

Pollution Prevention Project: Water Waste Reduction Pasta Montana LLC

Intern: Edwin Allan Site Supervisor: Randy Gilbertson MMEC Supervisor: Richard Doug Roberts

Edwin Allan

I was born in Accra, the capital of Ghana

• Academic Background

- Bsc. Nutrition and Food Science, University of Ghana
- Msc. Sustainable Food Systems, Montana State University

Career Goal

Food scientist dedicated to improving the food security and nutrition of indigenous communities

Pasta Montana LLC: Great Falls, Montana

Figure 1: Pasta Montana Compound

Figure 3: Pasta Montana Brands

- Produces pasta by extruding semolina flour.
- Pasta (long and short) is produced under 3 main brands
- Uses Kaizen principles in manufacturing and is currently operating and selling at max. capacity

Pasta Montana

Figure 4: Pasta produced by Pasta Montana

Figure 5: Vacuum supplied during Mixing

- With four pasta lines, Pasta Montana produces over 70 different dry pasta shapes
- The vibrant golden yellow color seen, is maintained by supplying a vacuum during mixing

Water Usage: Vacuum Creation

Figure 6: Water moving into drain after vacuum seal creation

- 8 gallons of water per minute is supplied to liquid ring vacuum pumps to create at least 15 In.Hg vacuum
- All 8 gallons supplied is discharged into the drain after use
- Accounts for 50% of Pasta Montana's water usage (Very little water is needed for actual pasta production)

Flow Diagram of Vacuum Creation

Stages

1. 2.

3.

4.

5.

Water inflow

Vacuum

Vacuum pump

Vacuum from Mixer

Discharge into Drain

Extruded Dough

Water Usage: Why Use LRVPs?

Figure 8: Liquid Ring Vacuum Pumps for Lines 1, 2 and 3

Figure 9: Liquid Ring Vacuum Pumps for Line 4

- Liquid ring vacuum pumps
 seldomly require maintenance
- Expend and use less energy
- Eliminates the use and disposal of toxic chemicals when using water

Water Reduction Process

What is the least amount of water needed for a 15 In.Hg vacuum?

Without causing:

- Vacuum Pump Cavitation
- Discoloration of Product

• Downtime

Water Waste Reduction: Calibration of Flowmeters

Figure 10: Flowmeters used to measure inlet flow

Figure 11: Filling bucket with discharge water in 10 seconds

Figure 12: Weighing Filled Bucket

- Flowmeters were suspected to be inaccurate
- Flow rate was remeasured by filling a bucket with drain water in 10 seconds.
- Water in the bucket was weighed and with a time of 10 seconds converted to gallons per minute

Vacuum Pump Data Prior to Flowrate Reduction

Production Line	Water	Temp. of	Temp. of	Vacuum pressure	Vacuum pressure
	flowrate	inflow	Discharge	measured from	measured from Mixer
	(gpm)	water (°C)	Water (°C)	Pump (In.Hg)	(In.Hg)
1	8.72	22.5	27.9	20	15.7
2	8.56	22.5	27.9	26	16.5
3	7.98	22.5	27.9	16.5	16.5
4	13.9	22.5	26.4	21.8	18.9

 Table 1: Vacuum Pump Responses at Initial Water Inflow Rate

- Lines 1, 2 and 4 were found to be operating above 8 gpm
- Flowmeters on each line were adjusted to 8 gpm and gradually reduced to 4 gpm

Vacuum Pump Data after Flowrate Reduction

Production Line	Water	Temp. of	Temp. of	Vacuum pressure	Vacuum pressure
	flowrate	inflow	Discharge	measured from	measured from
	(gpm)	water (°C)	Water (°C)	Pump (In.Hg)	Mixer (In.Hg)
1	4	22.5	32.6	20	16
2	4	22.5	32.6	26	16
3	4	22.5	32.6	16.5	16.2
4	4	22.5	29.6	21.5	<mark>*18.9</mark>

 Table 2: Vacuum Pump Responses at Adjusted Water Inflow Rate

Flow rate on Line 4 was higher than the recommended 8 gpm but did not provide a noticeably higher vacuum pressure after flow rate reduction to 4 gpm

Water Reduction Process: Water Quality Test

 Table 3: Water Quality of Discharge Water from Liquid Ring Vacuum Pumps

Source	Total Coliform	E. Coli	Turbidity (NTU)	
Inflow (City water)	Absent	Absent	< 0.3	
Line 1,2,3	Present	Absent	0.287	
Line 4	Absent	Absent	0.157	

- Coliform contamination comes from the environment (*Water Quality-Consumer Confidence Reports*, 2020)
- Line 1,2,3 likely to be contaminated during testing
- Water with turbidity less than 1 NTU is safe for drinking (WHO, 2017)
- Water can be stored and reused for gardening and housekeeping activities

Did we really have to Reduce Water Waste?

- Pasta Montana's Yearly Water + Sewage Bill = \$138,420
- Global water footprint: The US has the highest water footprint per capita of 6.8 tons per day

Table 4: Savings made per year after water reduction

Lines	Initial Flowrate	Gallons per year	Adjusted Flowrate	Gallons Saved per year	New Gallons per year	Savings per year (\$)
1	8.72	4,219,085	4	2,283,725	1,935,360	14,212.31
2	8.56	4,141,670	4	2,206,310	1,935,360	13,730.54
3	7.98	3,861,043	4	962,842	1,935,360	5,992.06
4	13.91	6,730,214	4	4,794,854	1,935,360	29,839.84
Total	39.17	18,952,012	16	10,247,731	7,741,440	63,774.75

Pasta Montana LLC has reduced overall water usage by 41% and saved \$63,774.75

Old yearly water bill = \$138,420 New yearly water bill = \$74,645

Conclusion

- Water use and sewage was reduced by 10.2 million gallons a year
- Potential to further reduce discharge water
- Potential to recirculate discharge water
- Potential to store and reuse discharge water
- Pasta Montana reduced water usage by 41% by being committed to pollution prevention and waste reduction

Next Steps

- Heavy metal testing of discharge water
- Installation of partial recirculation configuration to potentially drop inlet flow to 2 gpm
- Monitoring device for vacuum supplied to mixer and temperature of discharge water
- Storage of discharge water for gardening and housekeeping
- Explore durum wheat varieties with low lipoxygenase activity

Personal Benefits

- Better understanding of food extrusion
- Learnt how to make pasta and different shapes
- Learnt how to work as a professional
- BRC food safety standards, implementation and internal audits

Acknowledgements

- Pasta Montana LLC, Montana Manufacturing Extension Center and MSU Food Product Development lab
- Randy Gilbertson, Pasta Montana
- Richard Doug Roberts, MMEC
- Brendan Lane, Pasta Montana
- Kay Ritter, Pasta Montana
- Senior Management and Front Office, Pasta Montana
- Processing Teams A1 and A2
- Packaging, Maintenance, Sanitation and Quality Assurance Teams – Pasta Montana
- David Oien, Timeless Seeds
- Wan-Yuan Kuo and Food Product Development Lab

References

- City of Great Falls, W. S. (2020). *Water Quality-Consumer Confidence Reports*. https://greatfallsmt.net/ccr2020.
- Gardner Denver. (2007). CLASSIC LIQUID RING PUMPS & COMPRESSORS.
- World Health Organization. (2017). WATER QUALITY AND HEALTH-REVIEW OF TURBIDITY: Information for regulators and water suppliers.

Thank you