain and restore ecological connectivity			Yellowstone to Yukon			
Protect climate refugia	Desert spring					
Protect the ecological stage (enduring features)						

Comparison of methods

Туре	Model	Inputs	Outputs
Core-corridor	LinkageMapper	LIBs	Corridors
		Resistance surface	Current flow w/in
			corridors
			Centrality
	Circuitscape from all	LIBs	Current flow across
	cores	Resistance surface	surface
Gradient	Landscape	Resistance surface	gLIBs
	Permeability (multi-		Landscape permeability
	scale)		Centrality lines
	Landscape	Resistance surface	gLIBs
	permeability		Landscape permeability
	(random-start)		Centrality lines
	Centrality	Resistance surface	Centrality surface of
	(Connectivity		hexagons
	Analysis Toolkit)		

Large intact blocks

Linkage Mapper (McRae)

Circuitscape – cores (Dickson)

Lands. Permeability – multiscale (Theobald)

Lands. Permeability – random (Theobald/Reed)

Centrality CAT (Carroll)

