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Abstract

CFD is an exciting field today! Computers are getting larger and faster and are able to bigger
problems and problems at a finer level. This document provides a guide for the beginners in the field
of CFD. It describes the steps necessary to write a two-dimensional flow solver which can be used to
solve the Navier-Stokes equations. The document begins by reviewing the governing equations and then
discusses the various components needed to form a simple CFD solver.
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1 Governing equations

The Navier-Stokes equations describe almost all the flows around us and are the starting point for a CFD
code. Additionally since the majority of flows can be approximated as incompressible, we will solve the
incompressible form of the equations. The incompressible Navier-Stokes equations can be written as

∂u

∂t
+ u · ∇u = −1

ρ
∇p+ ν∇2u (1)

∇ · u = 0, (2)

where u = [u, v] is the velocity vector, t is time, ρ is the density, p is pressure, and ν is the kinematic
viscosity. The first equation is the momentum equation and the second equation is the continuity equation
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which ensures incompressibility. These equations can not be solved analytically for most flows and must be
solved using numerical methods.

2 Computational mesh

The governing equations are solved on a computational mesh. The mesh used in this document is uniform
with mesh cells of width ∆x and height, ∆y. The grid divides the domain in to nx × ny cells where nx and
ny are the number of cells in the x and y directions, respectively.

The grid cells are referred to using their index. The i index referes to the cells x direction and the j
index referes to cells in the y direction.

A staggered grid is used to store the variables where the pressure is stored at the cell center and the
velocities are stored at the cell faces. This, possibly odd, choice is made since it allows for the solution to
have a tight coupling between pressure and the velocity and has been found to be the preferred methodology.

Arrays are created to refer to the locations important for each cell. x(i) stores the location of the ith
cells left face. y(j) stores the location of the jth cells bottom face. The location of the middle of the cell is
stored in the xm(i) and the ym(j) arrays.

MATLAB code to create this mesh is

% Index e x t en t s
imin=2; imax=imin+nx−1;
jmin=2; jmax=jmin+ny−1;

% Create mesh
x ( imin : imax+1)=linspace (0 ,Lx , nx+1);
y ( jmin : jmax+1)=linspace (0 ,Ly , ny+1);
xm( imin : imax )=0.5∗( x ( imin : imax)+x( imin+1: imax+1)) ;
ym( jmin : jmax )=0.5∗( y ( jmin : jmax)+y( jmin+1:jmax+1)) ;

% Create mesh s i z e s
dx=x( imin+1)−x ( imin ) ;
dy=y( jmin+1)−y ( jmin ) ;
dxi=1/dx ;
dyi=1/dy ;

A few notes on this code:

• nx=nx and ny=ny

• Lx and Ly are the lengths of the domain in the x and y directions, respectively.

• The index extents, imin, imax, jmin, and jmax, provide a quick way to access the first and last com-
putational cells. The index extents do not start at 1 because we need to add cells outside the domain
to enforce boundary conditions (more on this later).

• The mesh sizes are precomputed to save computational cost. Additionally dxi = 1/dx and dyi = 1/dy
are also precomputed since divisions are significantly more computationally expensive than multipli-
cations.
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Figure 1: Computational mesh with location of the velocities and pressures. The x, xm, y, and ym array
locations are also shown.
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3 Temporal discretization

Temporal discretization is done using an explicit Euler scheme which can be written as,

un+1 − un

∆t
= −1

ρ
∇pn+1 − un · ∇un + ν∇2un. (3)

In the previous equation the superscript refers to the temporal iteration. Typically the simulation is started
with n = 0 and the initial condition is used to populate the initial velocity field un=0. The equation is used
to find subsequent solutions. The time-step ∆t should be chosen so that u∆t/∆x < 1. This condition is
known as the Courant-Friedrichs-Lewy (CFL) condition.

The previous equation does not include the role of continuity and un+1 is not guaranteed to be divergence-
free. To introduce continuity we solve this equation using the predictor-corrector or fractional step method-
ology. In this framework the Navier-Stokes equations are solved in two steps.

The first step, known as the predictor step, is to compute an intermediate velocity u∗ by solving the
momentum equation but omitting the effect of pressure, i.e.,

u∗ − un

∆t
= −un · ∇un + ν∇2un. (4)

The second step, known as the corrector step, is to solve for the new velocity un+1 and include the
influence of the pressure leading to

un+1 − u∗

∆t
= −1

ρ
∇pn+1. (5)

It is easy to show that Eq. 3 = Eq. 4 + Eq. 5.
The pressure is found such that un+1 satisfies the continuity equation by solving

∇2pn+1 =
ρ

∆t
∇ · u∗, (6)

which can be derived by taking the divergence of Eq. 5 and enforcing ∇·un+1 = 0. This equation is referred
to as the pressure Poisson equation.

4 u momentum discretization

The convective and viscous terms in Eq. 4 are discretized using finite differences which approximate the
derivatives using neighboring values.

The predictor step for u velocity can be written as

u∗ = un +∆t

(
ν

(
∂2un

∂x2
+

∂2un

∂y2

)
−
(
un ∂u

n

∂x
+ vn

∂un

∂y

))
(7)

The viscous and convective terms are discretized for the i, j cell using

∂2u

∂x2
=

u(i− 1, j)− 2u(i, j) + u(i+ 1, j)

∆x2
(8)

∂2u

∂y2
=

u(i, j − 1)− 2u(i, j) + u(i, j + 1)

∆y2
(9)

u
∂u

∂x
= u(i, j)

u(i+ 1, j)− u(i− 1, j)

2∆x
(10)

v
∂u

∂y
=

1

4
(v(i− 1, j) + v(i, j) + v(i− 1, j + 1) + v(i, j + 1))

u(i, j + 1)− u(i, j − 1)

2∆y
(11)

Figure 2 shows the velocity values used in the discretization.
MATLAB code that computes u∗ is
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Figure 2: Velocities and their locations used to discretize the u(i, j) cell in the u-momentum equation..
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Figure 3: Velocities and their locations used to discretize the v(i, j) cell in the v-momentum equation..
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for j=jmin : jmax
for i=imin+1: imax

v here =0.25∗(v ( i −1, j )+v ( i −1, j+1)+v( i , j )+v ( i , j +1)) ;
us ( i , j )=u( i , j )+dt∗ . . .

( nu∗(u( i −1, j )−2∗u( i , j )+u( i +1, j ) )∗ dxi ˆ2 . . .
+nu∗(u( i , j −1)−2∗u( i , j )+u( i , j +1))∗ dyi ˆ2 . . .
−u( i , j )∗ ( u( i +1, j )−u( i −1, j ) )∗0 . 5∗ dxi . . .
−v here ∗(u( i , j+1)−u( i , j −1))∗0.5∗ dyi ) ;

end
end

5 v momentum discretization

Following the same approach as we did for u we can write the predictor step for the v velocity as

v∗ = vn +∆t

(
ν

(
∂2vn

∂x2
+

∂2vn

∂y2

)
−
(
u
∂vn

∂x
+ vn

∂vn

∂y

))
. (12)

The viscous and convective terms are discretized for the i, j cell using

∂2v

∂x2
=

v(i− 1, j)− 2v(i, j) + v(i+ 1, j)

∆x2
(13)

∂2v

∂y2
=

v(i, j − 1)− 2v(i, j) + v(i, j + 1)

∆y2
(14)

u
∂v

∂x
=

1

4
(u(i, j − 1) + u(i, j) + u(i+ 1, j − 1) + u(i+ 1, j))

v(i+ 1, j)− v(i− 1, j)

2∆x
(15)

v
∂v

∂y
= v(i, j)

v(i, j + 1)− v(i, j − 1)

2∆y
(16)

Figure 3 shows the velocity values used in the discretization.
MATLAB code that computes v∗ is

for j=jmin+1:jmax
for i=imin : imax

u here =0.25∗(u( i , j−1)+u( i , j )+u( i +1, j−1)+u( i +1, j ) ) ;
vs ( i , j )=v ( i , j )+dt∗ . . .

( nu∗( v ( i −1, j )−2∗v ( i , j )+v ( i +1, j ) )∗ dxi ˆ2 . . .
+nu∗( v ( i , j −1)−2∗v ( i , j )+v ( i , j +1))∗ dyi ˆ2 . . .
−u here ∗( v ( i +1, j )−v ( i −1, j ) )∗0 . 5∗ dxi . . .
−v ( i , j )∗ ( v ( i , j+1)−v ( i , j −1))∗0.5∗ dyi ) ;

end
end

6



6 Poisson equation

The pressure Poisson equation, Eq. 6 is used to create a velocity field that satisfies the continuity equation
and is incompressible. Solving the Poisson equation almost always uses the majority of the computational
cost in the solution calculation. Many ways can be used to solve the Poisson equation and some are faster
than others. The simplest way to solve the Poisson equation is to write it as

Lpn+1 = R (17)

where L = ∇2 is the Laplacian operator (a large nx · ny × nx · ny matrix), pn+1 is the pressure in each
computational cell organized into one large vector, and R = − ρ

∆t∇·u∗ is the right-hand-side of the pressure
Poisson equation in each computational cell organized into one large vector. This equation can be solved
for pn+1 using MATLAB’s built in solver, i.e., pn+1 = L\R. It is advisable to use this method in your
first CFD code. Note that there are other methods that do not require forming L which requires too much
memory to store for large problems.

Boundary conditions for the Pressure poisson equation are Neuman or zero derivative. Additionally, the
pressure poisson equation is only defined up to a constant and the pressure in one computational cell needs
to be set. All other pressures in the domain are computed with respect to this pressure.

To discretie the pressure equation in the i, j cell we use (see Fig. 4 for details on the location of pressures
and velocities),

∇2pn+1 =
∂2pn+1

∂x2
+

∂2pn+1

∂y2

≈ pn+1(i− 1, j)− 2pn+1(i, j) + pn+1(i+ 1, j)

∆x2
+

pn+1(i, j − 1)− 2pn+1(i, j) + pn+1(i, j + 1)

∆y2
(18)

∇ · u∗ =
∂u∗

∂x
+

∂v∗

∂y

≈ u∗(i+ 1, j)− u∗(i, j)

∆x
+

v∗(i, j + 1)− v∗(i, j)

∆y
(19)

Using this discretization we can write Eq. 17 as

L pn+1 = R

1 0 0 0 0 0 0 0 0

−1
∆x2 Dy

−1
∆x2 0 −1

∆y2 0 0 0 0

0 −1
∆x2 Dxy 0 0 −1

∆y2 0 0 0

−1
∆y2 0 0 Dx

−1
∆x2 0 −1

∆y2 0 0

0 −1
∆y2 0 −1

∆x2 D −1
∆x2 0 −1

∆y2 0

0 0 −1
∆y2 0 −1

∆x2 Dx 0 0 −1
∆y2

0 0 0 −1
∆y2 0 0 Dxy

−1
∆x2 0

0 0 0 0 −1
∆y2 0 −1

∆x2 Dy
−1
∆x2

0 0 0 0 0 −1
∆y2 0 −1

∆x2 Dxy





p(1, 1)

p(2, 1)

p(3, 1)

p(1, 2)

p(2, 2)

p(3, 2)

p(1, 3)

p(2, 3)

p(3, 3)



=



R(1, 1)

R(2, 1)

R(3, 1)

R(1, 2)

R(2, 2)

R(3, 2)

R(1, 3)

R(2, 3)

R(3, 3)



(20)
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where D = 2
∆x2 + 2

∆y2 , Dx = D − 1
∆x2 , Dy = D − 1

∆y2 , and Dxy = D − 1
∆x2 − 1

∆y2 . The modify diagonal
entries are due to the Neuman boundary conditions. For this nx×ny = 3×3 problem there is only 1 interior
point and the unmodified D only shows up once.

Note that the Laplacian only depends on the computational mesh and can be computed once at the
beginning of the simulation and stored. Additionally you can greatly speed-up your code by performing
an LU decomposition of L which can easily be done in MATLAB using L = decomposition(L);. Here is
MATLAB code that creates the Laplacian operator L:

% Create Laplacian opera tor f o r s o l v i n g pre s sure Poisson equat ion
L=zeros ( nx∗ny , nx∗ny ) ;
for j =1:ny

for i =1:nx
L( i+(j −1)∗nx , i +(j −1)∗nx)=2∗dxi ˆ2+2∗dyi ˆ2 ;
for i i=i −1:2 : i+1

i f ( i i >0 && i i<=nx) % In t e r i o r po in t
L( i+(j −1)∗nx , i i +(j −1)∗nx)=−dxi ˆ2 ;

else % Neuman cond i t i on s on boundary
L( i+(j −1)∗nx , i +(j −1)∗nx)= . . .

L( i +(j −1)∗nx , i +(j −1)∗nx)−dxi ˆ2 ;
end

end
for j j=j −1:2 : j+1

i f ( j j >0 && j j<=ny) % In t e r i o r po in t
L( i+(j −1)∗nx , i +( j j −1)∗nx)=−dyi ˆ2 ;

else % Neuman cond i t i on s on boundary
L( i+(j −1)∗nx , i +( j −1)∗nx)= . . .

L( i +(j −1)∗nx , i +( j −1)∗nx)−dyi ˆ2 ;
end

end
end

end
% Set pre s sure in f i r s t c e l l ( a l l o ther p re s su re s w. r . t to t h i s one )
L(1 , : )=0 ; L(1 ,1)=1;

% Perform LU decomposi t ion to speed−up code (uncomment once code i s working )
% L = decomposi t ion (L ) ;

MATLAB code to compute the right-hand-side R is:

n=0;
for j=jmin : jmax

for i=imin : imax
n=n+1;
R(n)=−rho/dt∗ . . .

( ( us ( i +1, j )−us ( i , j ) )∗ dxi . . .
+(vs ( i , j+1)−vs ( i , j ) )∗ dyi ) ;

end
end

The pressure is found by solving Lpn+1 = R which in MATLAB can be done using

pv=L\R;
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where pv is the vector representation of the pressure. Finally, pv is converted to the mesh representation
p(i , j) which can be done using

n=0;
p=zeros ( imax , jmax ) ;
for j=jmin : jmax

for i=imin : imax
n=n+1;
p( i , j )=pv (n ) ;

end
end

i− 1 i i+ 1

j − 1

j

j + 1

p(i, j)

p(i+ 1, j)p(i− 1, j)

p(i, j − 1)

p(i, j + 1)

u(i, j) u(i+ 1, j)

v(i, j)

v(i, j + 1)

Figure 4: Velocities and their locations used to discretize the p(i, j) cell in the pressure Poisson equation.

7 Corrector step

Once the pressure is computed using the Poisson equation it is used to update the velocity from u∗ to un+1

using Eq. 5. The pressure gradient can be computed using finite differences. To update u and v we use

∂p

∂x
=

p(i, j)− p(i− 1, j)

∆x
, and (21)

∂p

∂y
=

p(i, j)− p(i, j − 1)

∆y
, (22)

respectively. MATLAB code to perform the corrector step is:

for j=jmin : jmax
for i=imin+1: imax

u( i , j )=us ( i , j )−dt/ rho ∗(p( i , j )−p( i −1, j ) )∗ dxi ;
end
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end
for j=jmin+1:jmax

for i=imin : imax
v ( i , j )=vs ( i , j )−dt/ rho ∗(p( i , j )−p( i , j −1))∗ dyi ;

end
end
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8 Boundary conditions

Boundary conditions are needed for the velocity field and the pressure Poisson equation. The velocity
boundary conditions are a bit tricky since some of the velocity components are not defined on the boundary.
For example, to specify u = utop at the top of the domain is not straightforward because u is defined ∆x/2
away from the top boundary. One solution to this problem is to create a fictitious velocity outside the
domain such that the velocity on the domain boundary satisfies the boundary condition. In Fig. 5 shows
how using a fictitious velocity at u(i, jmax + 1) = −u(i, jmax) provides a utop = 0 boundary condition. For a
general boundary condition we can write

utop =
1

2
(u(i, jmax) + u(i, jmax + 1)), (23)

which says the velocity at the top of the domain should be the average of the two neighboring velocities
(linear interpolation). Rearranging this equations provides an expression to set the fictitious velocity.

u(i, jmax + 1) = 2utop − u(i, jmax) (24)

Similar boundary conditions can be written for the other sides of the domain when the velocity is not
coincident with the domain boundary. Here is MATLAB code to enforce the boundary conditions on the
four sides of the domain:

u ( : , jmin−1)=2∗u bot − u ( : , jmin ) ;
u ( : , jmax+1)=2∗u top − u ( : , jmax ) ;
v ( imin −1 ,:)=2∗ v l e f − v ( imin , : ) ;
v ( imax+1 ,:)=2∗ v r i g − v ( imax , : ) ;

u(i, jmax + 1)

u(i, jmax)

u(i, jmax-1)

Figure 5: Example of how to apply a utop = 0 boundary condition using the fictitious velocity u(i, jmax+1).
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9 General overview of the code

You’ve almost made it to the end and are probably overwhelmed by all of the pieces. In this section, I will
try to organize the pieces into a coherent structure that you can use as an outline when you write your code.

• Set input parameters: viscosity, density, number of grid points, time information, and boundary con-
ditions

• Create the index extents and the computational grid (see Section 2)

• Initialize any arrays you use to allocate the memory

• Create the Laplacian operator (see Section 6)

• Apply boundary conditions to the initial velocity field (see Section 8)

• Loop over time (use a for or while loop)

– Update time t = t+∆t

– Perform the predictor step to find u∗ and v∗ (see Sections 4 and 5)

– Apply boundary conditions to the predicted velocity field (see Section 8)

– Form the right-hand-side of the Poisson equation (see Section 6)

– Solve for the pressure using pv = L\R and convert the pressure vector pv into a matrix p(i, j)
(see Section 6)

– Perform the corrector step to find un+1 and vn+1 (see Section 7) (copy the boundary conditions
from the predicted velocity onto un+1 and vn+1)

– Plot the velocity field and the pressure field

• End Simulation

10 Test Case

Once you’re code is written, it is useful to test it. A simple test case to try is the lid-driven cavity problem
which is described here: https://www.cfd-online.com/Wiki/Lid-driven_cavity_problem.
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