
Cr fluorescence spectrum. Thus, we would
expect that a breakdown of Cr-doped Mg-
SiO3 to its oxide components would also
result in such a fluorescence spectrum (25).
The lack of phase transitions in MgO addi-
tionally allowed measurements with higher
sensitivity on the recovered samples outside
the diamond cell. We found no MgO after
heating MgSiO3 glass, doped with 0.1 atom-
ic % Cr31, in an argon medium at 3000 K
and 73 GPa for 10 min (Fig. 4, A and B).
Instead, the recovered perovskite crystal
(Fig. 4C) exhibits two prominent fluores-
cence peaks at 710.2 and 714 nm (Fig. 4B).

We have shown that silicate perovskite
heated with small temperature gradients in
a quasi-hydrostatic pressure medium does
not decompose to its component oxides and
that instead these oxides react to form per-
ovskite when heated to the highest pres-
sures in our experiments (100 GPa). These
results are important in view of new evi-
dence for a dense high-pressure polymorph
of SiO2 (26), because they show that, at the
present pressure and temperature condi-
tions, (Mg,Fe)SiO3-perovskite is more
dense than a (Mg,Fe)O-SiO2 assemblage.
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Perennial Antarctic Lake Ice: An Oasis for
Life in a Polar Desert

John C. Priscu,* Christian H. Fritsen, Edward E. Adams,
Stephen J. Giovannoni, Hans W. Paerl, Christopher P. McKay,

Peter T. Doran, Douglas A. Gordon, Brian D. Lanoil,
James L. Pinckney

The permanent ice covers of Antarctic lakes in the McMurdo Dry Valleys develop liquid
water inclusions in response to solar heating of internal aeolian-derived sediments. The
ice sediment particles serve as nutrient (inorganic and organic)–enriched microzones for
the establishment of a physiologically and ecologically complex microbial consortium
capable of contemporaneous photosynthesis, nitrogen fixation, and decomposition. The
consortium is capable of physically and chemically establishing and modifying a relatively
nutrient- and organic matter–enriched microbial “oasis” embedded in the lake ice cover.

The McMurdo Dry Valleys, Antarctica, is
one of the coldest and driest deserts on
Earth. Lakes in this region are permanently
ice covered (1). The ice is typically 3 to 6 m
thick and contains a layer of sand and or-
ganic matter of aeolian origin below the
surface. This layer represents a dynamic

equilibrium between downward movement
of sediments as a result of melting during
the summer and upward movement of ice
from ablation at the surface and freezing at
the bottom. Liquid water inclusions are
present in this layer for about 150 days
during the summer when solar radiation is
continuous; up to 40% of the total ice cover
volume during this period can be liquid
water (2, 3). We discovered that the ice
meltwater supports a viable microbial as-
semblage associated with the sediment lay-
er. Here, we describe the ecosystem.

We collected ice samples from six lakes
(Bonney, Hoare, Fryxell, Miers, Vanda, and
Vida) between August and October 1993
and 1995 using 10-cm-diameter coring de-
vices. Cores were sectioned, melted, and an-
alyzed for photoautotrophic and heterotro-
phic activity; biomass, sediment, and nitrous
oxide content; and chemistry (4). Most of
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our studies were on Lake Bonney. The ice
cover of Lake Bonney was 4 m thick, and the
sediment layer was 2 m beneath the ice
surface (Fig. 1A). N2O and dissolved inor-

ganic nitrogen (DIN) (NH4
1 1 NO2

2 1
NO3

2 5 DIN) reached a maximum at this
depth, indicating that the region was a
source for nitrogen (Fig. 1, A and B). N2O is

a known intermediate of nitrification in the
liquid water column of this lake (5). Soluble
reactive phosphorus (SRP) showed no clear
trend with depth. The DIN:SRP ratio aver-
aged 31.3 (range of 20.3 to 107.7), indicative
of phosphorus deficiency (6). N2 fixation (7)
ranged from 9.4 to 91.3 nmol of N2 per
milligram of chlorophyll a per hour in lake
ice aggregates. Primary productivity, bacteri-
al activity, chlorophyll a concentration, and
bacterial cell number also were highest in or
near this sediment layer (8) (Fig. 1, C and
D). Dissolved organic carbon (DOC) was
highest near the peaks in primary and bac-
terial productivity. Primary productivity
ranged up to 7.8 mg of C per liter per day,
and bacterial productivity ranged up to 0.40
nM thymidine per day in the combined data
set from all six lakes. High photoautotrophic
biomass was associated with high bacterial
biomass in the combined data set.

A complex microbial assemblage was
physically associated with the sediment.
The sediment is composed of aggregated
sand and gravel, distributed in centimeter-
scale inclusions within the ice when no
liquid water is present (Fig. 2A). Bubbles
present above the sediment layer likely
formed from gas exsolution as the liquid
water lens froze from the top downward
during early winter (2, 3). Confocal micros-
copy (9) revealed bacterial and cyanobac-
terial cells attached to the sediment parti-
cles (Fig. 2B). Most of the cyanobacteria are
filamentous species of the genus Phormidium
(Fig. 2B, top right). More rarely, we ob-
served cells of the cyanobacterial genus
Chamaesiphon (Fig. 2B, top left), the nitro-
gen-fixing genus Nostoc, unidentified coc-
coidal cyanobacteria, and diatom algae.
Phylogenetic analysis (10) of the oxygenic
phototrophs was performed by cloning bac-
terial 16S ribosomal RNA genes directly
from the ice assemblage DNA (Fig. 3).
Thirty-one of the 198 bacterial genes se-
quenced were of cyanobacterial origin;
among these were four clades. Three clades
were allied with the genera Leptolyngbya,
Chamaesiphon, and Phormidium. The fourth
could not be associated with any of the
cyanobacterial genes in public sequence da-
tabases. These observations establish that
representatives of widely distributed cya-
nobacterial groups have successfully colo-
nized the ice habitat. The lake ice organ-
isms do not resemble the predominantly
eukaryotic plankton within the water col-
umn of Lake Bonney.

Our data imply that ice sediment par-
ticles serve as nutrient (inorganic and
organic)-enriched microzones for the es-
tablishment of a physiologically and eco-
logically complex microbial consortium
capable of contemporaneous photosynthe-
sis, N2 fixation, and decomposition. All of

Fig. 1. (A to D) Vertical profiles of selected constituents in the lake ice cover of Lake Bonney (8). TdR,
incorporation of 3H-thymidine.

A

C

B

Fig. 2. (A) An aggregate from 2 m beneath the
surface of the permanent ice cover of Lake Bon-
ney. The photograph was taken from within a 3.5-
m-deep trench cut into the ice in early September
before the formation of liquid water. Scale bar, 2

cm. (B) Confocal laser photomicrographs showing microorganisms associated with a sediment particle,
with enlarged views of two species of cyanobacteria (blue, DAPI-stained bacteria; red, chlorophyll
autofluorescence; gray, sediment particle). Scale bars, 10 mm. (C) Microautoradiograph of sediment
particles bound by cyanobacterial filaments (dark regions denote sites of active 14CO2 accumulation,
indicative of photosynthetic activity). Scale bar, 100 mm.
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these processes are needed to complete
essential nutrient cycles. CO2- and N2-
fixing capabilities ensure access to biolog-
ically available carbon and nitrogen, key
growth-limiting nutrients in aquatic and
terrestrial habitats. Microautoradiography
revealed that filamentous cyanobacteria
actively fix CO2 upon exposure to melt-
water (Fig. 2C). Microautoradiographs
also show that bacteria are capable of me-
tabolizing a range of organic substrates
closely associated with cyanobacteria
(11). These activities imply a consortial
arrangement within the assemblage where
photoautotrophs are supplying fixed car-
bon (and nitrogen in the case of N2-fixing
species) and heterotrophs are cycling CO2
and inorganic nutrients back to the pho-
toautotrophs. Highest dissolved inorganic
carbon (DIC) concentration (1.2 mg of C
liter21) corresponded to the region of
greatest metabolic activity. Substrate ki-
netics experiments showed that DIC in
this region does not limit photosynthetic
activity. Microscopy also revealed that
cyanobacterial filaments bind sediment
particles, forming a cohesive fabric that
produces a relatively nonfriable aggregate

(Fig. 2C). Our data support the conten-
tion that this assemblage is capable of
physically and chemically establishing and
modifying a relatively nutrient- and or-
ganic matter– enriched microbial “oasis”
embedded in the lake ice cover.

A model of sediment and associated par-
ticulate organic carbon (POC) dynamics
within the ice cover of Lake Bonney il-
lustrates the dominant physical and bio-
logical processes relevant to the transport
and production of POC in this system. Aeo-
lian transport is the primary allochthonous
source of sediment and POC to the lake ice.
The sediments and associated POC migrate
to the depth in the ice in dynamic equilibri-
um with radiation-induced downward melt-
ing caused by sensible heating and with the
net upward movement of the ice (3, 12).
Data from thermocouples embedded in the
ice and observations from ice-core data indi-
cate that meltwater in association with the
sedimentary layers is present from November
to February (3) and supports photosynthetic
carbon production during this period of con-
tinuous sunlight (13, 14). Daily average pho-
tosynthetically available radiation (PAR)
reaching the photosynthetic layer ranged
from 50 to 200 mmol of photons m22 s21

during the period of liquid water (14). We
estimated that the median growth rate of
photoautotrophs is 0.5 year21 (range 5 0.08
to 1.6 year21) using rates of photoautotro-
phic protein synthesis (14).

POC is lost from the ice cover through
cracks and meltwater conduits that develop
during the austral summers. We evaluated
the POC balance within the ice cover of
Lake Bonney using the following numerical
relation in concert with data collected on
the system:

]C
]t

5 (m z Ci)1Qa 2 Qw

where C is the POC concentration per area,
t is time, m is the photoautotrophic growth
rate (0.5 year21), Ci is the standing stock of
microalgal POC in the ice (375 mg of C
m22) (15), Qa is the aeolian flux of POC
onto the lake ice (43 mg of C m22 year21)
(15), and Qw is the sinking flux of POC
from the ice (2.3 mg of C m22 year21) (15).
This model represents net fluxes of POC
only, neglecting losses to DOC and CO2.

Our data imply that 229 mg of POC m22

year21 accumulated in the Lake Bonney ice
cover during our study. The model predicts
an unsteady-state condition where both
POC and sediment accumulate over the
year. These dynamics are expected to vary
annually as local climate conditions affect
PAR, aeolian deposition, and sediment loss
from the ice cover. The model indicates that
.80% of the computed POC accumulation

results from carbon produced by cyanobacte-
rial photosynthesis despite low growth rates
and shows that the permanent ice covers
provide viable habitats for the microscale
proliferation of life in what would appear to
be an otherwise inhospitable macroscale en-
vironment. The physical and biological dy-
namics of the permanent ice covers we de-
scribe differ from that in marine pack ice
(16) and winter ice of temperate lakes (17).
Both of these systems are characterized by
freeze-flood cycles driven by snow deposition
and are inhabited by organisms originating
from the underlying liquid water column.
Conversely, the microbial habitats in the ice
covers of the dry valley lakes arise from
internal melting associated with aeolian-de-
posited sediments, which also provides the
biological seed.

The habitat in the Antarctic lake ice
may serve as a model for life on Mars and
Europa. Although Mars may have had ex-
tensive liquid water at one time, it rapidly
cooled, and ice would have become, as it is
today, the dominant form of water on the
surface (18, 19). On Europa, surface ice
appears to exist in contact with subsurface
liquid water (20–22). Solar heating of the
subsurface could result in melt layers similar
to those we describe here.
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Gold Nanoelectrodes of Varied Size:
Transition to Molecule-Like Charging

Shaowei Chen, Roychelle S. Ingram, Michael J. Hostetler,
Jeremy J. Pietron, Royce W. Murray,* T. Gregory Schaaff,
Joseph T. Khoury, Marcos M. Alvarez, Robert L. Whetten*

A transition from metal-like double-layer capacitive charging to redox-like charging was
observed in electrochemical ensemble Coulomb staircase experiments on solutions of
gold nanoparticles of varied core size. The monodisperse gold nanoparticles are sta-
bilized by short-chain alkanethiolate monolayers and have 8 to 38 kilodaltons core mass
(1.1 to 1.9 nanometers in diameter). Larger cores display Coulomb staircase responses
consistent with double-layer charging of metal-electrolyte interfaces, whereas smaller
core nanoparticles exhibit redox chemical character, including a large central gap. The
change in behavior is consistent with new near-infrared spectroscopic data showing an
emerging gap between the highest occupied and lowest unoccupied orbitals of 0.4 to
0.9 electron volt.

Nanoparticles of metals and semiconduc-
tors have sparked intense interest (1) in
anticipation that this unexplored range of
materials dimensions will yield size-depen-
dent optical, electronic, and chemical prop-
erties suitable for applications in optoelec-
tronic nanodevices, catalysts, and chemical
sensors (2–4). Among known preparations
of nanoparticles (5–8), recent attention has
focused on alkanethiolate monolayer-pro-
tected metal clusters (MPCs). Gold MPCs in
particular are quite stable and can be pre-
pared with average core diameters of 1.1 to 5
nm. Electrochemical studies have demon-
strated that Au MPCs are equivalent to dif-
fusing, nanometer-sized electrodes (9) and
can provide electrocatalytic advantages (10).
Further, room-temperature solutions of
MPCs with monodisperse cores display an
electrochemical “ensemble Coulomb stair-
case” (11), a behavior anticipated and ex-
plained based on the sub-attofarad double-
layer capacitances (CCLU) of diffusing, nano-
meter-sized 28-kD metallic Au particles
coated with a monolayer (hexanethiolate,
C6) dielectric. Analogous staircase phenom-
ena have been reported, using nanometer-
sized electrodes (12).

We aim to further understand electro-
chemical ensemble Coulomb staircases by
varying the monodisperse core mass in Au
MPC solutions from 8 to 38 kD (core di-
ameters of 1.1 to 1.9 nm). The double-layer
capacitive charging seen for larger core sizes

changes for smaller MPC core sizes to a
molecular redox-like behavior. That is, over
a certain range of core sizes, electron orbit-
al-shell effects or pairing effects, or both,
begin to dominate, changing the cluster
capacitance from one determined by elec-
trostatic processes to one more dominated
by bonding interactions.

Coulomb staircases for nanoparticles
are usually observed as tunneling currents
through a single nanoparticle addressed by
a tip probe (Fig. 1A), that undergo step-
wise increments with increasing tip-sub-
strate bias (V) (13, 14). A model account-
ing for junction capacitances in a double
tunnel-junction circuit (Fig. 1A) predicts
that current increments occur at critical
voltage biases (VC)

VC 5 Ze/C 1 (1/C)(QO 1 e/2) (1)

where Z is integral nanoparticle charge, e
the electron charge, C capacitance of the
more resistive junction, and QO a fraction
associated with tip-substrate work function
differences. Coulomb staircase charging is
normally observed at low temperatures be-
cause of the requirement that the stepwise
charging energy (EC 5 e2/C) greatly ex-
ceeds thermal energy, kBT, where kB is Boltz-
mann’s constant and T is temperature. Equa-
tion 1 predicts that if C is constant, consec-
utive charging steps should occur at a regular
spacing DVC 5 e/C.

Figure 1, C and D, presents electrochem-
ical ensemble Coulomb staircase behavior
for MPCs of varied core mass, in the form of
differential pulse voltammograms (DPVs)
at a Pt electrode. The interfacial double-
layer chargings of the uniform electronic
charge and core-size MPCs with C4 and C6
coatings (15) produce a series of DPV cur-
rent peaks (in both positive- and negative-
going scans of E) that occur at the DVC 5
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