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a b s t r a c t

The perennially ice-covered, closed basin lakes in the McMurdo Dry Valleys respond rapidly to environ-
mental changes, especially climate. For the past 15 years, the McMurdo Dry Valleys Long-Term Ecological
Research (MCM-LTER) program has monitored the physical, chemical and biological properties of the
lakes in Taylor Valley. In order to better assess the physiochemical controls on the biological process
within one of these lakes (Lake Hoare), we have used vertical profile data to estimate depth-dependent
correlations between various lake properties. Our analyses reveal the following results. Primary produc-
eywords:
ake Hoare
CM-LTER

ayesian methods
orrelation analysis

tion rates (PPR) are strongly correlated to light (PAR) at 12–15 m and to soluble reactive phosphorus
(SRP) at 8–22 m. Chlorophyll-a (CHL) is also positively correlated to PAR at 14 m and greater depths, and
SRP from 15 m and greater. This preliminary statistical analysis supports previous observations that both
PAR and SRP play significant roles in driving plant growth in Lake Hoare. The lack of a strong relation-
ship between bacterial production (BP) and dissolved organic carbon (DOC) is an intriguing result of the
aussian Markov random fields analysis.

. Introduction

The McMurdo Dry Valleys of Antarctica (76 ◦30′ S to 78 ◦30′S)
rom the largest ice-free area on the continent. In Taylor Valley, the

ean annual temperature ranges from −14.8 ◦ C to −30 ◦ C with
0–100 days when average temperatures exceed 0◦C, see Doran et
l. (2002). The average net annual precipitation are less than 5 cm
f water equivalent, see Fountain et al. (1999) and Witherow et al.
2006). Yet Taylor Valley contains perennial ice-covered lakes that
re maintained by the input of glacier melt flows from 4 to 10 weeks
er year (Fountain et al., 1999). Taylor Valley is a major east–west
rending valley within this landscape and has been the primary
ite of the McMurdo Dry Valleys Long-Term Ecological Research

MCM-LTER) program since 1993. Despite extremely climatic con-
itions, these ice-covered lakes contain a habitat where microbial

ife exists throughout the year (Roberts and Laybourn-Parry, 1999;
riscu et al., 1999; Marshall and Laybourn-Parry, 2002). Because
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of their permanent ice covers, physical mixing is minimized and
diffusion and the seasonal input of meltwater beneath the ice cov-
ers are the primary controls of chemical variation in these lakes
(Spigel and Priscu, 1998; Foreman et al., 2004). Taylor Valley lakes
have been termed “end-members” among the world’s lakes, in part
because of their permanent ice covers (Fritsen and Priscu, 1999).

Lake Hoare is the freshest water lake of the Taylor Valley lakes
and it has not been greatly impacted by cryocentration as the other
Taylor Valley lakes have been (Doran et al., 1994; Lyons et al., 1998).
Every year since 1993 limnological data have been collected from
Lake Hoare by MCM-LTER scientists. These data include biological,
chemical and physical information which are all part of the long-
term monitoring program used to determine ecosystem change
through time. It is evident from studies on these lake systems that
an integrated knowledge of the biological, chemical and physical
factors is required to understand the biogeochemical dynamics of
these ecosystems. Previous research has demonstrated that these
lakes are very oligotrophic and have important mixotrophic com-
ponents (Priscu et al., 1999); however, gaps in knowledge remain,

especially in linking how these ecosystems responds to physical
drivers. In order to better assess the physiochemical controls on
biological processes within Lake Hoare we have developed a sta-
tistical model which allows us to study the relationship between
various environmental properties.
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The current research focuses on quantifying the response of the
tudied system (Lake Hoare) to several physiochemical properties.

e focus on photosynthetically active radiation and soluble reac-
ive phosphorus as major drivers and attempt to estimate their
nfluence on biomass and primary production. In recent years, sci-
ntists have raised several hypotheses on this research problem, see
or example Spigel and Priscu (1998), Priscu et al. (1999), Hawes
nd Schwarz (1999) and Takacs et al. (2001). With the availabil-
ty of longer time-series data thanks to the MCM-LTER program
http://www.mcmlter.org/), we are now in position to provide

quantitative measure for the association between ecosystem
esponse and its drivers. We do so in a formal probabilistic frame-
ork. Our results come to confirm hypothesized relationships. In

ddition, we provide measures of uncertainty in our estimates.
hese come as a natural byproduct of the Bayesian methodology
hich we employ. In Section 2 we describe the data available from

he MCM-LTER project. Section 3 introduces the Bayesian method-
logy in general terms and its application to the current work. Our
esults are discussed in Section 5 followed by conclusions.

. Data

Lake Hoare is 4.2 km in length, 1.0 km in width at its maximum
nd has a surface area of 1.94 km2 (Spigel and Priscu, 1998). Ice
hickness varied from 3.1 to 5.5 m with the percentage of light
ransmission through the ice cover varying from 0.5 to 2.8% (Spigel
nd Priscu, 1998). Ice thicknesses vary seasonally and annually,
epending primarily on temperature and inflow differences (Doran
t al., 2002). The maximum total dissolved solids is approximately
.70 g L−1 and occurs at the bottom of the lake and lake water tem-
eratures range from 0 to 1.2 ◦ C (Spigel and Priscu, 1998). The
aximum depth of Lake Hoare is 34 m but the on-going LTER sam-

ling program collects data in a region where the lake depth is
oughly 28 m.

There are three major sources of meltwater to Lake Hoare: direct
nput from the Canada Glacier (that serves as the lake’s eastern
oundary); input from Andersen Creek that issues from the north-
est portion of the Canada Glacier and flows ∼2 km to the lake; and

rom the sporadic overflow of Lake Chad to the west (Fig. 1). Since
he beginning of the MCM-LTER during the 1993–1994 austral sum-

er, annual flows in Andersen Creek have varied from 1.48 × 104

o 4.13 × 105 m3. During the high flow seasons of 1982–1983,
t was estimated that of the total water input into Lake Hoare,
pproximately 67%, 22%, and 11%, came from direct melt from the
anada glacier, Andersen Creek and Lake Chad overflow, respec-
ively (Green et al., 1986). Fortner et al. (2005) have estimated
hrough geochemical means that during high flow years such as
001–2002, ∼80% of the water flow into Lake Hoare from the

anada Glacier comes from direct glacier input and 20% comes from
ndersen Creek, while during low flow years Andersen Creek may
rovide as much as 40% of the total flow from the Canada Glacier.

In this analysis we are utilizing samples that were collected
eneath the ice-covered Lake Hoare between 1993 and 2004 from

Fig. 1. Antarctica’s Taylor Valley, from N Earth Observatory (2008).
ing 221 (2010) 1184–1193 1185

depths between 4 and 24 m using standard limnological techniques
(i.e. Niskin bottles). During any one austral summer 2–4 “limno
runs” were conducted when vertical profiles of various constituents
were either measured directly or samples were obtained for later
analysis. Samples were collected and analyzed for primary pro-
duction rate (PPR), bacterial production (BP), chlorophyll-a (CHL),
dissolved organic carbon (DOC) and soluble reactive phosphorus
(SRP). However, not all these measurements are available for every
depth interval for every year. For example, small variations in lake
sampling positions can lead to changes in lake depth. In addi-
tion, occasionally a sample is spoiled or lost. Photosynthetically
active radiation (PAR) was measured, in situ, throughout the water
column. All the measurement techniques as well as their ana-
lytical uncertainties are detailed in the Limnological Methods for
the McMurdo Long-Term Ecological Research Program compilation
found at http://mcmlter.org/queries/lakes/lakes home.jsp and will
not be described here.

3. Methods

In Fig. 2 we display the data for PAR, PPR, CHL, BP, observed dur-
ing the 1993–2004 period, where each austral summer is divided
into four months (October through January). After an initial prepro-
cessing stage, we standardize each variable and present it on a log
scale, thus no units are reported. This transformation will normalize
the unusually large values for most variables in the early 2000 s and
is required by the assumption we make later in this section, where
we work with a Gaussian statistical model (see Section 3.1 for fur-
ther details). Henceforth, all the statistical analyses are performed
using the transformed data. The aim of the current study is to better
understand the associations between these quantities. Formally, let
X(z, t) and Y(z, t) denote two generic observable quantities. They
depend both on depth z ∈ Z ≡ [−22 m, −4 m] and time t ∈ T ≡ [Oct
1993, Jan 2005]. The depth interval is discretized in steps of size 1 m
while the time interval is discretized monthly, removing the aus-
tral winter months. We aim to estimate the functional correlation
coefficient

�X,Y (z) = cov(X(z), Y(z))√
Var(X(z)) · Var(Y(z))

, (1)

which is a simple extension of the classical correlation coefficient,
where X(z) = {X(z, t), fort ∈ T} and Y(z) = {Y(z, t), fort ∈ T}. Eq. (1)
is thought of in the framework of point-wise linear correlation.
The explanatory variable X will influence the response Y(z) only
through its value X(z) at depth z. In what follows, the role of (X, Y)
will be played by several pairs of the measured quantities described
above. The drawback we encounter is that not all variables of inter-
est are available simultaneously. For example in December 1997,
PPR and CHL are available while BP is sparsely measured and PAR
is not available at all. This implies a huge reduction in sample size
when attempting to “match up” variables in order to estimate �.
Because Antarctic lake data are difficult to obtain, we chose not to
eliminate observed values for X that do not have a corresponding
observation in Y or vice versa. Instead, we take a two-step approach.
In a first stage, we augment the data by “filling in the blanks” in
Fig. 2 using a formal statistical model. Afterwards, we perform the
correlation analysis as described above using the newly obtained
data.

3.1. Predicting the missing observations
3.1.1. Background on Bayesian methods
In the first stage of our analysis we pursue a Bayesian approach.

Ellison (1996) provides a brief introduction to Bayesian inference
for ecological research. In recent years, stimulated by the exponen-

http://www.mcmlter.org/
http://mcmlter.org/queries/lakes/lakes_home.jsp
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ial development of computing technology, Bayesian methodology
as become increasingly popular in virtually any field, including
cology. For example, in Borsuk et al. (2001), the authors imple-
ent a hierarchical Bayesian model for predicting benthic oxygen

emand from organic matter loading. For a formal in-depth treat-
ent of this methodology we refer the reader to Gelman et al.

2004). In a nutshell, a Bayesian approach follows these steps. For
very parameter of interest we specify a probability model based
n a priori information. This model is subsequently changed by
he available data, resulting in an updated probability model. This
pdated model can be used to answer any question of interest in
probabilistic framework. That is, we provide a quantitative mea-

ure for the probability of a certain event (hypothesis) to occur,

iven the data. This is in contrast with the more classical approach
f providing the probability of observing the data, given a certain
ypothesis.

Bayesian methodology is based on the simple fact from proba-
ility theory that the joint distribution of a collection of random

Fig. 2. Observed data: PAR (top left), PPR (top right), CHL
ling 221 (2010) 1184–1193

variables can be decomposed into a series of conditional prob-
abilities. That is, if X, Y, Z are random variables, then we can
factorize their joint distribution as [X, Y, Z] = [Z|X, Y][Y |X][X]. Note,
throughout the current manuscript we will use square brackets
notation for the probability distribution, so [X] denotes the distri-
bution of the random variable X and [Y |X] denotes the conditional
distribution of Y given X .

Initially we build an observational model which will lead us
to a probability model for the available data conditionally on the
parameters. In the second stage we account for uncertainty in the
parameters, by specifying an a priori probability model. Using Bayes
rule we can write the distribution of the parameters conditionally
on the observed data as
[ parameters|data] ∝ [data|parameters] × [parameters]. (2)

The symbol ∝ means “proportional to”, that is, the right hand side of
(2) does not necessarily integrate to one with respect to the param-
eters (while the left hand side does). The normalizing constant

(bottom left) and BP (bottom right), on a log scale.
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Fig. 2.

ill only depend on the observed data. This formula serves as the
asis for the Bayesian hierarchical analysis. The end-product of this
pproach is the left-hand side of (2). It represents the updated joint
robability model of the parameters of interest, after observing the
ata. This probability model is further used to answer any question
bout hypotheses of interest. For more complicated processes, an
ntermediate step is inserted, where one would introduce a proba-
ility model for the physical process, conditioning on parameters,
ee Berliner (1996) for example.

One would typically select a few quantitative measures to
ummarize the distribution in displayed in (2), for example, rep-
esentative values which are relevant to the scientist. The most
ommon choices are the mean value and a measure of spread (stan-

ard deviation for instance), but quantiles (such as the median) or
odes are also possible. Unfortunately, in most cases this updated

istribution is too complicated to perform analytical integrations
ith, hence, one has to use Monte Carlo methods to perform

uch tasks. Another drawback may be that simulating independent
inued ).

draws from this distribution is impossible, especially when the nor-
malizing constant, which is ignored in the right hand side of (2),
is unknown. However, in most cases Markov chain Monte Carlo
(MCMC) methods can be used to simulate dependent draws from
this updated distribution of the parameters, which can be further
used to estimate features of interest. Different MCMC algorithms
are useful for different situations (see Liu (2001) for an overview).

3.1.2. Application to Lake Hoare data
We use the PAR data to illustrate the Bayesian approach pre-

sented earlier. In what follows, by “site” s we mean a depth–time
pair s = (z, t) ∈ Z × T . The observational model assumes that
PARobs
s = PARs + �i

where s = 1, . . . , nD indexes a site where data are available, PARs

is the underlying (true) photosynthetically active radiation at site
s and �i are independent Gaussian measurement errors having
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Fig. 3. Two random draws fro

ero mean and pre-specified variance �2
PAR. It follows that the con-

itional distribution of the data PARobs = {PARobs
s , s = 1, . . . , nD},

iven the underlying PAR field is multivariate Gaussian, having
ensity

[data|parameters] = [PARobs|PAR]

=
(

1

�PAR
√

2�

)nD nD∏
s=1

exp

(
− 1

2�2
PAR

(PARs − PARobs
s )

2
)

.
(3)

To complete the Bayesian approach, we now specify a prior
robability model for the underlying PAR field. We choose to
odel PAR using a two-dimensional Gaussian Markov random field

GMRF) having un-normalized probability density

parameters] = [PAR] ∝ exp

⎛
⎝−

∑
s∼s′

ıt(s, s′)(PARs − PARs′ )2 −
∑
s s′

ız
ere the first sum runs over pairs of horizontally (time) adjacent
ites, the second sum runs over pairs of vertically (depth) adja-
ent sites and the third sum runs over all sites. We pre-specify the
ositive parameters ıt(s, s′), ız(s, s′) and ı(s) to control the nearest
eighbor interaction and the variance of PAR. For example, large
prior probability model (4).

)(PARs − PARs′ )2 −
∑

s

ı(s)PAR2
s

)
. (4)

values of ıt will penalize discrepancies in the time-direction for
two adjacent PAR values, thus imposing a time-smooth field. The
values for these parameters are selected so that the model (4) will
exhibit the variability and smoothness one expects to see in a typi-
cal PAR field. GMRF models are a popular choice in spatial statistics
and we refer the reader to Rue and Held (2005) and Song et al.
(2008), for an overview of GMRF and their statistical applications.
For illustration purposes, in Fig. 3 we display two random draws
from this prior probability model.

We note that display 4 provides us with a purely statistical
model for PAR and no physical laws are being used nor we require
PAR to satisfy any. For example, in Fig. 3 the reader will observe
that in our probability model, PAR does not necessarily decrease
with depth.

Bayes formula (2) gives the updated probability model of PAR
conditionally on the data PARobs
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Fig. 4. Two random draws from the posterior (updated) probabi

parameters|data]

= [PAR|PARobs] ∝
{

nD∏
s=1

exp

(
− 1

2�2
PAR

(PARs−PARobs
s )

2
)}

[PAR],

(5)

here we dropped the normalizing constant from (3). This is the so
alled posterior probability model for PAR, after observing PARobs.
t allows us to quantify whether one particular PAR field is more
robable than another, conditionally on the observations. We use
he random-walk Metropolis algorithm as our MCMC technique

f choice to draw dependent samples from the probability model
5). A detailed description of this popular algorithm can be found in
hapter 5 of Liu (2001). In Fig. 4 we display two such random draws
rom the probability model (5) and the average PAR field, based on
000 samples.

Fig. 5. The posterior (updated) mean fields for PAR, PPR
odel for PAR (top panels), and the mean PAR field (lower panel).

We analyze PPR, CHL, BP, DOC and SRP in a similar manner. In
Fig. 5 we display the mean values for their (corresponding) updated
distributions, on the log scale. Henceforth we treat the augmented
data displayed in Fig. 5 as “the data” and use them to estimate the
correlation coefficient (1). There is no available DOC data during
the 1993–1995 period, while SRP measurements are missing in
the 1993 and 2004 austral summers. Consequently, for these two
variables, the corresponding years are not estimated in Fig. 5.

3.2. Correlation analysis
At a first glance, in Fig. 5 we observe similar “patterns” in the
PAR, PPR, BP maps as well as in the DOC and SRP maps. This
suggests a significant relationship between these variables. Our
analysis begins with the PAR–PPR relationship. For each depth
value, we use the data displayed in Fig. 5 and compute the esti-

, CHL, BP, DOC and SRP (top to bottom, row-wise).
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ig. 6. Depth dependent correlation (blue curve) ± two standard deviations (red cu
f PAR–PPR correlation values at 15 m depth (right panel). The blue line marks the
he reader is referred to the web version of the article.)

ate (1). The left panel of Fig. 6 displays the Pearson’s correlation
oefficient between these two variables as a function of depth (the
lue curve). At 15 m depth, the correlation is as high as 0.913. Our
ayesian hierarchical approach allows us to quantify the uncer-
ainty in this estimate as well, by considering several draws (not
ust the mean value) from the updated probability model for each
ariable. These draws are not independent; however, we can reduce
he amount of dependence by thinning the output from the MCMC
ampler (Liu, 2001). In the right panel of Fig. 6 we display a his-
ogram of 300 such correlations, computed for the PAR–PPR pair
t 15 m depth. The mean value of 0.913 is marked with a blue line.
uch histograms are obtained for each depth and thus we are able
o estimate the standard deviations for all these probability dis-
ributions. The red curves in Fig. 6 are obtained by adding and
ubtracting two times the standard deviation to the mean corre-
ation value represented by the blue curve. When the distribution
f the correlation coefficient is approximately Gaussian, this cor-
esponds to finding an interval which will roughly contain 95%
f all correlation values. This is the analogue of the error bar (or
onfidence interval) in the Bayesian framework, and it is called
credible interval. It should be noted, however, that caution is

eeded in interpreting such intervals as the coverage does not hold
imultaneously (at all depths). For example, if simultaneous 95%-
overage credible intervals are constructed for say 10 parameters,
sing standard probability rules, one can compute the probability
hat at least one interval does not contain its target parameter as
− 0.9510 = 40.13%.
An interesting finding of our analysis is that CHL is positively
orrelated with PAR only at depths of 10 m and higher, while close
o the ice cover, the correlation is actually negative (see the middle
anel of Fig. 6). This regime identifies two zones: upper under-ice
nd lower under-ice. Hawes and Schwarz (1999) interpret the two

ig. 7. Depth dependent correlation (blue curve) ± two standard deviations (red curves)
air (right panel). (For interpretation of the references to color in this figure legend, the r
for the PAR–PPR pair (left panel) and the PAR–CHL pair (middle panel). Histogram
value of 0.913. (For interpretation of the references to color in this figure legend,

regimes as differences in biomass rather than acclimation to the
light regime.

In the left panel of Fig. 7 we display the depth dependent corre-
lation between PPR and SRP. This correlation appears to be stronger
at mid-depths. Similar to the CHL–PAR association, the correlation
between CHL and SRP, which we display in the middle panel of
Fig. 7, takes positive values at depths of 15 m and higher, while
close to surface, the correlations appears to be negative, confirming
the hypothesis of shade-adaptivity of these organisms at shallower
depths.

An intriguing result of our analysis is the relationship between
DOC and BP (see the right panel of Fig. 7). Takacs et al. (2001) point
out that in Lake Hoare, a major source of DOC required for BP is
unaccounted for. Our analysis confirms their finding by estimating
a negative correlation between DOC and BP close to surface, while
at higher depths the correlation does not appear to be significant.

4. Andersen Creek discharge

The primary source of liquid water to the MCM lakes is glacier
melt (McKnight et al., 1999). The amount of this melt varies from
austral summer to austral summer depending on the temperature.
The generation of melt is particularly sensitive to warmer temper-
atures at higher elevations on the glacier surfaces brought about
by increased down valley winds (Doran et al., 2008). In Fig. 8 we
display bi-weekly averages of the discharge rate (on a log scale)
for each austral summer from 1993 to 2003. Warmer summers can

produce very high flow years, termed “flood years” (Foreman et al.,
2004), and these flood years appear to be quasi-decadal events as
demonstrated by Ebnet et al. (2005) and Doran et al. (2008). The
most recent flood year was the 2001–2002 austral summer (see
Fig. 8). During and after this event, the ecological conditions of the

for the SRP–PPR pair (left panel), the SRP–CHL pair (middle panel) and the DOC–BP
eader is referred to the web version of the article.)
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ig. 8. Observed bi-weekly Andersen Creek discharge rates during 1993–2003 on a
og scale.

arious MCM lakes changed in response to the increased input of
ater, suspended sediments, and nutrients, but the lakes in Tay-
or Valley did not all respond in the same manner (Foreman et al.,
004). These large inflow events are thought to play a very impor-
ant role in the longer term maintenance of water and nutrients in
hese closed-basin systems (Foreman et al., 2004).

ig. 9. Scatter plots of the discharge rate (L/s) vs. PPR (top panels) and CHL (bottom p
orrespond to the average discharge rate values for the first two weeks of the month and
onth.
ing 221 (2010) 1184–1193 1191

In order to assess the longer term influences of meltwater inflow
into Lake Hoare on the productivity and phytoplankton biomass of
the lake, correlations were computed between the monthly dis-
charge from Andersen Creek (the major source of stream input into
the lake) and PPR and CHL. This was done both with a time lag of
one month, i.e. using December’s discharge and January’s biologi-
cal data, and what we have termed a seasonal lag, i.e. the discharge
from January and the biological data from the next austral Spring.
These relationships are shown in Fig. 9. In the monthly lagged data
(left panels of Fig. 9), the PPR vs. discharge and the CHL vs. discharge
scatter plots show little relationship for the entire data set. Simi-
larly the CHL–discharge plot for the seasonally (October response
vs. January discharge, right panels of Fig. 8) lagged data shows lit-
tle association. However there is a better relationship between the
PPR data from Lake Hoare and Andersen Creek discharge using the
seasonal lag (upper right panel of Fig. 9). This relationship might
suggest that increased water input from the previous austral sum-
mer melt season helps to drive primary production during the next
year. The analysis of the 2001–2002 flood event by Foreman et
some of the lakes during the next Spring. Our analysis supports this
idea that increased flow, bringing higher nutrient loadings, leads
to enhanced biological activity in the photic zones of these lakes
over time. The lack of an initial biological response may be due in

anels) at a one month lag (left panels) and one year lag (right panels). Blue dots
red dots correspond to average discharge rate values for the last two weeks of each
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art to the increased suspended load input and, in some cases like
ake Hoare, increased aeolian deposition of soil/dust on the lake
ce surface thereby decreasing PAR in the surface waters (Foreman
t al., 2004). As noted above, PAR is a significant control on phyto-
lankton production in these lakes. However, these lakes have been
emonstrated to have nutrient deficiencies as well (Priscu, 1995).
ecause phosphorus is a limiting nutrient in Lake Hoare (Priscu,
995; Barrett et al., 2007), and the primary source of phosphorus is
tream water input, increased stream flow should enhance produc-
ion in the lakes over time. Priscu (1995) also suggests the nitrogen
imitation on phytoplankton growth in Lake Hoare; however, this
elationship was not investigated in the current study.

. Discussion

These statistical analyses strongly support previously published
ork done at Lake Hoare and other Taylor Valley lakes. For example,

xperimental work and field studies have demonstrated that both
ight and SRP limit phytoplankton growth (Priscu, 1995; Fritsen and
riscu, 1999). Ice cover transparency which affects the penetration
f light and hence under ice PAR strongly influences primary pro-
uction in Lake Bonney (Fritsen and Priscu, 1999). These authors
ound a strong correlation between PPR and daily irradiance at 10 m
n Lake Bonney. Fritsen and Priscu (1999) observed that beneath ice
adiance had a seasonal pattern that was quite different than the
ncident irradiance, with a maximum in late November and another
esser maximum in late January. These differences are caused by
hanges in temperature and albedo within the ice covers them-
elves, which has been referred to as “ice-whitening”. Variations
n both snow and sediment cover on the lake ice surface can also
e important but it is very clear that the major variations in PAR
elate to changes in the ice properties (Fritsen and Priscu, 1999).
he maximum values of irradiance in late November were observed
o be extremely low ∼6� mol photons m−2s−1 so these autotro-
hies within the lakes are highly shade adaptive and because these
rganisms are below their saturation values of∼10 to 30 � mol pho-
ons m−2s−1, even small changes in irradiance can have significant
mpacts on PPR (Lizotte and Priscu, 1992). The feedback between
PR, ice conditions and nutrient limitation is equally significant
s Fritsen and Priscu (1999) suggest. As ice whitening occurs, PPR
ecreases and hence nutrients such as SRP increase in the water
olumn thereby extending the time period in the austral summer
hat SRP is not liming for phytoplankton growth. Taken together,
hese results may imply that PAR is more limiting to growth at
igher depths but SRP is limiting in the upper portions of the water
olumn where light is more abundant.

The relationship between PAR and plant growth has been well
stablished with field measurements and modeling. For example,
riscu et al. (1999) have used daily PAR records in Lake Bonney at
0 m and a hyperbolic tangent model to predict depth-integrated
PR. More recently Moorhead et al. (2005) have used a similar
pproach using the PAR observations above Lake Hoare to simu-
ate net organic carbon production in the benthic algal mats. They
alculate transmitted PAR as a constant fraction of the ambient
adiation and found the highest annual production rates occurred
uring the times that PAR was the highest (December and January).
hey found little increase in carbon accumulation at transmittances
reater than 5% ambient PAR except at the deepest depths.

As noted above during one sampling season Takacs et al. (2001)
ointed that the observed BP in all three major Taylor Valley lakes,

ncluding Lake Hoare, could not be explained by the major inputs of

OC into the lakes. DOC from phytoplankton extracellular release,

tream input and, upward diffusion into the trophogenic zone
cross the chemoclines of the lakes or from the pore waters can
ccount for only about 10% of the BP in Lake Hoare. Additional
ources to drive bacterioplankton production, not just in the austral
ling 221 (2010) 1184–1193

summer, but also on an annual basis must be provided by another,
unknown source of DOC in Lake Hoare. It is speculated that this
unknown source may come from the solubilization of particulate
material and/or the slow consumption of bulk DOC within the lake.
Our analysis indicates no relationship between BP and DOC also
implying another source besides the bulk DOC driving BP in these
systems. Part of this unaccounted for source of DOC may be due
to viral activity. Viruses have a significant impact on the cycling of
nutrients and carbon in aquatic environments. While they have not
been widely studied in Antarctic lakes there is clear evidence that
they can have a major impact at certain times. For example in a
large freshwater lake in the Vestfold Hills (Crooked Lake) viral lysis
of bacteria was estimated to contribute up to 69% of the DOC pool,
and in Lake Bonney (Dry Valleys) it was estimated that around 23%
of bacterial carbon demand could be met by viral lysis (Säwström
et al., 2008).

6. Conclusion

The perennially ice-covered, closed basin lakes of the McMurdo
Dry Valleys are unusual aquatic ecosystems where liquid water
exists in an environment that is an extreme polar desert. The
connection between geophysical parameters and the biogeochem-
ical ones are closely coupled. The correlation analysis approach
presented here provides another method to relate long-term
geophysical parameters to biogeochemical ones in these envi-
ronments. The results and their ecological interpretations are
consistent with all the previous work, especially that of Priscu et
al., regarding the physiochemical drivers of biological processes in
the Taylor Valley lakes. Currently, we are extending our analysis
to other Antarctic lakes that have different geophysical settings.
In the future we aim to perform a meta-analysis and combine
the available information from different Antarctic lakes to better
understand these unique ecosystems. The results of the present
work show a complex inter-dependent structure between the stud-
ied variables, suggesting that a multivariate approach could shed
more light on the system.
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