ECEN4002/5002 Digital Signal Processing Laboratory
Spring 2002

Laboratory Exercise #2

Introduction

In thislab exercise you will investigate the sampling and reconstruction process, implement “delay lines”
using digital storage, design and implement some FIR digital filters, and learn some additional debugging
techniques. Thereport for this exercise is due at the start of classin two weeks.

This second experiment involves MATLAB, some new software examples, and some modifications to the
programs prepared previously for Laboratory Exercise #1. As mentioned before, you are encouraged
awaysto write your code in a highly modular fashion so that you have a good basis for modifications and
customizations in future lab experiments.

In preparation for the experimental procedures in this Lab, you should review the FIR filter section of your
DSP textbook and also look over the modulo addressing features of the 5630x processor (see the Address
Generation Unit description in the online documentation on the lab PCs).

Sampling and Reconstruction

In many DSP applicationsit is necessary to begin with an analog signal, sample it, perform digital
processing, then reconstruct an analog signal for the output. This only makes practical senseif itis
possible to perform the sampling and reconstruction process with minimal error.

Recall that the discrete-time Fourier transform F (ej‘*’t) of asampled signal f(KT) can be expressed in
terms of the Fourier Transform F (jw) of the analog signal f(t) by

F(ej‘*’t)z%iF[Hj(w+@)[H

n=-co

This expression shows that the spectrum of the sampled signal consists of replicas (or images) of the analog
spectrum that are scaled by 1/T and shifted in frequency by multiples of 21vT. In order to be able to
reconstruct the original analog signal we at |east need to be able to isolate the baseband replica of the
spectrum (n=0 term, centered at w=0) from the shifted replicas, which means that the replicas cannot
overlap each other. We must ensure that the sampling rate is greater than twice the highest frequency
present in the analog spectrum, or in other words, ensure that the input signal is strictly bandlimited to less
than half the sample rate, to avoid the overlap (aliasing).

How does the reconstruction process work in theory? Consider that the reconstruction task consists of
isolating the baseband spectral image from the shifted imagesin the DTFT of the sampled signal. This
implies that we design afilter function that is constant over the frequency range occupied by the baseband
image, and zero at higher frequencies to remove the shifted images. Idealy, this reconstruction filter would

be a perfect lowpass filter: arectangular pulse P(jw) in the frequency domain.

The theoretical perfect lowpass filter in the frequency domain becomes a sinc() function when inverse
transformed to the time domain. Therefore, the reconstruction theory indicates:

ECEN4002/5002 DSP Lab #2 2

F(Jw)_P(Jw)XPF z FHJ(OO+—)$ F(jw) if ideal LPFand noaliasing

n=-oco

Therefore,
ft)=f(t)= k:sz (KT) p(t = KT) =k:z_w £ (KT) Einc[E?(t _ kT)[H

It is not possible to implement this perfect reconstruction processin apractical system, since the formula
involves an infinite and non-causal summation. Moreover, the effects of sample amplitude quantization
must also be considered. So, in practical DSP systems we will need to approximate this formula using
various engineering tradeoffs.

=Exercise A: A/D and D/A Simulation viaMATLAB
In order to get afeel for the effects of sampling and aliasing during the A/D conversion process, do several
trialsusing the MATLAB scripts‘adcdeno’ and ‘dacdeno’, which may be found on the class web site
(http://schof.colorado.edu/~ecen4002). Use the MATLAB help command to discover some options.
Before you invoke one of these demos, you must initialize each of the following undefined variables.

s isacharacter coding the signal type. For our purposes, s=" s’ , is appropriate, athough you
should take alook at other types (‘ ¢’ —chord, * u’ —unit pulse,* n’ —noise, * b’ —band noise).

t ype isaninteger coding the type of reconstruction filter. t ype=0 isnone, t ype=1 isan
ordinary DAC or sample and hold, t ype=2 islinear interpolation, and t ype=3 is Shannon or
sinc reconstruction.

rati o istheupsampling ratio. You can start withr at i 0=8, but feel free to explore other
values.

al pha isthe normalized frequency. al pha=1 correspondsto f42 (the fold-over frequency),
al pha=2 isthe sampling rate (f), and so forth.

(1) Using asinusoidal input with type=3, run adcdeno for severa values of al pha. Thistool
demonstrates aliasing in the A/D followed by D/A conversion processes when no analog anti-aliasing
filter isused at the input. Pay close attention to the region 0.8<al pha<1.2. In thisregion there are
two competing aliases, one coming down in frequency from the spectral image centered at fs and the
other going up from the baseband image. Thus, you will get a beat frequency of 2*(1-al pha),
normalized. Also note the aliasing behavior for al pha greater than one. At al pha=2, the alias
frequency is zero. Using thistool, sketch a plot of output frequency vs. input frequency. Keep in mind
that if an anti-aliasing filter was used, sinusoids of frequency greater than al pha=1 (f42) would
simply be filtered out. Make copies of the output figure for afew cases, (say, for al pha=0.44, 0.92,
1.44, 2.44) for inclusion in your report and describe what is going on in each figure.

(2) Thetool dacdenp demonstrates variations on the D/A conversion process. Y ou can seethe
conversion errors in both time and frequency for the four types of reconstruction filter. You can also
see the unit pulse response of the reconstruction filter by settings="u’ . The CODEC on our EVM
board should look liket ype=3. Holding all input variables the same, except for t ype, make copies
of the figures for the four reconstruction variations for inclusion in your report. Describe what you
view in each of these figures.

ECEN4002/5002 DSP Lab #2 3

Real Time Processing Time Limitations

In order to keep up with the non-stop arrival and departure of samplesin areal time DSP system, itis
necessary that all the processing be accomplished within one sampleinterval, T (at least on average). What
happensif our ‘pr ocess_st er eo’ function requires more processing time than the sample interval? We
will end up missing the arrival of the next input samples (and the departure of the next output samples) and
datawill belost. Thiswill produce gaps or roughness in the output signal, which is generally unacceptable.

The 5630x processor includes a phase lock loop (PLL) in its clock generator that allows the internal clock
rate of the processor to be a multiple or adivision of the external crystal rate. The rate multiple/division
can be set by the DSP software itself. Thisallows, for example, the processor to go to alow power state by
selecting alower clock speed if the processor isidle. Take alook at the PLL description in the DSP56300
Family Manual in the online documentation.

Examinethe passl1. asmprogram (remember: different for the ‘303 and the *307) and find the
instruction that setsthe PLL control register (x: M_PCTL). Thisis probably being set to something like
$040xxx , where the ‘4’ setsthe PLL enable bit, and ‘xxx’ (12 bits) is the multiplication factor applied to
the external clock. For example, the ‘307 EVM boards have a 12.288MHz external clock crystal, so the
internal core clock rateis (12.288MHz)* (xxx) . Keep in mind that the chip can’t actually run at an
arbitrarily fast clock rate: the max is something between 80 and 100 MHz (see the chip data sheet).

=>Exercise B: Determine how many instructions“fit” in one sample period
The point of this exercise isto figure out how many instructions we can placein ‘pr ocess_st ereo’.
Modify ‘pr ocess_st er eo’ by introducing some instructions (perhapsar ep statement or aloop) which
can be used to determine how many instruction cycles are in each sampling period. After finding this
practical number, use the PLL setting from your pass1. asmprogram, the 5630x Processor Family
manual and the Users Guide for the EVM to find the instruction rate of the EVM board. By taking the ratio
of thisrate to the sampling rate, we can calculate how many instructions can be executed within a sample
period. Compare this number to the number you found above and specul ate on what might cause the
difference. What isthe internal core clock rate setin pass1. asnf? Canyou increaseit to at least
80MHz?

Using the DSP to Implement Time Delay

As mentioned above, most DSP agorithms require ameans to delay one digital signal with respect to
another. This means that the sequence of signal samples must be stored in memory temporarily. For a
typical delay buffer this means that we want afirst-in, first-out (FIFO) queue, where the length of the queue
isequal to the desired delay in samples.

The 5630x supports modulo address buffers. This means that we can use an address register to point to a
block of memory locations, and incrementing or decrementing the address register causes the address to
automatically wrap around the head and tail of the buffer. We can make a delay buffer by storing the
current input sample at the location pointed to by the address register, then incrementing the address
register and reading back the contents of the next location. Since the buffer is addressed in a modulo or
circular fashion, the address pointer will eventually wrap around the end of the buffer and proceed back
through the previously stored values.

The 5630x uses the modulo registers (MO-7) in the address generation unit to specify the length of the
modulo buffer. Storing $ffffff in the modulo register setsthe AGU for normal, linear addressing. Thisis
the default state after the chip isreset. Storing zero in the modul o register causes the address to increment
in “bit reversed” fashion. We will use this mode later in the course when we cover the FFT. For modulo
addressing we store the integer N-1, where N is the number of memory locations we want in the modulo
buffer. For example, if we want a delay buffer with 16 elements, we would store 16-1=15 in the M
register.

ECEN4002/5002 DSP Lab #2 4

<4— BaseAddress+ N -1

N \Modulo N
memory | Buffer
locations ! Memory

<4— Base Address

Another important detail of the modulo addressing is that the lowest address of the modul o buffer must be
on avalid “page’ boundary. Specifically, this means that the base address of the modulo buffer must
aways be a power of 2, and further, it must have its lowest k bits equal to zero, where 2 = N, the buffer
length. So, asthe address register isincremented or decremented the lower k bits of the address register
change in value while the upper 24-k bits stay unchanged. Note that we don’'t specify the beginning and
ending of the modulo buffer directly: The upper 24-k bits of the address register imply the base address.

The 56300 assembler includes several directives to declare modulo buffers. For example, the DSM
directive (define storage modul o) tells the assembler to advance its memory pointer to the next valid base
address for the specified buffer size.

=>Exercise C: Implement a Delay Linein Real Time Software
Begin by making a copy of thepass1. asmand| abl_p. asmprogramsthat you used in Lab #1, and
rename them something like pass2. asmand| ab2_p. asm Recall that pass1. asmcontained a
directivetoincludel abl_p. asm and that your subroutine pr ocess_st er eo was called for every
input sample with the left channel datain accumulator A and the right channel sample in accumulator B.
Modify your pass2. asmand | ab2_p. asmfiles so that pass2. asmincludes| ab2_p. asm then
assemble, load, and test to make sure the pass features are working OK. Remember, work incrementally as
you make the series of required changes.

Now modify your pass2. asmso that you can execute your own buffer initialization instructions. add a
line
jsr my_init

after theexistingline j sr ada_init .
Then edit| ab2_p. asmand add a new subroutine (if necessary) called:

my_init
...€tc.. etc.. etc...
rts

Y ou should now modify your pr ocess_st er eo routine so that it passes the left channel input
(accumulator A) unaltered to the output, but applies a delay to the right channel (accumulator B).

Begin with aright channel delay of $100 samples, but try to write your code in such away that you can
change the delay amount by changing only asingle EQU statement and then re-assembling the file. Y our
| ab2_p. asmfilewill be something like:

ECEN4002/5002 DSP Lab #2 5

YBASE EQU $200

BUFSI ZE EQU $100
org y: YBASE

del ay_buf ds BUFSI ZE
org p:

my_init

..initialize an index register and modulo register (e.g., r4 and m4) to usedelay bufinY
memory; initialize the delay buffer contentsto be all zero, etc...
rts

process_stereo
...move the right sample (B) into the modulo buffer delay_buf, and retrieve the next
delayed sample from the buffer. Leave accumulator (A) unchanged.
rts

Make sure you understand what the routines are doing, modify the skeleton as necessary, and try it out.
Verify that you are getting the expected $100 sample delay between the left and right signals.

(1) What time (in seconds) does this delay of 256 samples represent? Try playing some stereo audio
through your software. Isthe inter-channel delay audible?

(2) Now modify (if necessary) your code and data initialization so that you can test the following
delays between the left and right channel: 2 samples, 21 samples, 73 samples, 767 samples, and
1024 samples. Can you use the modulo addressing features to get a delay buffer of 1 sample?
Discuss the detailsin your report.

(3) For the EVM you are using, determine how much on-chip Y memory you have available. Useall
the available Y memory to make the longest possible Y delay line. Make sure you don’'t overwrite
any storage used by pass. asmada_i nit. asmetc.! Also, make sureyour buffer beginson a
valid modul o address boundary.

Additional exercisefor Graduate Students:

Determine how much internal X and Y memory is available, and re-write your software so that the total
delay consists of one delay linein X memory that feeds another, separate delay linein' Y memory. Include
your program and discussion in your lab report.

Non-Real Time Testing Using I/O Files and the Debugger

It is often useful to be able to test the implementation of an algorithm using a non-real time method. This
allows single-stepping the program, running to a breakpoint, etc., without the difficulty of handling real
time interrupts, A/D and D/A timing, and so forth. It isalso useful to be able to process a known segquence
of samples for the input and then to be able to collect the output samples as a computer file for later
analysis. For example, by collecting the output samples for a known input file (a“test vector”), the results
from the DSP can be compared bit-by-bit to a reference output example.

The Domain Technologies Debugger software provides a mechanism to transfer data from afile on the PC
to the memory of the DSP, and also to transfer data from the DSP's memory back to afile on the PC.

Our planisasfollows. We will write a DSP “wrapper” program that initializes the DSP chip and all ocates
input and output buffers. The DSP wrapper will then commence a simulated input/output loop by reading

data from the PC using calls to the Debugger, executing a process we provide, and then writing the results

back to the PC.

ECEN4002/5002 DSP Lab #2 6

First, consider the 1/O features of the EVM30xw Debugger. At the Debugger command window prompt:

INPUT infile
QUTPUT outfile

These commands tell the Debugger to openi nf i | e and wait for the DSP to request data, and to open or
createout f i | e and wait for the DSP to send data back. The Debugger assigns a file number (handle) to
each input file and afile number to each output file as they are opened. The input and output files are
regular ASCII text files, and there are options to choose hexadecimal (default), decimal, or fractional
number formats. See the commands | NPUT and OUTPUT in the online help for the EVM30xw Debugger.
Also, consider using the Debugger’s PATH command to set the location of your input and output files.

An example of the DSP code for file I/O looks like this:

;input data from PC
nove #$200, r 0 ; start address to load data ($200)
nove #$10100, x0 ; High 8 bits indicates file nunmber (1),
; low 16 bits indicates nunber of
; words to read ($100)
; $8xxx indicates input to DSP
; $xxx1 indicates X nenory space
debug ; invoke emul ator service

nove #$8001, r 1

The debug operand calls the debugger “service” that usesthe valuesin r0, rl, and x0 to determine what
action to take. In this example, the Debugger reads 256 words from input file #1 and stores them
sequentially beginning at X:$200.

After the desired processing is complete, we write the results back to the out f i | e on the PC using the
following instructions:

;output data to PC
nmove #3$400,r0 ; start address to retrieve data ($400)
nmove #$10100, x0 ; High 8 bits indicates file nunber (1),

; low 16 bits indicates nunber of

; words to wite ($100)

; $4xxx indicates output from DSP

; $xxx1 indicates X nmenbry space

; invoke emul ator service

nove #$4001,r1
debug
In this exampl e, the Debugger reads 256 words beginning at X:$400 and writes them to output file #1.
Once the process is compl ete, use the Debugger commands

I NPUT OFF
QUTPUT OFF

to close the files so that you can examine the results.

The I/O framework for the “wrapper” is given below (a copy of thisfile should also be on the class web
site). Thefileispassi 0. asm Since the codec will not be used there is no need to initialize the A/D and
D/A, nor isthere a need to handle the codec interrupts. The program creates some small input and output
buffers, then begins to read data from the input file The section “1/O block loop” calls auser-supplied
subroutine pr ocess_nono that receivesitsinput in the A accumulator, and returns its output A as well.
The program collects the results and writes them to the output file. Note also that thereisacall to the user-
supplied subroutine ny _i ni t . You probably do not need to modify the passi 0. asmfile, but you will

ECEN4002/5002 DSP Lab #2

need to create thefilel ab2_i 0. asmcontaining your own memory declarations and the
process_nono and my_i ni t subroutines.

EEE Rk S Sk R Rk S kI S I I R SRR R O S O I I SRRk kb ok b O R

ECEN4002/ 5002 DSP Lab Spring 2002
Exanpl e program passi 0. asm

Takes data from Debugger input file 16 words at a tinme, then

| oads them one by one into the A accunul ator and calls user-

supplied 'process_mono' function. Result in A accurmulator is
sent to Debugger output file.

User provides |lab2 io.asm include file containing "'ny_init'
and ' process_nono' subroutines and nenory decl arations.

To enabl e data streanms type from EVMBOXx Debugger COVMAND wi ndow:

I NPUT data_in -fra ;this will open input file for reading
; fractional (not exponent) data
QUTPUT data_out -fra ;this will open output file for witing

; fractional data
Do these Debugger commands BEFORE running the program
Renmenber to 'I NPUT off' and ' OQUTPUT off' at the end of the run

EIE R R R R S I R I R I I R R R I R R I S R R R R R R R I R I I S R

nol i st
i ncl ude 'ioequ. asni
list
BLOCK EQU $10 ; nunber of words in file I/0O
INFILE EQU $10000 ; debugger: infile #1 handle
QUTFI LE EQU $10000 ; debugger: outfile #1 handle
XMVEM EQU $0001 ; debugger: x nmenory bit field
YMEM EQU $0002 ; debugger: y nenory bit field
INDSP EQU $8000 ; debugger: input to dsp bit field
QUTDSP EQU $4000 ; debugger: output fromdsp bit field
org x:0
i nbuf ds BLOCK ; buffer for data in/out
buf ptr ds 1 ; tenp storage for R register
org p: $0000 ; Program bl ock starts at zero
jmp START ; Skip over interrupt vectors
org p: $0100
START:
novep #$040008, x: M_PCTL ; PLL 8 x 12.288 = 98. 016MHz
ori #3, nr ; mask interrupts
novec #0, sp ; clear hardware stack pointer
jmp DOINT ; Junp over user-supplied code

include 'l ab2 io.asn ; User-supplied include file

ECEN4002/5002

org
DOINT
jsr

FI LEI O

DSP Lab #2

p:

nmy_init

;input data from PC

nove
nove
nove
debug

; data now in Xx:

; (Debugger will

do

nove
nove

jsr

nove
nop
nop
nop
nmove

endl nop

; At this point,
; to x:inbuf.

;output data to
nove
nove
nove
debug

nop

jmp
end

#i nbuf , r0
#(| NFI LE| BLOCK) , x0
#(1 NDSP| XMEM , r 1

i nbuf
gener at e breakpoi nt

#BLOCK, endl

x:(r0),a
ro, x: bufptr

process_nono

X:bufptr,r0

a, x:(ro0)+

Cal | user-supplied subroutine

start address to | oad data
BLOCK words fromfile | NFILE
X mem space, input direction
i nvoke enul ator service

if error during read)

1

nmove input data to A
save RO contents

Call user-supplied subroutine
restore RO contents

wait for pipeline

Transfer output data

fromA to mem
(overwrite input)

BLOCK i nput val ues have been processed and overwitten
Ready to wite to output file.

PC

#i nbuf, r0

#(QUTFI LE| BLOCK) , x0
#(OUTDSP| XMEM , 1 1

FI LEI O

start address to xfer data
BLOCK words to file OUTFILE
X mem space, output direction
i nvoke enul at or service

; Debugger will generate breakpoint
; if error during wite
; Loop back and read next bl ock.

= Exercise D: Non-real timetesting with file /O
Using MATLAB, a spreadshest, or some other method, create atext input file containing at least 64
fractional numbers between —0.5 and +0.5. Writeasimple pr ocess_nono subroutine that adds 0.25 to
each sample and delays by one sample, i.e., y[n] = x[n-1]*0.25. Assemble and verify your program using

thel NPUT infile.txt

-fraand QUTPUT outfile.txt -fracommandswiththe Debugger.

What happens when the end of the input fileis reached? What happensif you forget to open and close the
1/0 files with the Debugger? Does the output file contain the expect results? Can you import the output
fileinto MATLAB or a spreadsheet and produce a plot of the results? Now try putting breakpointsin the
code, observing memory, changing register values, and so forth. Include your code and explain your
resultsin your lab report.

ECEN4002/5002 DSP Lab #2 9

Designing Linear Phase FIR Filters with MATLAB

In order to design adigital filter, we always start with a set of specifications for the filter. Filter order,
cutoff frequencies, cutoff width and ripple in both the passband and stopband are the usual specifications
given a particular application. However, these specifications contain some design tradeoffs, such as that the
filter order generally must increase to obtain a decrease in cutoff width. Often, the cutoff frequencies are
given through some sort of desired input/output characteristics, and we try to approximate these
characteristics with the best filter possible constrained by the other specifications, such as computational
complexity or sensitivity to coefficient quantization. This approximation problem lies outside of the scope
of thisclass, but is addressed in most DSP and digital filtering textbooks.

After we have determined the filter' s specifications we must obtain a method for realizing/calculating the
filter and then determine what hardware it should be implemented on. For the purposes of this class, our
hardware has already been selected (as the 5630x EVM board). We will tend to use fairly smple
realizations, with the understanding that some errors and effects can be minimized with other filter
structures.

FIR Filters

An FIR filter has atransfer function H(z) of the form

H(z) = Nz_jh(n)z‘”

Thisform can be seen from the structure of an FIR filter as shown in the next figure. Aswe can see from
this transfer function, an FIR filter is a polynomial with zeros that define the characteristics of the filter.
FIR filters have the following properties:

(i) Finite impul se response (hence the name FIR), as seen by using unit sample as the input.
(i) Stability is guaranteed since they have no polesin their frequency response (only zeros as shown
above).

(iii) A linear phase response is easily obtained, which implies that the filter only introduces a pure time
delay at dl frequencies.

(iv) To obtain a sharp cutoff filter the number of taps must be large, which increases the amount of
computation.

The value of the first two propertiesis obvious. Linear phaseis helpful in applications where frequency
dispersion effects caused by a nonlinear phase response must be minimized. These applications include
communication systems where the data pul se-shape and rel ative timing must be preserved (such as modems
and ISDN networks), and hi-fidelity audio systems where the shape of the music must be preserved to
prevent temporal distortion.

X[n]

y[n]

X[n-1]

X[n-2]

ECEN4002/5002 DSP Lab #2 10

It can be shown that for linear phase afilter must have a symmetrical unit pulse response. That is,
h(N-1-k) = h(K).

As can be seen from the figure above, the filter coefficients for an FIR filter form the unit pulse response.
Therefore, when given the filter design specifications, our goal isto find the unit pulse response of this
filter. There are several methods to do this including window design of FIR filters and frequency sampling
design of FIR filters. In this class, we will focus on the window designs, and do the actual work in
MATLAB. We assume that our design is restricted to linear phase FIR filters.

Let Hy(B) be the desired frequency response given our specifications. We want to choose an FIR filter with
unit-pulse response h(n) of length N, which is close to Hy(8). In order to determine the closeness, we need
some sort of criterion for measuring the distance between the spectrums. We will use the mean-square
error & between Hy(6) and H:(€®) on theinterval [-Tt, 1. Therefore, we want to minimize

17 2
ﬁ:EJWJm—m®Nw.
Using Parseval’ s relation, we can express thisin the form

- 2
e?= 3 |h, (k) -hy (k).
k=—c0
From the theory of Fourier series, we can minimize €2 by choosing h(k) to be the Fourier coefficients of
Hqy(B) for k; = k = ky, where the interval [ky, ko] minimizesthe error

1" 2 k2 2
el=—1(H.0)de -5 |h, (k)" .
mﬂ) k;!d()\

If Hy(6) is real and even, and we take k=M, k;= -M, then H,(¢®) will also be real and even but not causal.
Fortunately, a causal filter having the same magnitude response and linear phase can be obtained by simply
shifting hy(k) intime. Let

h(k) = hy(k-M).
Thisfilter is FIR of order N=2M+1, with linear phase.

Thereis one major defect in this method of design. At the points of discontinuity in Hy(8), a characteristic
overshoot in the approximation design H,(€®) always occurs. This oscillation has been studied in
connection with Fourier analysis and is known as the Gibbs phenomenon. Even though we have minimized
the mean-square error between Hq(6) and H,(€°), this method of design is not really satisfactory for most
applications, due to the ripple. To understand the reason behind these oscillations, consider the infinite
length desired pulse response hy(k), which we truncated to length N for hy(k). Thisisthe same as
multiplying hy(k) by awindow w(k) as

h(K) = hy(Kw(K) ,

where w(K) is a rectangular window sequence

kK< (N-1)2
M@=% .
ED, otherwise

The resulting frequency response, Hy(€°), is obtained by taking the DTFT of both sides of this equation.
We obtain

Hl@w):§%j+t4¢wv@mﬂﬂhm,

ECEN4002/5002 DSP Lab #2 11

which is the convolution of the window’ s frequency response with our desired frequency response. Ideally,
we want awindow response that is similar to a delta function in frequency. However, no finite length
window can have a unit-pulse frequency response. In fact, the frequency response for a rectangular window

is

W(eje): Sm(NTe) _

sin(3)

Asthefilter order N increases, the width of the main lobe of this window gets narrower, but the height of
the side-lobe approaches a constant value independent of N. These are the two main properties of windows
that are of interest in FIR filter design. The width of the main lobe is called the resolution of the window
function and trandlates directly into the “smearing” that occurs at jumps in Hy(8). Consequently, the
transition width of each cutoff frequency is directly related to the width of the main lobe of the window.
The height of the side lobe is sometimes called the window leakage. The ripple in both the pass-band and
stop-band of the window is directly related to the height of the side lobe. We can reduce the ripplein
H1(€®) by using windows other than the rectangular window. However, the width of the main lobeis
broadened as the side lobe height is reduced, which resultsin a design tradeoff between transition width
and ripple. We can use the window functionsin the Signal Processing toolbox supplied with MATLAB to
look at the changes in Hy(€®) as the window shape changes.

MATLAB aso provides adesign method for linear-phase FIR filters. The functionis fir 1. Look up
fir2lintheonlinehelpfor MATLAB. Notethat the procedure isbased on the “window” design method,
and that a Hamming window is the default. Note also that the function will scale the output response so
that the maximum gain is unity.

We would like to be able to design the filter and then to create afilter output file that isin aform
compatible with the 56300 assembler. Thisway we can use an include directive to have the assembler load
the filter coefficients without having to edit manually any of the files. Below isaMATLAB function
firtabl e that converts a sequence of FIR coefficients (vector h) into atext file suitable for inclusion by
the DSP assembler. A copy of thisfunction ison the class web site.

function firtabl e(h, fnane)

%

% firtabl e(h, fnane)

%

% Produce an assenbl er readable file defining the filter H(z)
%first line is the nunber of coefficents, n

% each followi ng |ine contains one val ue h(k),

% fromh(0) to h(n-1)

%

n=I engt h(h);

fn=[fnane,'.asn];

fid=fopen(fn,' wt')

fprintf(fid,"; file %\n',fn);

fprintf(fid,'; coefficients for an FIRfilter with %
coefficients\n',n);

fprintf(fid,'; 1line 1 contains the nunber of coefficients\n');
fprintf(fid,'; then cone h(0), through h(%), one line each\n',n-1);
fprintf(fid," dc %\n',6n);
for k=1:n

fprintf(fid,' dc %.12g\n"', h(k));
end

fclose(fid)

ECEN4002/5002 DSP Lab #2 12

=>ExerciseE: MATLAB FIR design with the window method
Using the MATLAB function f i r 1, create afilter with the following specifications:

= Lowpass, linear phase FIR filter. Window design using a Hamming window (default for fir 1
function)

= Passband 0 Hz — 3kHz, defined by gain between +0.5dB and —0.5dB

= Stopband 7kHz —f42, defined by gain below —(35+d), where “d” isthe last digit of your student
ID number. For example, if the last digit of your ID number is 7, the gain at and above 6kHz must
be —-42dB or less.

= Filter length N as small as possible while meeting the above requirements.

Note that you will probably need to iterate many times to find the optimum N and Wn when usingfi r 1.
The MATLAB function f r eqz may be useful, and you may want to write your own function to identify
and verify the passhand and stopband gain results.

Use MATLAB to plot the magnitude (dB vs. frequency) and phase of your filter and include your analysis
in your report. Give sufficient results to verify your design. Also include the coefficient list and the last
digit of your student ID number.

Next, usethef i rt abl e MATLAB function to produce an output file containing the definition of your
coefficients and the filter order. You will use thisfile in the implementation section next.

Implementing and Testing FIR Filters

FIR filters are quite common in DSP systems, and many highly optimized implementations are avail able.
We will use a subroutine that is compatible with the layout of the coefficient file produced in MATLAB by
firtabl e. Specificaly, the memory is organized so that the FIR filter’ s length, N, is stored first,
followed by the N coefficients. Read and understand the following subroutine, including the required
memory setup and register usage.

EE R R I R R R I R R I S R I S O R I R R R R R R R S

; ECEN4002/ 5002 DSP Lab Spring 2002
; Exanple programsnippet: FIRfilter subroutine

; On entry:

; accumul ator A contains filter input

; r2 contains address of 'filter definition block' (x nenory)
; ASSUME n2,nB,m4 set for linear addressing ($ffffff)

; ASSUME registers do not need to be saved

; On exit:

; accurmul ator A contains filter output

; data buffer pointer updated in 'filter definition block'
; registers changed: r0,r2,r3,r4,n0,x0,vy0, a

; Filter Definition Block
; (element 1): pointer to coefficient table (inplicit y nenory)
(element 2): pointer to head of filter state (inplicit x menory)

; Coefficient Table

i (elenment 1): nunber of filter taps (integer)

i (elements 2-[2+taps]): Fractional constant

; FIR coefficients 0O-(taps-1)

; stored sequentially in y nenory.

; Need not be nodul o buffer aligned.

ECEN4002/5002 DSP Lab #2 13

Filter State
Delay line stored sequentially in x menory. Base address nust
be valid alignnment for nodul o buffer of length taps+1 .

EEE Rk R R Rk Sk o Sk S Rk I R SRR I I S e kO R R R SRR ko bk b b R R
1

firfilter

nove x:(r2)+,r4 ; rd4d points to start of coefficent table
nove x:(r2),r0 ; 10 points to interior of filter state
nop ; wait for pipeline
nop
nove y:(rd),r3 ; r3 contains nunber of filter taps
nove y:(rd)+,nD ; m0 contains nunber of filter taps
nop ; wait for pipeline
nop
nop
nove a, x: (ro0) ; copy input to filter state (overwites

; ol dest val ue)
clr a (r3)- ; clear A r3 contains taps-1
nove x:(r0)+, x0 ; copy input to xO0
nove y:(r4)+,y0 ; get first coefficient into y0
rep r3 repeat next line (mac) taps-1 tinmes
mac x0,y0,a x: (r0)+ x0 y:(rd4)+,y0 ; nmac and zi pper
macr x0,y0,a r0,x:(r2) ; do final nac,

; round result (macr),

; and save head pointer for next tine

rts

Y ou should now be ready to create an assembly language implementation of the FIR filter and to test it
using the non-real time (file I/0O) method. The plan isto create atext input file consisting of a unit sample
function (afile with only one non-zero sample), then to observe the outpuit file to verify that the unit sample
response (impulse response) of the filter is obtained. Recall that the unit sample response of afinite
impulse response filter is just that: the sequence of coefficientsin the FIR filter.

=>Exercise F: Non-real timeimplementation and testing of your FIR filter
Modify thel ab2_i 0. asmprogram with an include directive for the filter coefficient file, the
firfilter subroutine andtheprocess_nmono andny_i ni t subroutines. Then assemble the
passi 0. asmprogram and load it with the Debugger. Set the | NPUT to be afile with one non-zero value
followed by at least N zeros, and the OUTPUT to be an initially empty response file. Make sure the initial
state of thefilter isall zero, either by using the Debugger to clear the memory (CHANGE command) or by
including instructionsin your my _i ni t subroutine. Run the program, close the I/O files (I NPUT OFF
and OUTPUT COFF), and check the results. Proceed with debugging if the results are incorrect or if your
program malfunctioned in some way. Include your code files (with COMMENTS) and the results of your
non-real time testing (1/0 comparisons, response plots, and so forth).

=>Exercise G: Real timeimplementation and testing of your FIR filter
Now that the code is working, write new versions of your subroutines that will work in real time using a
program based on a modified version of pass1. asm(from Lab #1), pr ocess_st er eo subroutine, and
the coefficientsand fi rfi | t er subroutine. You must now use two filters, one for the left stereo channel

ECEN4002/5002 DSP Lab #2 14

and another for the right channel. The two filters can share the same instructions (subroutine) and the same
block of coefficients, but they must have separate data blocks (filter definition and filter state).

Y ou will test the real time implementation of the filtersin three different ways.

D Using an oscilloscope for measurement and a signal generator for input, design a means for
experimentally measuring the magnitude and phase of the filter frequency response. Then verify that the
filter reproduces the results expected from MATLAB. Also, determine the -3dB cutoff-frequency for your
filter.

)] Again, using the signal generator and a scope, design a means for experimentally measuring the
step response of the filter. Make an accurate sketch and comment on symmetry.

3 Now use music for an input and comment on what you hear.

Additional exercise for Graduate Students:

Repeat (1) — (3) above for areal time implementation of a high-passfilter. Choose afilter length of 65 and
areasonabl e cutoff frequency, thenusefi r 1 in MATLAB to generate the coefficients. Include your
parameters and results in your report. Did you have to re-write any of your code?

ECEN4002/5002 DSP Lab #2 15

Report and Grading Checklist

A: MATLAB adcdemo and dacdemo
Aliasing observations and signal plots from adcdemo; written discussion.
Reconstruction behavior observations from dacdemo; written discussion.
Comments.

B: Instructionsavailable in one sample period
Code segment from ‘process_stereo’ modified to test instruction limit.
Measured maximum instruction count in one sample period and PLL setting.
Comments.

C: Delay lineimplementation
Code segment from lab2_p.asm, with COMMENTS.
Responses to questions (1)-(3).
Additional exercise for graduate students.
Comments.

D: Non-real timetestingwith PC file /O
Code segment from process_ mono, with COMMENTS.
Discussion of file I/O procedure and results.
Comments.

E: MATLAB FIR filter design
Filter design properties and MATLAB results to verify your design.
Comments.

F: Non-real timetesting of FIR filter
Code segment of ‘lab2_io.asm’ and output impulse response.
Frequency response measurements, etc.
Comments

G: Real timetesting of FIR filter
Code segment of real time filter program.
Test results (1)-(3), and discussion.
Additional exercise for graduate students.
Comments

Grading Guidelines (for each grade, you must also satisfy the requirements of all lower grades):

F Anything less than what is necessary for aD.

D Exercise A and B with results and discussion.

C- Exercise C with results and discussion.

C+ Exercise D with complete results and comments.

B Exercises E and F with full MATLAB results verifying the design.
A Results for Exercise G.

Note: grad student grading also requires the additional exercises from the C and G sections.

