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Over the past two decades, severe mountain pine beetle (MPB) outbreaks have affected several million
hectares of forest in western North America. The extensive ecological and economic damage caused by
widespread insect infestations make understanding the development and spread of MPB outbreaks crit-
ical. This study uses a time series of Landsat5 TM and Landsat7 ETM + images to map the spread of mor-
tality due to MPB infestation in Arapaho–Roosevelt National Forest, Colorado, between 2003 and 2010.
The Normalized Difference Vegetation Index (NDVI) and change in the Normalized Difference Moisture
Index (NDMI) were used to classify red attack and non-red attack stands based on a maximum likelihood
algorithm with manually selected training classes. The classification was validated by comparison with
independent interpretations of aerial photography and high-resolution satellite imagery. The classifica-
tion had good agreement (84.5–90.5% total accuracy). Cluster analysis for time series showed infestations
originating in several different locations on the landscape early in the time series and subsequent infes-
tations likely represent a combination of dispersal from outbreak populations and independent popula-
tion growth. Analysis using conditional inference trees suggested that a combination of forest
composition, topography, and dispersal predicted the distribution of MPB infestation on the landscape
and that the importance of these variables changed as the outbreak developed. In early years, red attack
was associated with forest and topographic characteristics known to influence susceptibility to MPB.
Over time, beetle pressure became an increasingly important predictor of red attack, but in later years
host tree availability played an important role in outbreak spread. If this pattern occurs consistently in
MPB outbreaks, knowledge of these patterns could aid managers in targeting their efforts to reduce dam-
age resulting from MPB outbreaks.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Since the 1990s, outbreaks of mountain pine beetle (Dendroct-
onus ponderosae Hopkins) have killed over 9 million hectares of for-
est in Canada (Westfall, 2007) and approximately 1.5 million
hectares in the USA (USDA Forest Service, 2012). Although endemic
to western North America, recent outbreaks are particularly severe,
and this high severity has been linked to climate change (Carroll
et al., 2004) and disturbance suppression (Taylor and Carroll,
2004). Mountain pine beetle (hereafter, MPB) outbreaks are signif-
icant forest disturbances that affect wildlife, watershed quality,
and recreational use in addition to causing extensive timber losses
(Safranyik et al., 1974; Sims et al., 2010). Several studies have also
linked changes in fuel quantity, moisture, and arrangement caused
by MPB mortality to changes in wildfire risk and fire behavior
(Jenkins et al., 2008, 2012; Klutsch et al., 2011; Simard et al.,
2011; Jolly et al., 2012; Schoennagel et al., 2012). Because of these
dramatic effects, ecologists and forest managers require an under-
standing of the mechanisms that drive MPB outbreaks to predict
and mitigate future outbreaks.

Native to western North America, MPB can reproduce within
most pine species in its range, though lodgepole pine (Pinus contor-
ta var. latifolia Engelm.) is considered its primary host and ponder-
osa pine (Pinus ponderosae) and sugar pine (Pinus lambertiana) are
also major hosts (Safranyik and Carroll, 2006). Trees that have been
infested by MPB are conspicuous because of changes to their foli-
age; approximately 6–8 months after infestation, the crowns of in-
fested trees begin to turn from green to yellow to red due to
moisture loss and degradation of pigments, with the shift from
green to red completing in late summer �12 months after the tree
was first attacked (Safranyik and Carroll, 2006). In subsequent
years, dead foliage drops from the tree (Goodwin et al., 2008).
These stages are referred to as red-attack and grey-attack, respec-
tively. The spectral changes to the forest canopy during the red at-
tack and grey attack stages of MPB infestation have been detected
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with high accuracy using satellite and airborne remote sensing
(Coops et al., 2006; Wulder et al., 2006a; Goodwin et al., 2008;
Meddens et al., 2011). Delineating outbreak areas using remotely
sensed imagery can offer improvements in accuracy over aerial
detection surveys while providing continuous, large-area estimates
of tree mortality that are difficult or impossible to obtain using a
ground-based survey (Wulder et al., 2006b). Consequently, maps
of MPB outbreak derived from remotely sensed imagery have been
used to characterize susceptibility to MPB infestation (Coops et al.,
2006; Wulder et al., 2006a) and to examine spatiotemporal pat-
terns of outbreak development (Goodwin et al., 2008). Results from
such studies indicate that red attack can be predicted using charac-
teristics such as elevation, direct solar radiation, and forest age,
density, and species composition (Coops et al., 2006; Wulder
et al., 2006a).

In this system, favorable forest characteristics including size,
age, density, and species composition, are understood to set the
stage for outbreaks that are triggered by climate and weather (Saf-
ranyik and Carroll, 2006). However, much of what is known about
susceptibility to MPB infestation describes how likely a tree or
stand is to become infested if an outbreak occurs. At the landscape
scale, an average outbreak cycle lasts around 10 years (Safranyik
and Carroll, 2006), during which period the stands making up a
landscape may exhibit predictable spatiotemporal patterns in out-
break development and spread. Thus, a related but less-studied
line of inquiry focuses on understanding the spatiotemporal
dynamics of MPB infestation as it spreads over a landscape during
an outbreak cycle. One approach builds on the concept of suscep-
tibility to MPB infestation by also taking into account the severity
and proximity of current MPB infestations to define a risk rating for
MPB (Shore and Safranyik, 1992). This strategy yields predictions
of MPB infestation with greater spatial and temporal specificity
than susceptibility rating (Shore et al., 2000), but if the environ-
mental characteristics of infested areas tend to change from the
beginning of an outbreak cycle through the outbreak crash, an
understanding of those dynamics could improve predictions of
outbreak spread and be incorporated into a framework that targets
stands for management.

In this study, we explore MPB activity in Arapaho and Roosevelt
National Forests from 2003 to 2010. First, we examine spatiotem-
poral characteristics of the spread of the infestation by detecting
recent MPB outbreak in a time series of Landsat 5TM and Landsat7
ETM+ (pre scan-line corrector failure) satellite imagery and using
cluster analysis methods for time series to examine the spatiotem-
poral structure of the outbreak. Second, we assess how topography,
forest structure, and beetle pressure affected the development and
spread of this infestation using conditional inference trees. By
employing a multi-temporal approach we offer a unique investiga-
tion into patterns of outbreak development and environmental
predictors on outbreak spread. We hypothesize that the occurrence
of MPB infestation will be most strongly related to topography and
stand structure during initial outbreak stages when populations
are rising to epidemic levels. As the outbreak reaches its peak,
we hypothesize that dispersal and pressure from nearby outbreak-
ing populations will increase in importance, but that the predictive
power of all variables will decline between the peak of the out-
break and its crash.
2. Methods

2.1. Study area

Arapaho and Roosevelt National Forests (ARNF) are located in
north-central Colorado, USA, covering approximately 7000 km2 be-
tween Boulder, CO, and the Wyoming state boundary (Fig. 1).
Roughly 5300 km2 are forested. Average daily minimum and max-
imum temperatures are �6.6 �C and 11.6 �C, respectively, and
mean annual precipitation is 48.4 cm (1907–2011 averages,
Western Regional Climate Center, Grand Lake 1 NW station, lati-
tude: 40.267, longitude: �105.832, elevation: 2650 m, http://
www.wrcc.dri.edu; accessed 5 February 2012). Elevation in the
study area ranges from�1700–4300 m leading to a diversity of for-
est communities. Two major hosts of MPB, lodgepole pine (Pinus
contorta) and ponderosa pine (Pinus ponderosa) are abundant in
ARNF. Ponderosa pine dominates dry, low-elevation sites, with
Lodgepole pine and Douglas-fir (Pseudotsuga menziesii) becoming
more abundant >2500 m (Marr, 1961; Peet, 1981). The importance
of limber pine (Pinus flexilis) and aspen (Populus tremuloides) also
increases with elevation (Marr, 1961). At high elevations, forests
are dominated by Engelmann spruce (Picea engelmanni), subalpine
fir (Abies lasiocarpa) and limber pine (Pinus flexilis). Above
�3500 m, forests begin to be replaced by alpine tundra (Peet,
1981).

2.1.1. Remote sensing of red attack
MPB red attack was detected using a time series of six Landsat 5

TM and Landsat 7 ETM+ images spanning 2002–2010, dated 10 Au-
gust 2002, 22 September 2003, 11 September 2005, 26 August
2006, 21 August 2009, and 24 September 2010. All Landsat scenes
are from path 32 row 34 and were obtained with radiometric and
geometric corrections (Level 1T) applied, and the Landsat 7 scene
(10 August 2002) was taken prior to failure of the scan line correc-
tor in May 2003. Selected images had low cloud cover (<10% of
study area). Images with late summer dates were selected because
of the �12 month lag between infestation and completing the shift
to the red attack stage. This convention is followed by several stud-
ies (Coops et al., 2006; Wulder et al., 2006a; Goodwin et al., 2008;
Meddens et al., 2011). Where gaps in the time series occur (inter-
vals between images P2 years) no images fitting our selection cri-
teria were available.

All images were pre-processed by converting to exoatmospheric
reflectance, performing dark object subtraction, and clipping the
image to represent only forested areas of Arapaho–Roosevelt Na-
tional forest as defined by the USFS R2Veg geodatabase (USDA For-
est Service, 2009). Reflectance (rp) was calculated using the
equation:

rp ¼
Lk � d2

ESUNk � cos qs
; ð1Þ

where Lk is the spectral radiance, d is the Earth–Sun distance in
astronomical units, ESUNk is the mean solar exoatmospheric irradi-
ance, and qs is the solar zenith angle in degrees. ESUNk values for
Landsat 5 images were obtained from Chander and Markham
(2003) and from the Landsat 7 Data Users Handbook (2007). Spectral
radiance (Lk) was calculated as:

Lk ¼ LMINI þ
LMAXk � LMINk

QCALMAX � QCALMIN
� QCAL� QCALMIN; ð2Þ

where QCAL is the calibrated and quantized scaled radiance in units
of digital numbers (DNs), LMINI is the spectral radiance at QCAL = 0,
LMAXk and LMINk are the spectral radiance at QCAL = QCALMAX and
QCAL = QCALMIN, respectively, from Chander et al. (2009).

Cloud cover was manually removed such that an area obscured
by cloud in 1 year was removed from all images. This area totaled
�295 km2, <6% of the study area.

The Normalized Difference Vegetation Index [(TM4 � TM3)/
(TM4 + TM3)] and Normalized Difference Moisture Index
[(TM4 � TM5)/(TM4 + TM5)] transformations were applied to all
images. The Normalized Difference Moisture Index (NDMI) is
similar to the Normalized Difference Vegetation Index (NDVI),



Fig. 1. Site map. The study area (grey) represents forested areas in ARNF, after cloud cover (<6% of study area) has been removed.
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but instead of sensing the ‘‘red edge’’ created by the low reflec-
tance of vegetation in Landsat TM3 (red) and high reflectance in
TM4 (near-infrared), NDMI is sensitive to moisture levels by
combining the near-infrared (TM4) and mid-infrared (TM5) bands
(Jin and Sader, 2005). Image differencing of the NDMI band was
used to create a band measuring change in NDMI between
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consecutive images, representing canopy moisture loss due to MPB
infestation (Goodwin et al., 2008).

Red attack was detected using a supervised maximum likeli-
hood classification performed on the combination of initial NDVI
and change in NDMI. For example, Red Attack in 2005 was detected
using a composite of 2003 NDVI and change in NDMI from 2003 to
2005. Thus, red attack was detected in 5 years: 2003, 2005, 2006,
2009, and 2010. Two classes, ‘‘Red Attack’’ and ‘‘Non Red Attack’’,
were assigned using a manually selected training sample of each
class. Training samples were created based on visual interpretation
of a color-infrared composite image, initial NDVI value, and change
in NDMI, and separate training samples were selected for each
time step. Subsequently, the training samples were checked
against Forest Service Aerial Detection Survey data (USDA Forest
Service, 2013) to confirm that they represented the appropriate
class. Areas exhibiting red attack were expected to have high initial
NDVI, representing healthy forest, and show a decrease in NDMI
between images due to MPB mortality. The non-red-attack training
sample included areas with a variety of NDVI values and approxi-
mately stable or increasing NDMI.

In general, current best practices for analyzing time series of sa-
tellite imagery include normalizing reflectance in all images to a
reference image, but this was not necessary in our study. We
selected different training classes at each time step, which should
account for spectral differences between images and the use of
ratio-based indices like NDVI and NDMI should also minimize dif-
ferences between images. Although we do use image differencing
(change in NDMI), Song et al. (2001) indicate that classifications
based on image differencing, even using images that have not been
converted to reflectance and atmospherically corrected, will not
lead to classification error if the classification algorithm does not
assume no change in any class. Thus, the reflectance conversions
and atmospheric corrections we performed should have no sub-
stantial impact on the accuracy with which red attack was
detected.

It is important to note that this study detected change in red at-
tack status, but because of the time lag between the infestation of a
tree and its crown shifting to red and the time elapsed between
images, we detected the results of infestation that occurred at least
1 year previous. Additionally, it is possible that other biotic or abi-
otic agents cause some detected tree mortality; however MPB out-
break is known to have caused significant damage in ARNF during
the study period (Meddens et al., 2011; USDA Forest Service, 2012).
We performed image processing and classification steps using
ENVI version 4.8 (Exelis Visual Information Solutions, Boulder,
Colorado).
2.1.2. Validation
The classified images for 2003 and 2005 were validated by com-

parison with high-resolution aerial photography (1 m resolution)
at 200 randomly placed points. Aerial photography has previously
been shown to accurately estimate MPB-caused mortality (Dillman
and White, 1982; Klein, 1982). Each validation point was assigned
to the Red Attack or Non-Red Attack class by visual interpretation
of the high-resolution image, where a point was considered Red
Attack if the majority of trees within a 5 m radius of the point
showed signs of red attack. Due to constraints on data availability,
different spatial subsets of the study area were evaluated at differ-
ent times (Fig. 1). Where imagery was available, each classification
was validated using aerial photography (USGS digital orthophoto
quadrangles, 1 m resolution) taken during late summer of the same
year (2005; images taken August 2005) or spring of the following
year (2003; images taken April 2004). For 2006, we validated our
classification against a QuickBird scene dated 3 September 2006
in Google Earth using the same methodology. The 2009 classifica-
tion was not validated due to a lack of available high-resolution
imagery.

The performance of our classification method was assessed
based on overall accuracy (percent correct), quantity disagree-
ment, and allocation disagreement rather than a kappa index (Pon-
tius and Millones, 2011). Quantity disagreement describes the
error that results from assigning the incorrect number of pixels
to each class, and allocation disagreement describes the error that
results from assigning those classes to the wrong location. This is
thought to be an improvement over traditional error assessment
because kappa indices have been shown to be redundant, difficult
to interpret, and potentially misleading (Pontius and Millones,
2011). It is also worth noting that, while previous research has
used aerial photography to map MPB red attack with high accuracy
(Dillman and White, 1982), interpreting aerial photography is
somewhat more subjective than ground-truth observations. We
have attempted to preclude the possibility of a biased validation
by interpreting the aerial photography blind to the results of the
remote sensing classification.

2.2. Outbreak spatiotemporal development

Cluster analysis techniques for times series data can be used to
make inferences about what processes drive spatial patterns of in-
sect population dynamics (Liebhold and Elkinton, 1989; Williams
and Liebhold, 2000; Aukema et al., 2006). Given a set of locations,
each of which has an associated time series, each location is as-
signed to one of k clusters that maximize the similarity of the time
series of the points contained in each cluster. Clusters are then
mapped back onto the landscape and to reveal spatial patterns.
For example, a bulls-eye pattern indicates that the outbreak origi-
nated from a point source and spread outward, while a checker-
board pattern is indicative of multiple simultaneous origins
(Aukema et al., 2006).

Because cluster analysis works more effectively on continuous
than binary variables, grids cells were aggregated into 25-by-25,
49-by-49, and 99-by-99 blocks and percent red attack (by area)
was calculated for each block (Liebhold and Elkinton, 1989). Using
three block sizes allowed us to examine the importance of scale in
describing time series patterns (Williams and Liebhold, 2000). We
excluded grid cells where red attack was not recorded in any year
of the time series and applied the k-means non-hierarchical clus-
tering method with k = 3 clusters (MacQueen, 1967). The optimal
value of k was determined by finding the ‘‘elbow’’ of stress plot
using 1–10 clusters (Liebhold and Elkinton, 1989). Cluster analysis
was implemented using MATLAB release 2011b (The MathWorks
Inc., Natick, Massachusetts).

2.3. Conditional inference tree analysis

We used conditional inference trees to assess whether the
spread of the MPB infestation at ARNF is related to topography, for-
est structure, and spatial variables. Conditional inference trees (CI
trees) are similar to classification trees (CARTs) in that they explain
variation of a response variable by repeatedly partitioning the data
into increasingly homogenous groups using splits based on explan-
atory variables (De’ath and Fabricius, 2000; Hothorn et al., 2006).
The CI tree method implements a permutation test approach that
allows it to correct for two problems associated with CARTs, over-
fitting and a bias toward selecting independent variables with a
large number of possible splits (Hothorn et al., 2006; Strobl et al.,
2009). Rather than requiring post hoc pruning to prevent overfit-
ting, splits are based on a hypothesis test that the split improves
model predictions of the dependent variable (Hothorn et al., 2006).

We constructed a CI tree for each time step in our change detec-
tion starting with a dataset of 2000 randomly selected points, with
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red attack as a binary response variable. While it is possible for a
pixel to be in the red attack class for more than one time step be-
cause of mixed pixels, we excluded points from the CI trees after
the first year they were classified as red attack. Hence, our models
describe how combinations of environmental conditions influ-
enced the likelihood of a new infestation arising through local pop-
ulation growth or spread from an extant outbreak. In 2010, only 6
out of 934 points represented spread of red attack, so a CI model
was not built for that time step.

We used following predictor variables to examine environmen-
tal characteristics influencing spread of MPB infestation: elevation,
aspect (binned into 8 classes: N, NE, E, SE, S, SW, W, NW), percent
forest cover, percent lodgepole pine cover, percent ponderosa pine
cover, tree size class (based on diameter at root collar (DRC) or
diameter at breast height (DBH); established: <2.5 cm DRC, small:
2.5–12.5 cm DBH, medium: 12.5–22.5 cm DBH, large: 22.5–
40.5 cm DBH, very large: >40.5 cm DBH). In 2005 and beyond,
two additional variables were added to the model: the area of
and Euclidian distance from the nearest area infested by MPB (pix-
el(s) classified as RA) in the previous time step. These variables
served as proxies for the size of the MPB population and ease with
which MPB could disperse to that location. Because these variables
were based on change detection performed by this study, we were
unable to compute them for the first time step (2003). Spatial vari-
ables were calculated in ArcGIS version 10.0 (ESRI, Redlands, CA),
and environmental variables were obtained from the R2Veg data-
base, a continuously updated forest inventory dataset for the US
Forest Service Rocky Mountain region (USDA Forest Service, 2009).

The importance of each variable to the model was assessed
using random forests, an extension of conditional inference trees.
In this procedure, the predictive strength of each variable is as-
Fig. 2. (a) Results of change detection, demonstrating spread of MPB outbreak through ti
not qualitatively different from the 25 � 25 and 99 � 99 scale. Grid cells in cluster 1show
the outbreak, while cells in cluster 3 experienced little outbreak in any year. Grid cells
sessed based on the performance of trees built using a permutation
of random subsets of available predictor variables (Strobl et al.,
2009). A covariate that is found to be a significant predictor by ran-
dom forests may not appear in the best CI tree if a split made by
that covariate is equivalent to a split made using another (i.e. a sur-
rogate split), or if other combinations of covariates produce better
predictions. By convention, the number of randomly selected pre-
dictor variables per tree �pn, where n is the total number of pre-
dictor variables (Strobl et al., 2009). In 2003, n = 6 and n = 8 for
2005, 2006, and 2009, so random forests were constructed using
2 predictor variables per tree. Variable importance values con-
verged within 18,000 iterations. CI trees and random forests were
implemented using the ‘party’ (Strobl et al., 2008) package in R (R
Core Team, 2012).

Receiver-Operator curves (ROCs) were used to evaluate the per-
formance of our CI trees. The accuracy of probability-based predic-
tion models can be assessed in terms of sensitivity (i.e., true
positive rate) and specificity (i.e., true negative rate). ROC curves
plot the relationship between sensitivity and 1-speficity (i.e., false
positive rate) for varying probability thresholds. The area under the
ROC curve (AUC) is taken as an index of overall model accuracy.
The value of the AUC varies between 0 and 1, with 0.5 representing
a model that is no better than random chance and 1 representing a
model with a perfect ability to distinguish between two classes
(Fielding and Bell, 1997). We used a split-sample approach where
80% of the dataset in each year was randomly selected for model
training and the remaining observations were used for validation.
The validation samples were used to create ROC curves and to cal-
culate misclassification rates for the CI trees. ROC curves were
implemented using the ‘ROCR’ package (Sing et al., 2005) in R (R
Core Team, 2012).
me, and (b) Results of cluster analysis at 49 � 49 pixel scale. Results at this scale are
ed red attack peaking early in the time series. In cluster 2, red attack peaked later in
where no outbreak was detected were removed from the analysis.
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3. Results

3.1. Detection of red attack

Detection of red attack showed that MPB spread throughout the
time series, with considerable mortality detected in 2005, 2006,
and 2009 (Fig. 2). We detected 219 km2 of red attack in 2003 (4%
of forest in ARNF), 806 km2 in 2005 (15%), 1874 km2 in 2006
(35.4%), 1976 km2 in 2009 (37%), and 416 km2 in 2010 (8%). In to-
tal, red attack was detected in at least 1 year in 3216 km2, 61% of
forest in ARNF. Our method of discriminating between MPB-in-
fested and uninfested areas performed well in 2003, 2005, and
2006 (Table 1). The quantity disagreement and allocation disagree-
ment metrics partition misclassification into errors due to assign-
ing the incorrect number of pixels to each class and to assigning
those values to the incorrect location, respectively. For example
in 2003 there was a 3% disagreement in the quantity of pixels as-
signed to each class and an 8% disagreement in the spatial alloca-
tion of those observations. In all years, misclassified pixels tended
to be in stands with low canopy closure where a significant soil sig-
nature may contribute to confusion between the two classes.

Note that different areas were validated in different time steps
(Fig. 1) because the extent of available high-resolution imagery
was not sufficient to conduct an exhaustive validation at each time
step. Consequently, we were unable to conclude whether or not
our model performed better in one time step or another. Instead,
we use our validation to demonstrate that our classification meth-
od had generally high accuracy and suggest that it provided data at
sufficiently high resolution and accuracy to observe meaningful
patterns in outbreak spatiotemporal development and to explore
how MPB spread is related to environmental variables.
3.2. Outbreak spatiotemporal development

For each of three block sizes tested (25 � 25, 49 � 49 and
99 � 99 pixels), the optimal number of k clusters was 3. Similarly,
visual comparison of these three block sizes showed that cluster
pattern and identity were overwhelmingly similar regardless of
scale, indicating that the results of time series cluster analysis were
not scale dependent. Because all three scales were so similar, we
describe only the patterns from the 49 � 49 block size (Fig. 2). In
all clusters, proportion of mortality tended to be low in 2003. In
cluster 1, mortality increased in 2005 and peaked in 2006 before
declining in 2009 and 2010. In cluster 2 mortality peaks in 2009.
Cluster 3 had generally low mortality throughout the time series.
Areas having no pixels classified as red attack were not included
Table 1
Validation of classification method represented by confusion matrices for (a) 2003, (b) 200

Ground-truth

RA Non-RA

(a) 2003
Classified

RA 7 (46.7%) 13
Non-RA 8 172 (93%)
Total 15 185

(b) 2005
Classified

RA 14 (70%) 13
Non-RA 6 167 (93.3%)
Total 20 180

(c) 2006
Classified

RA 104 (83%) 10
Non-RA 21 65 (86.7%)
Total 125 75
in the analysis. Cells in cluster 1 occurred in several clumps around
the study area, and many but not all cells in cluster 2 were near
cells in cluster 1. Neither a distinct bulls-eye nor checkerboard pat-
tern was present.

3.3. Conditional inference tree modeling

The 2003 CI tree had a misclassification rate of 5.8% and the area
under the ROC curve (AUC) was 0.749. The CI tree classified sites at
elevation >3340 m and having tree cover 665% as red attack, and
red attack also occurred at well over the background rate of 5.8%
at sites with southern (SE, S, SW) aspects that were above
3040 m. In the CI trees, sites are classified as red attack when
>50% of observations in a terminal node were determined to repre-
sent red attack using remote sensing (Fig. 3). We used random for-
ests to compute variable importance values for all variables
included in the model. In addition to elevation, aspect, and percent
tree cover, percent cover by lodgepole pine and percent cover by
ponderosa pine were significant predictors of red attack occur-
rence (Fig. 4). Distance from nearest previous outbreak and area
of nearest outbreak could not be calculated for this time step be-
cause it is the first year for which we were able to detect red attack.

Beginning with the 2005 CI tree, we added two spatial variables
to account for beetle pressure, distance from nearest outbreak in
the previous time step and area of nearest outbreak in the previous
time step. The 2005 model had a misclassification rate of 16.5% and
the area under the ROC curve was 0.669. Here, sites with tree cover
<40% and elevation <2540 m were classified as red attack (Fig. 5).
All sites with tree cover <55% experienced rates of red attack high-
er than the background rate of 14.9%. In this time step, random for-
ests only identified tree cover and distance from 2003 outbreak as
significant predictors.

The 2006 CI tree misclassified a 21.2% of observations model
but its AUC (0.778) indicates the best performance, owing to im-
proved discrimination between red attack and non-red attack clas-
ses. Sites were classified as red attack in 2006 if they were <2470 m
in elevation, and those sites that were within 140 m of previous
outbreak and had >55% cover by lodgepole pine experienced red
attack at above the background rate of 22% (Fig. 6). In this time
step, distance from 2005 outbreak, elevation, and% tree cover had
significant variable importance values (Fig. 4).

For 2009, the CI tree misclassified 20.6% of observations and the
AUC was 0.624. In this time-step, the rate of red attack in sites hav-
ing >30% cover by lodgepole pine was above the background rate,
but none were classified as red attack (training class: n = 954
observations, validation class: n = 238 observations, p < 0.01). Dis-
tance from 2006 outbreak, percentage of lodgepole pine, elevation,
5, and (c) 2006. Percentages in parenthesis indicate producer’s accuracy for that class.

Total

20 Allocation dis.: 8%
180 Quantity dis.: 3%
200 (89.5%)

27 Allocation dis.: 6%
173 Quantity dis.: 4%
200 (90.5%)

114 Allocation dis.: 10%
86 Quantity dis.: 6%
200 (84.5%)



Fig. 3. Conditional inference tree model for 2003. Training class: n = 1600 observations, validation class: n = 400, misclassification rate = 5.75%, AUC = 0.749. All splits are
statistically significant at the p < 0.05 level.

Fig. 4. Results of variable importance analysis using conditional forests for (a) 2003, (b) 2005, (c) 2006, and (d) 2009. Variables to the right of the dashed line are statistically
significant predictors of MPB red attack occurrence.
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percent cover by ponderosa pine and tree cover percent had signif-
icant variable importance values (Fig. 4).
4. Discussion

This study appeared to capture the spread of MPB red attack in
Arapaho and Roosevelt National Forests from a period near the
beginning of the outbreak through its crash; area of red attack
was low in 2003, increased in 2005, peaked in 2006 and 2009,
and declined sharply in 2010. We identified 4% of the study area
as red attack in 2003, indicative of an ongoing landscape-level
transition between the incipient-epidemic and epidemic popula-
tion phases. Because at the incipient-epidemic phase MPB infests
primarily small groups of trees (Safranyik and Carroll, 2006), much
of the red attack at this stage may be undetected using 30 m reso-
lution satellite images. USDA Forest Service Aerial Detection Sur-
vey maps (USDA Forest Service, 2013) confirm that MPB damage
was relatively low in ARNF between 2000 and 2003, but our detec-
tion method may underestimate the total area of red attack in 2003
because a severe drought in summer 2002 likely depressed NDMI
values. At the end of the time series, the amount of new red attack
detected in 2010 was very low, signaling a population crash and
the end of the outbreak cycle in the study area. Outbreaks can
end due to a combination of unseasonably cold temperatures be-
tween late fall and early spring, and when the availability of host
trees can no longer support high population sizes (Safranyik and
Carroll, 2006).



Fig. 5. Conditional inference tree model for 2005. Training class: n = 1509 observations, validation class: n = 377, misclassification rate = 16.45%, AUC = 0.669. All splits are
statistically significant at the p < 0.01 level.

Fig. 6. Conditional inference tree model for 2006. Training class: n = 1229 obser-
vations, validation class: n = 307, misclassification rate = 21.17%, AUC = 0.778. All
splits are statistically significant at the p < 0.01 level.
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During the outbreak cycle, patterns of MPB spread were likely
determined by both local habitat characteristics and dispersal be-
tween populations. In the cluster analysis, a bulls-eye pattern
would be expected if dispersal and not local population growth
were the dominant cause of a new infestation, whereas if the land-
scape consisted of many largely independent populations a check-
erboard pattern would result. We detected a spatial pattern
between these two extremes, which contrasts the pattern found
by Aukema et al. (2006), who applied cluster analysis to a time ser-
ies of MPB outbreak in British Columbia, Canada. In that study, a
bulls-eye pattern suggested that the outbreak began with an epi-
center in west-central British Columbia and radiated outward.
Aukema et al. (2006), however, analyzed a �100� larger area using
a much coarser grain (>4� the largest block size in this study).
Hence, differences between the two studies may be due to scale
dependence.

Changes in the behavior of systems across spatial scales tend to
occur abruptly and non-linearly (Wiens, 1989), so the lack of scale
dependence at the spatial grains and extent covered in this study
may not be indicative of patterns occurring over broader range of
spatial scales. The differences between this and the Aukema et al.
(2006) study could indicate a hierarchy of scales, where at coarse
scales MPB outbreak spreads from an epicenter, but at fine scales
its distribution is more strongly related to local environmental
conditions. The differences observed between this and the Aukema
study could also reflect characteristics of the two landscapes stud-
ied. In British Columbia, climate change has allowed MPB out-
breaks to occur over areas that historically did not support them
(Carroll et al., 2004). As it expanded its range, MPB populations
in these areas may have been particularly sparse at the onset of
the outbreak cycle, making them relatively more dependent on dis-
persal from epidemic populations than those in Colorado.

As suggested by spatiotemporal patterns of outbreak develop-
ment, occurrence of red attack was associated with a combination
of spatial relationships and environmental covariates. In this study,
MPB infestation was associated with elevation, aspect, tree cover,
species composition, and distance from an outbreak in a previous
time step. A variable was considered associated with MPB infesta-
tion if it was included in a CI tree or had a significant variable
importance value in at least 1 year. A key finding of this study is
that, as an outbreak progresses, different variables best predict
the occurrence of an infestation. Because most previous studies
of susceptibility to MPB infestation have not taken a multi-tempo-
ral approach, the authors are not aware that this phenomenon has
been previously demonstrated. Early in the outbreak cycle, a com-
bination of environmental characteristics that accords well with
previous research on susceptibility to MPB infestations were the
best predictors of red attack (Fig. 3). As the outbreak progressed,
distance from a detected infestation in the previous time step, a
measure of beetle pressure (Shore and Safranyik, 1992), increased
in importance relative to other predictors (Fig. 4), while the envi-
ronmental characteristics associated with red attack also changed
(Figs. 5 and 6). At the end of the outbreak, red attack was primarily
associated with stands with high abundance of host trees, suggest-
ing that the outbreak declined when the availability of host trees
failed to support its population levels.

The year 2003 represents a landscape where stands are transi-
tioning between the incipient-epidemic and epidemic population
phases. During this period, variables related to susceptibility
should be good predictors of red attack because MPB populations
are either still dependent on susceptible trees or were recently
and show the spatial signature of the susceptible areas where the
outbreak originated. We found rates of red attack in 2003 to be
associated with high elevation, southern aspects, moderately high
tree cover, and the percent cover of lodgepole and ponderosa pine.
Dense stands of major hosts may be susceptible to infestation be-
cause competition reduces tree vigor (Larsson et al., 1983), and
susceptibility may increase on south-facing slopes because higher
levels of solar radiation may increase tree stress and beetle survival
(Coops et al., 2006).

The areas of red attack detected in 2005, 2006, 2009 represent
growth and peak within the outbreak phase at the landscape level.
Throughout this period, the distance from the nearest outbreak in
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the previous time step was a significant predictor of spread, includ-
ing the most significant in 2006 and 2009 (Fig. 4). As more of the
landscape reaches the epidemic phase, beetle pressure should be-
come the most important determinant of new infestations because
populations are sufficiently large to overcome the defenses of
healthy trees via mass attack (Mitchell and Preisler, 1991; Logan
et al., 1998). Measures of beetle pressure typically include an
approximation of population size based on numbers of infested
trees (Shore and Safranyik, 1992), but in this study a related metric,
area of nearest outbreak in the previous time step, was not an
important variable in any year (Fig. 4). Our measures of beetle
pressure could not be calculated for 2003, but we expect it to have
relatively low importance based on known patterns of outbreak
development (Mitchell and Preisler, 1991; Logan et al., 1998), the
trajectory of its change in importance between 2005 and 2009,
and the relative importance of environmental covariates in 2003.

At the same time as beetle pressure became a dominant influ-
ence on the landscape, the environmental characteristics of new
red attack sites also changed. Rates of red attack were high at sites
with relatively high percent tree cover in 2003 and lower percent
tree cover in 2005, and the variable’s importance declined after
2005. Susceptibility to MPB can increase with forest density be-
cause competition reduces tree vigor (Larsson et al., 1983), so, tak-
ing forest cover as a proxy for density, red attack appeared to occur
in more susceptible stands at the onset of the outbreak, but after
reaching the epidemic level moved to less dense stands where
trees may have been more vigorous and thus provided more nutri-
tion. Though the density of trees became less important in the sec-
ond half of the outbreak cycle, host tree abundance appeared to
influence which sites became infested late in the outbreak (Figs 5
and 6). Suitable host trees may be depleted in sites where pine spe-
cies, particularly lodgepole pine, the primary host for MPB, are not
abundant. Percent ponderosa pine, a major MPB host tree, did not
appear in any CI trees, but was a significant predictor in 2003 and
2009, years when forest composition may be particularly
important.

From the beginning of the study period through the outbreak
crash, areas of new infestation were also characterized by different
elevations. Red attack moved from high elevations to in 2003 to
low elevations in 2005 and 2006, which may clarify conflicting
findings regarding the relationship between red attack presence
and elevation (Coops et al., 2006; White et al., 2006; Wulder
et al., 2006a). At the beginning of recent MPB outbreaks in British
Columbia, Canada, infestation hot spots developed near the eleva-
tion limit for MPB to maintain univoltine life cycles (Nelson et al.,
2007). In this study, red attack was detected in 2003 at elevations
that Amman (1973) found to be above the limit of MPB for the
range of latitudes represented in ARNF, although recent research
suggests that MPB outbreaks have historically occurred at eleva-
tions >3000 m (J.F. Negrón personal communication). Decades of
climate warming have also enhanced the suitability of high lati-
tudes and elevations to MPB (Carroll et al., 2004; Bentz et al.,
2010).

Despite the strong relationship between tree diameter and
brood production (Amman, 1972; Safranyik et al., 1974), size class
was neither included in the CI tree nor had a significant variable
importance value in any year. We do not, however, conclude that
tree size was unimportant to MPB population dynamics in ARNF
during our study. Size class in the R2Veg database describes the
size of the dominant trees in a stand by binning it into five classes,
so the width of the bins and the spatial grain of the data may not be
precise enough to use size class to predict red attack. This result
highlights the importance of developing models based on data
readily available to forest managers.

While the identity of significant predictors of red attack chan-
ged over the study period, the ability of the CI trees to discriminate
between infested and uninfested areas also varied. The CI tree for
2009 was the weakest at discriminating between the red attack
and non-red attack classes. The CI tree for 2005 also performed less
well than 2003 and 2006, suggesting that to the longer time inter-
val between change detection images (2 and 3 years, versus 1 year)
could result in poor performance. Given that predictors of MPB
infestation appear to change as an outbreak cycle progresses, it
would be more difficult to predict the results of 2 or 3 years of
MPB activity than a single year. The explanatory power of the CI
trees could also decline if a longer time interval also increases
the amount of uncertainty in estimates of outbreak location and
extent based on remotely sensed imagery. In practice, we have
no evidence that the change detection methods employed in this
study perform less well when the time interval between images in-
creases. In all 3 years we were able to validate, total accuracy was
P 84.5% and the lowest accuracy occurred in 2006, a 1 year time
step. These accuracies are comparable to other studies using Land-
sat imagery, which report accuracies between 70% and 86% (Coops
et al., 2006; Wulder et al., 2006a; Goodwin et al., 2008). Though we
were unable to validate the 2009 red attack map, the strong perfor-
mance of our classification methods in three other time steps sug-
gests that our methods continued to identify red attack with good
accuracy.

Despite some uncertainty over the accuracy of the 2009 red at-
tack map, an ecological explanation for having the lowest CI tree
performance in that year should not be discounted. Nelson et al.
(2007) found that during a recent outbreak in British Columbia
highly susceptible stands were attacked early in the outbreak cycle
and as the outbreak progressed the characteristics of infested
stands approached the background distribution and thus would
be difficult to distinguish from un-infested stands using environ-
mental covariates. Because we have a small number of time steps
and the lengths vary due to gaps in the availability of suitable
Landsat imagery, confidence in this result is tempered, but if this
pattern could be found in other areas it would underscore the
importance of early management interventions, when the spread
of MPB is more predictable.

One important question is whether the patterns found in this
study would apply to other landscapes. While our findings are un-
ique, they do fit within scientific understanding of mountain pine
beetle epidemiology and tree and stand-level susceptibility to
infestation (Fettig et al., 2007). Still, other outbreaks might deviate
from the patterns we found for several reasons. The elevations hav-
ing thermal conditions favorable to MPB are tied to latitude, so
caution should be taken when extrapolating those values to other
locations even though there is some evidence that infestations
early in outbreaks occur near the limit of MPB’s elevation range
(Nelson et al., 2007). Species composition may be important late
in the outbreak primarily when it crashes due to a lack of available
host trees; when weather fluctuations are strong the outbreak
could crash before host unavailability is felt strongly. Additionally,
the variables available in the R2Veg database were not a one-to-
one match to those measured in other studies and may not match
similar forest inventories for other areas.

Recent works have prescribed managing against MPB outbreaks
by combining long-term strategies to reduce the susceptibility of
stands and landscapes with activities that identify growing popu-
lations and reduce their numbers (Shore et al., 2006). Our findings
support the use of such an approach; spread of MPB outbreak was
attributed to a combination of stand susceptibility and beetle pres-
sure. We also found that the best covariates for predicting red at-
tack changed over the course of the outbreak. If this pattern is
consistent it could help forest managers by allowing risk estimates
to be specific to the point in the outbreak cycle, which could be
especially helpful in the epidemic population phase when new
red attack is produced from a combination of dispersal and
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within-stand population growth. Future research could address
whether the spatiotemporal development of MPB outbreaks at
other times and places is similar to what we have observed.
5. Conclusions

Mountain pine beetle infestation has dramatically impacted
Arapaho–Roosevelt National Forest. Our findings suggest a cycle
where severe MPB outbreak began in the early 2000s, spread
throughout the decade, and has declined toward endemic popula-
tion levels. By building explanatory models of MPB spread
throughout the outbreak, we have identified that the factors asso-
ciated with incidence of red attack change during the outbreak cy-
cle. Our findings demonstrate a general pattern where, from
outbreak inception to crash, the major controls on the spread of
the infestation change from forest susceptibility to dispersal to
host availability. At the beginning of the time series, when stands
were transitioning between the incipient-epidemic and epidemic
population phases, topography and stand structure variables asso-
ciated with susceptibility to MPB infestation had high weight as
predictors of red attack. The outbreak developed further in subse-
quent years and beetle pressure became increasingly important to
spread of the infestation, but the elevation, forest density, and spe-
cies composition of newly attacked sites also changed as the out-
break developed, with abundance of major hosts lodgepole and
ponderosa pine growing in importance at the end of the study per-
iod. Though these findings fit solidly within the known ecology of
MPB populations, highlighting this pattern opens up new lines of
inquiry and can aid in targeting management interventions against
mountain pine beetle outbreaks.
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