Microbial dynamics in lakes of the McMurdo Dry Valleys of Antarctica during the transition to polar night

Trista J. Vick LRES 500 March 11, 2009

Advisor: John C. Priscu

The McMurdo Dry Valleys

- Largest ice-free portion of the Antarctic continent (~4800 km²)
 <10 cm annual precip
 Avg annual temp -20°C
 3 major valleys
 - Victoria
 - Wright
 - Taylor

Study site: Taylor Valley lakes

Lyons et al., 2001

 Why study these lakes?
 Only lakes in the world with perennial icecover

- Restricted atmospheric gas exchange
- Low light penetration
- Permanently chemically stratified vertically
- Closed basins end member systems
- > Relatively pristine environment
- Part of LTER long term dataset

Differences in lake geochemistry

Priscu, 1997

Life as we know it...

 \succ In your backyard, photoautotrophs are the primary producers • $CO_2 + H_2O \xrightarrow{\text{light}} CH_2O + O_2$ Provides useable carbon Fixation of inorganic carbon Provides useable energy Creating thermodynamic disequilibrium so that organisms can use energy

Images from: www.grinningplanet.com and blogs.citypages.com/ctg/images/skatkat2.jpg

Life in the Taylor Valley lakes

A microbial ecosystem

- Primary production by phytoplankton
- Heterotrophic bacteria
- Rotifers are the highest trophic level (no fish)

Figure 2. Typical foodweb found in the water column of MCM lakes. HNAN= heterotrophic nanoflagellates. No higher life forms exist.

This model is dependent on sunlight... ...so what happens during the winter? Source: Priscu, et al., 1999

Sunlight and the Antarctic winter

SUNSET, SUNRISE and THILIGHT McMurdo Station, Antarctica (77.83°S 166.60°E) 12:00

Polar night: the "black box"

"...the onset of darkness induces a cascade of physiological changes that alters the functional roles of autotrophic and heterotrophic microplankton within the lakes." ~Polar night project proposal

Question: do the lakes sleep during the (polar) night?

> H_o:

- Bacterial productivity (organic carbon demand) decreases with lightdriven primary productivity (organic carbon supply)
- > H₁:
 - Bacterial productivity (organic carbon demand) is sustained throughout the year by an organic carbon supply other than light-driven primary productivity

Approach: Antarctic field experiments

Summer/fall season Oct. 07-April 08: watching the sun set

- Measure primary productivity (organic carbon supply)
- ¹⁴C-bicarbonate incorporation (carbon fixation) in light and dark containers
- Measure bacterial productivity (organic carbon demand)
 - Incorporation of ³H-thymidine (DNA synthesis) and ³H-leucine (protein synthesis)
- Summer season Oct. 08-Jan. 09: dark ¹⁴Cbicarbonate and primary productivity experiments

Measure light (photoautotrophic) and dark (chemoautotrophic) incorporation of ¹⁴C-bicarbonate in FRX and ELB

Methods: Fall 2007-2008

Water is collected from multiple depths along water column using Niskin bottle Measuring bacterial productivity and primary productivity by radioactive substrate incorporation

Add ³H-thymidine or ³H-leucine (20 nM)

2.0 ml plastic tubes3 live samples and2 TCA-killed controlsper depth

Bacterial Productivity

Incubate in dark 20h @ 4°C Incubate in lake 24h

Precipitate DNA/protein w/TCA

Filter

TELL PLOCHCE

Add ¹⁴C-labeled bicarbonate

Measure radioactivity incorporated into cellular constituents

Carbon supply and demand

Carbon supply and demand

ELB depth profiles

FRX depth profiles

Dark ¹⁴C-bicarbonate incorporation

*These data are from the dark (control) bottles in the normal primary productivity experiments

Fall 2007-2008 summary

> Throughout the season:

Bacterial productivity changed by less than 8% per day in all four lakes, and decreased only in HOR
The ratio of organic carbon demand to supply was >1 in FRX and <1 in ELB

- Rates of leucine incorporation were higher than rates of thymidine incorporation, especially late in the season
 - Is this a clue to metabolic changes occurring in bacterial populations as the sun sets? Perhaps cells are synthesizing more protein, but are not dividing?

How is heterotrophic activity in Fryxell sustained?

Hypothesis: chemolithoautotrohpy driven by the upward flux of e donors is an important year-round source of organic carbon production in MCM Dry Valley lakes, particularly in lake Fryxell.

Lake Fryxell: a closer look

Madigan et al., 2006

Dark ¹⁴C-bicarbonate incorporation in Lake Fryxell

Takacs and Priscu, unpub data

Methods: Summer 2008-2009

Exploring carbon fixation in Fryxell and Bonney

- Method:
 - FRX & ELB
 - Light, dark, DCMU-treated, and formalin-killed ¹⁴Clabeled bicarbonate incorporation at 3 depths in each lake
 - Filter through 3 and 0.2 µm filters
 - Determine radioactivity using liquid scintillation

¹⁴C-bicarbonate incorporation

Conclusions

> Fall 2007-2008: watching the sun go down

- BP does not decrease as the sun goes down evidence against $\rm H_{\rm o}$
- The average ratio of organic carbon demand to supply in FRX was 3.63
- Dark carbon fixation accounts for a larger portion of the carbon supply in FRX than the other lakes
- Summer 2008-2009: dark ¹⁴C incorporation in FRX and ELB
 - The highest level of dark ¹⁴C incorporation in ELB (13m) is <88% of the highest level in FRX (12m)
 - More important than anoxygenic photosynthesis in FRX
 - BUT...is it chemolithoautotrophy?

Future directions

- Stats!
- > Repeat dark ¹⁴C-bicarbonate experiments
- Collect material in tandem for nucleic acid extraction
 - 16S and functional genes

Further study of relationship between thymidine and leucine incorporation rates

Thank you!

Acknowlegments:

Amy Chiuchiolo and Andrew Baber and the entire 0708 limnology team. The RPSC support staff, especially the metal shop for building a great dark ¹⁴C incubation apparatus.

Funding by NSF: "IPY-The McMurdo Dry Valley Lakes: Plankton responses during the transition to Polar Night"