

Pollution Prevention Project: Life Cycle Assessment (LCA) of Lentil Texturized Vegetable Protein (TVP)

Intern: Ravi Kumar Pirati Supervisor: Dr. Wan Yuan Kuo Business Owner (MPP): Christian Orms MMEC Supervisor: Paddy Fleming

Ravi Kumar Pirati

- I was born in Andhra Pradesh, India.
- Professional Background:

I worked for Pharmaceutical firms as Scale-Up Technology Transfer Engineer and Production planning and Inventory Control (PPIC) in SCM for 3 years.

- Academic Background:
- Bachelors in Chem Eng. from Vignan's University, India.

- Currently perusing masters in Chem Eng. from Montana State University.

• Career Goal:

Chemical engineer contributing services towards improving process safety in manufacturing sector.

What is TVP

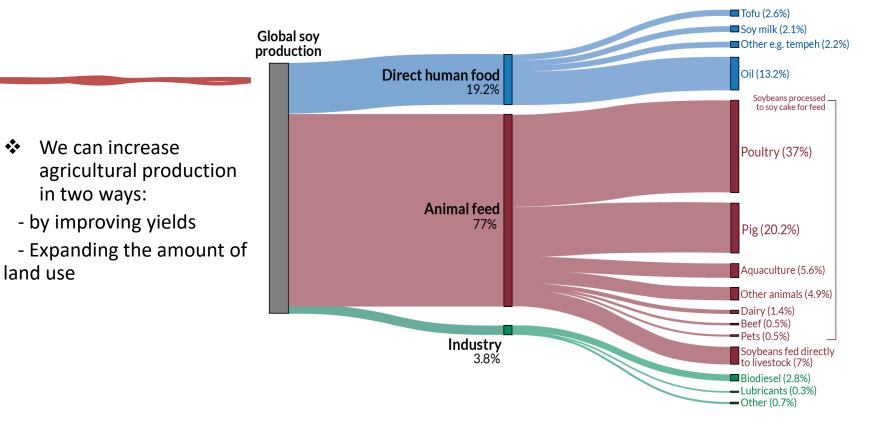
 Texturized vegetable protein is a meat substitute product that's made from soybeans by extrusion of soy protein.

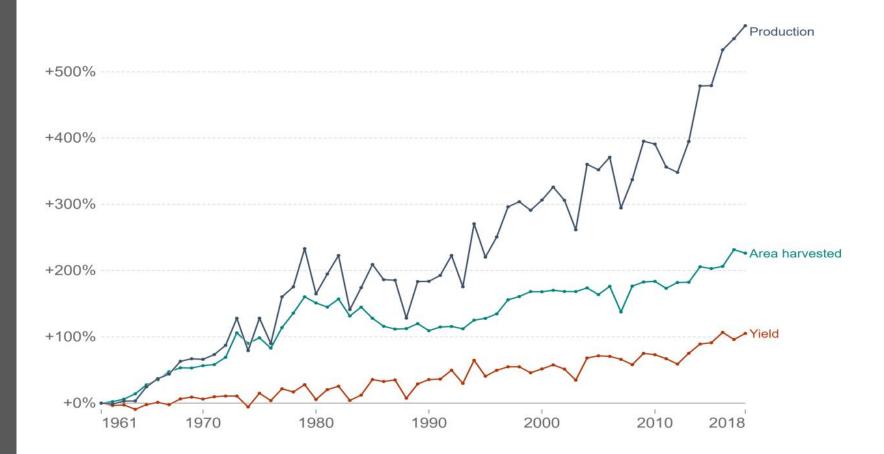
 Extrusion: Set of mixed ingredients forced through in a perforated plate or die with a design specific to food, involves mixing, cooking, kneading, shearing and shaping.

Extrusion of TVP

Calcium hydroxide Sodium bisulphite Xanthum gum Protein

Soy The king of Beans


- Globally traded commodity produced both temperature and tropical regions.
- Serves as key source of protein and vegetable oils.
- Over 80% of worlds soy from United states, Brazil and Argentina.


Soybean production Our World in Data Soybean production is measured in tonnes. 350 million t • World 300 million t 250 million t -200 million t 150 million t 13 times higher 100 million t 50 million t 0 t -1970 1980 2000 1961 1990 2010 2018

Source: UN Food and Agriculture Organization (FAO)

OurWorldInData.org/agricultural-production • CC BY

Soy consumption

Is soy production driving deforestation?

Since 1961, Global yields 150%
 Production 1200%

- Some studies concluded it is pasture lands not soy bean farming driving deforestation in Brazilian Amazon.
- Crop lands replacing pasture and pasture lands shifting to forest areas and most deforestation is driven by expanding pastures or soy.
- ✓ According to US dept of Agriculture, 94% of soy production consists of genetically modified beans.

Lentils

Montana – Largest producer of lentils in United States, accounts 38% of lentils grown in nation.

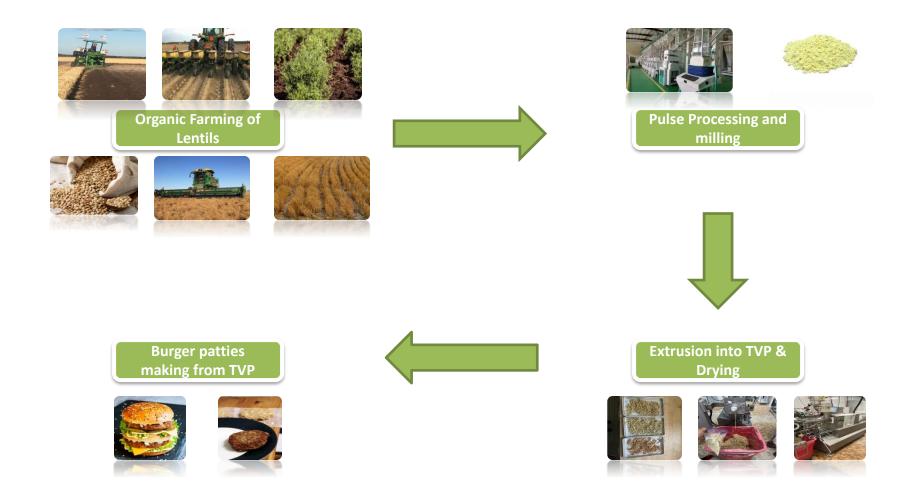
Protein rich lentils are drought resistance, ideal crop to grow in Montana's dry climate.

As a legume, Lentils take nitrogen from atmosphere and convert it to a nutrient source in soil to feed crops grown after them.

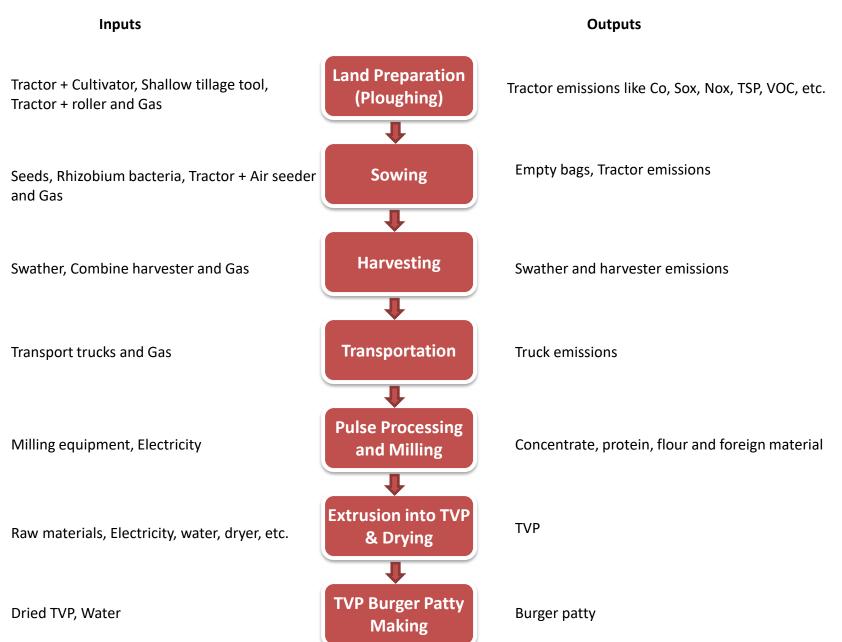
Organic Lentils farming in Montana

- Land Preparation (Ploughing): Cultivator, shallow tillage tool and roller.
- Sowing: Air seeder, 60 lb seeds and 2 kg Rhizobium bacteria.
- No irrigation, depends only on rainfall and late winter snowfall (i.e., 9 – 16 inches).
- Cutting by Swather.
- Drying: 7-10 days.
- Harvesting: Combine harvester.
- Yield: 600 lb/acre (15-20% foreign materials like weed seeds & rocks per every 100 lb)

What is Life Cycle Assessment (LCA) ?


Technique that allows identifying the overall environmental effects of the life cycle of a
product or process, by evaluating the potential environmental impacts of a system
through detailed study of the inputs of energy and mass in the production life cycle,
including transportation.

Phases of Life Cycle Assessment (ISO 14040 & ISO 14044):


- ✓ Goal and scope definition: Determining boundaries for study.
- Inventory analysis : Data on inputs and outputs for all processes.
- Impact assessment : Contribution in impact categories such as water consumption, global warming etc.
 - Interpretation : Major contributions, analysis, what can be learned from study?

- Goal and scope of study: The primary goal of this study was to evaluate impacts associated with soy and lentil farming in United States.
- Functional unit: A functional unit of one acre land was selected for this study.
- **Cradle-to-farmgate:** includes ploughing, sowing of seeds and all other on-farm activities associated with cultivation of lentils.
- OpenLCA
- Database: AGRIBALYSE for agriculture and food sector.
- Impact assessment method: ReCiPe 2016 Midpoint(H).

Flow Diagram of Lentil TVP

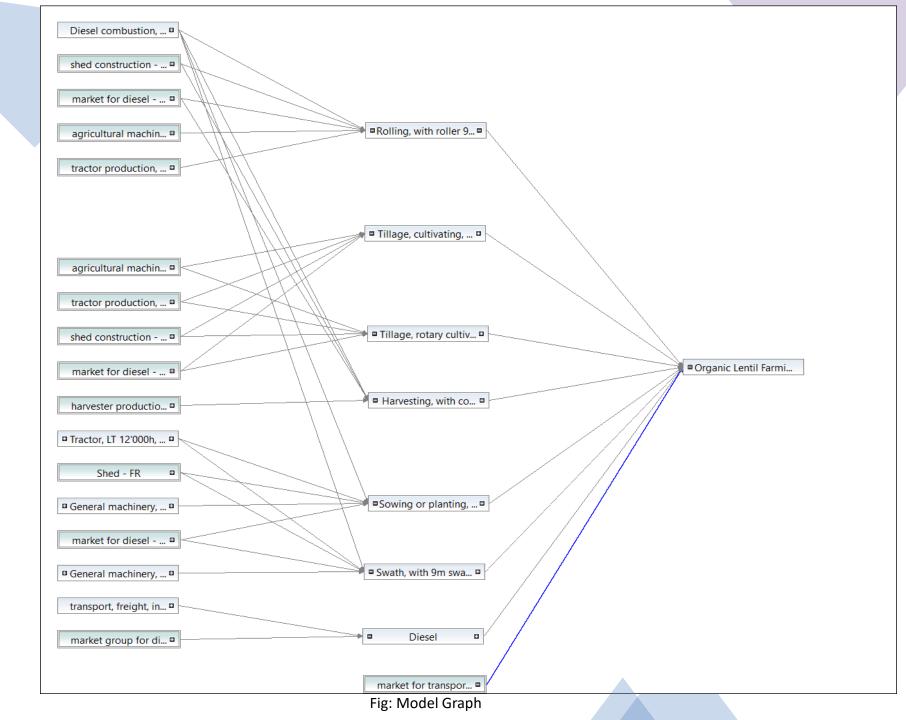
System Boundaries of LCA

P Inputs/Outputs: Organic Lentil Farming

✓ Inputs

Flow	Category	Amount	Unit	Costs/Rev	Uncertainty	Avoided w	Provider	Data
F.º Diesel	Moules/Energy	1.00000	🚥 m3		none		P Diesel	
Fe Harvesting, with combine harvester, processing/RoW U	Agricultural/Field Oper	1.00000	🚥 h		none		P Harvest	
F. Lentil Seeds		27.21000	🚥 kg		none			
F. Rhizobium Bacteria	Elementary flows	2.00000	🚥 kg		none			
Fe Rolling, with roller 9m, processing/RoW U	Agricultural/Field Oper	1.00000	🚥 h		none		P Rolling,	
Fe Sowing or planting, with pneumatic seeder, 6 rows/FR U	Agricultural/Field Oper	1.00000	🚥 h		none		P Sowing	
Fe Swath, with 9m swather/FR U	Agricultural/Field Oper	1.00000	🚥 h		none		P Swath,	
Fe Tillage, cultivating, chiselling (WFLDB 3.1)/CH U	Agricultural/Transform	1.00000	🚥 ac		none		P Tillage,	
Fe Tillage, rotary cultivator (WFLDB 3.1)/CH U	Agricultural/Transform	1.00000	🚥 ac		none		P Tillage,	
Fe Transport, freight, lorry 16-32 metric ton, EURO3 (GLO)	Others/Ecoinvent cut-o	600*150	🚥 Ib*mi		none		P market	
4								>

- Outputs

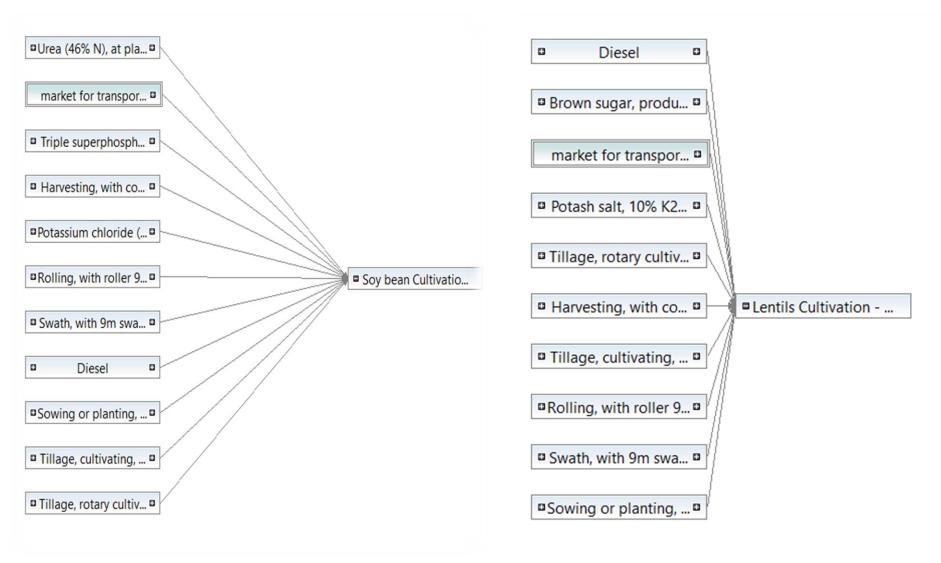

Amount Unit Costs/Rev... Uncertainty Avoided p... Provider Flow Category Data Emission to air/low po... Fa Carbon monoxide 0.71250 📼 mg none 😽 Jute bag 500.00000 📼 gr none Fø Nitrogen dioxide Emission to air/low po... 2.25000 📟 mg none F. Organic Lentil Farming 1.00000 📟 ac none Fe Particulates, < 10 um Emission to air/low po... 0.10100 📟 mg none Fa Sulfur oxides Emission to air/low po... 0.00100 📟 mg none Fo TSP Emission to air/unspec... 0.11250 📼 mg none Fø VOC, volatile organic compounds, unspecified origin Emission to air/low po... 0.13500 📟 mg none

C

C X 1.23

Fig: Inputs & outputs from OpenLCA

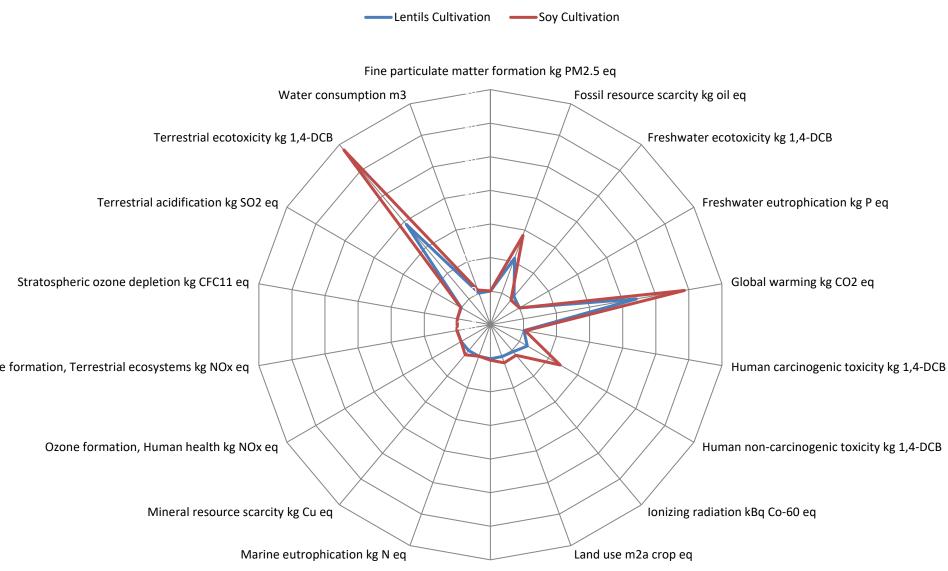
1.23



Impact Assessment for organic farming of lentils

• Global warming potential for conventional soy farming is **18963.04 kg co2 eq per acre**.

Name	Impact result	unit
Fine particulate matter formation	7.871836255	kg PM2.5 eq
Fossil resource scarcity	1159.046787	kg oil eq
Freshwater ecotoxicity	9.829355626	kg 1,4-DCB
Freshwater eutrophication	0.102276328	kg P eq
Global warming	3561.247477	kg CO2 eq
Human carcinogenic toxicity	19.67937621	kg 1,4-DCB
Human non-carcinogenic toxicity	699.2996429	kg 1,4-DCB
Ionizing radiation	51.32674072	kBq Co-60 eq
Land use	9.651881386	m2a crop eq
Marine ecotoxicity	16.87776291	kg 1,4-DCB
Marine eutrophication	0.020371859	kg N eq
Mineral resource scarcity	2.727417621	kg Cu eq
Ozone formation, Human health	47.76736149	kg NOx eq
Ozone formation, Terrestrial ecosystems	48.01830611	kg NOx eq
Stratospheric ozone depletion	0.004049648	kg CFC11 eq
Terrestrial acidification	21.56801495	kg SO2 eq
Terrestrial ecotoxicity	4544.492452	kg 1,4-DCB
Water consumption	6.104927531	m3


Comparison on conventional farming

Impact
Assessment
comparison for
conventional
farming

Impact category	unit	Lentils Cultivation	Soy Cultivation
Fine particulate matter formation	kg PM2.5 eq	32.54406566	33.63063684
Fossil resource scarcity	kg oil eq	6405.965333	6550.07081
Freshwater ecotoxicity	kg 1,4-DCB	261.5950961	233.5825171
Freshwater eutrophication	kg P eq	1.429531364	1.623100744
Global warming	kg CO2 eq	18672.59594	18963.04164
Human carcinogenic toxicity	kg 1,4-DCB	352.5234035	360.1535488
Human non-carcinogenic toxicity	kg 1,4-DCB	12291.19001	12517.72659
Ionizing radiation	kBq Co-60 eq	346.1084308	374.261847
Land use	m2a crop eq	627.3780482	667.2161736
Marine ecotoxicity	kg 1,4-DCB	477.1770963	485.4236559
Marine eutrophication	kg N eq	0.157845602	0.179099851
Mineral resource scarcity	kg Cu eq	32.87258852	65.22562635
Ozone formation, Human health	kg NOx eq	151.0887388	153.7786308
Ozone formation, Terrestrial ecosystems	kg NOx eq	152.9648116	155.6699619
Stratospheric ozone depletion	kg CFC11 eq	0.00910054	0.009215811
Terrestrial acidification	kg SO2 eq	79.92158581	83.47772932
Terrestrial ecotoxicity	kg 1,4-DCB	264142.5242	264721.17
Water consumption	m3	47.54749501	66.80818148

Impact Assessment comparison for conventional farming LCA

Marine ecotoxicity kg 1,4-DCB

Conclusion

- Indicates Organic Lentils farming is more sustainable and less impact on environment.
- Soy farming driving towards pollution and deforestation in Amazon.
- Replacing of soy protein concentrate in TVP with lentil protein concentrate is feasible.

S.No	Farming Type	Global Warming Potential (GWP) (kg co2 eq per acre)	Stratospheric ozone depletion (kg CFC11 eq)
1	Organic Lentils	3561.24	0.0040
2	Conventional Lentils	18672.59	0.0091
3	Conventional Soy	18963.04	0.0092

Next steps

More Extrusion runs of TVP with all required raw materials and calculate energy requirements.

Make TVP burger patties with extruded lentil TVP.

Perform LCA on Cradle to Grave basis i.e., includes lentils farming, milling, transportation, extrusion and patty making.

Acknowledgements

- Montana Pure Protein (MPP), Montana manufacturing extension center and MSU Food product development lab.
- Christian Orms, MPP
- Rob Stiles, MPP
- Paddy Fleming, MMEC
- Alistair Stewart, MMEC
- Eberly Jed and Joseph Kibiwott, MSU
- Dr. Wan Yuan Kuo and Food Product Development Lab
- Edwin Allan, MSU.
- Jennifer Grossenbacher and Watson Barbara, MTP2

References

- <u>https://ourworldindata.org/soy</u>
 - Potential greenhouse gas emission reductions in soybean farming:

 a combined use of Life Cycle Assessment and Data Envelopment Analysis
 (https://www.sciencedirect.com/science/ article/pii/S0959652613003284)
- <u>http://animalrange.montana.edu/docume</u> <u>nts/extension/eb161.pdf</u>
- <u>https://www.agrifarming.in/soybean-</u> <u>farming-information</u>
- <u>https://albertapulse.com/lentil-</u> <u>seeding/lentil-fertility/</u>

Thank you