
ECEN4002/5002 Digital Signal Processing Laboratory
Spring 2002

Laboratory Exercise #3

Recirculating Delay Lines and Artificial Reverberation

Introduction
Previously (in Lab #2) you made a delay line by using the modulo addressing capability of the 56300. In
addition to digital filters, there are a variety of useful and interesting applications involving delayed signals.
In this lab we will investigate several digital audio effects that involve variable delay lines, recirculating
delays, and comb and all-pass reverberators.

When a signal is added to a delayed version of itself, the result is a boost of spectral components that have
a period (1/f) equal to an integer multiple of the delay length (delayed signal added in phase), and
attenuation of components for which the delay is an odd multiple of half the period (180° out of phase).
These delay properties are very useful in audio signal processing because many acoustical systems have
delays and resonant properties that are modeled well by simple delay lines. For example, musical
instruments generally have an air column, string, or bar that has a “tuned” vibration corresponding to the
size of the vibrating element and the speed of sound in that medium. Similarly, sound propagation in
rooms and concert halls involves the direct arrival of sound waves from the source to the listeners’ ears,
followed by the delayed arrival of the sound that reflects off the floor, walls, and other surfaces in the
room. There are many technical and creative reasons that digital processing to mimic acoustical and
electro-acoustical systems is both practical and useful.

In this experiment you will develop some basic audio effects that employ fixed and variable delay lines.
The exercise descriptions are somewhat less “cookbook” than in the previous experiments because it is
expected that you have become acquainted with the essential tools in Labs #1 and #2. Keep in mind that it
may be helpful to debug portions of your code using the 56300 Simulator and the non-real time file I/O
method of the Debugger. And, as always, develop your code incrementally so that the debugging task is
simplified.

Time-Varying Delay: The “Flanger”
A simple audio effect can be created using a feed-forward delay line structure. The input signal is sent
directly to the output and also into a delay line. The output is the sum of the input signal and the delayed
signal. This structure is shown below.

Figure 1: Feed-Forward delay structure

Note that the feed-forward structure has the transfer function

NbzzH −+= 1)(,

+

Delay Line (z-N)
b

ECEN4002/5002 DSP Lab #3 2

which implements N zeros located equally spaced on a circle with radius b1/N. The corresponding
frequency response is a sequence of notches. This type of response is sometimes called a comb filter, since
the sequence of notches looks a bit like a comb.

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

0 0.1 0.2 0.3 0.4 0.5

Normalized Frequency (/fs)

M
ag

n
it

u
d

e
(l

in
ea

r
sc

al
e)

Figure 2: Frequency response of structure in Figure 1 (with b=0.8 and N=8).

If you send music through this structure and listen to the output of this system compared to the unaltered
input, you may hear a spectral shift or coloration that is peculiar to the comb filter response. As the
frequency content of the music varies, the components that are near the notches of the comb get attenuated
and the signal sounds somewhat “hollow” or “nasal” in character.

Now imagine what happens if we somehow make the delay length vary with time. Since the number and
location of the spectral notches is determined by the delay, if we gradually change the delay length the
notches will sweep up or down in frequency corresponding to the instantaneous delay time. If we arrange
the delay to increase and decrease steadily and periodically, the result is a repetitively sweeping effect that
can be a useful for interesting studio and live performance modifications. The varying feed-forward delay
structure is commonly called a flanger, since the original method was created by a recording engineer using
two duplicate tape recordings. By starting the duplicate tapes on two different tape decks, then pressing on
the flange of one tape spool in order to slow it down slightly, the summed output of the two decks
contained one signal and a slightly delayed version of the same signal. Varying the relative playback
speeds produced the distinctive changing comb filter “whoosh” effect.

Exercise A: Flanger effect
To simulate the tape deck flange effect using digital techniques you will implement the feed-forward
structure of Figure 1. Start again with the simple delay line code you wrote for Lab #2, but modify it as
follows:

(1) Begin by making a monophonic signal: add the a and b accumulators together and divide the sum
by two. Note that a divide-by-2 can be accomplished with a one-bit arithmetic right shift. See the
56300 instruction set for how to do a right shift.

(2) Allow a maximum delay of 15 milliseconds (720 samples with a 48kHz sample rate).
(3) Choose a base address for your delay buffer that is valid for the 720 sample buffer length.
(4) Place the output in both the a and b accumulators (mono output).
(5) Implement the delay by having an address register point at the “head” of the delay line, and a

separate pointer (or indexed offset) that locates the “tail” of the delay line. The number of samples
separating the head and tail is the instantaneous delay, and this will vary in real time while the
flanger is running.

First test your code using several different fixed delay amounts. Design you code so that you can use the
Debugger to set and change the delay length.

ECEN4002/5002 DSP Lab #3 3

Next, modify your code again so that the delay amount varies automatically from near zero to 720 and back
to near zero repeatedly with a period of a few seconds. Try to design your code so that the repetition rate is
adjustable using the Debugger. It will probably make sense to have a variable in fractional form that is
incremented at each sample time, then multiply the integer 720 by this fractional number. Then truncate
the product to use just the integer part as the required delay. This may take some thought to figure out
where the integer radix point will be after the multiply.

Listen to the output using various music, speech, and test signals. Include a description in your report,
along with any measurements you feel are appropriate to verify the behavior of your design.

One problem with the simple flanger is that the delay is restricted to be an integer number of samples, so
switching from one delay amount to the next may result in an audible “click” or discontinuity in the output.
A high-quality flanging algorithm requires an interpolated delay line so that the instantaneous delay can be
a fractional number of samples. This means that the output of the delay line is not simply one of the
samples out of the modulo buffer, but instead is a value interpolated from the delay line. For example, if
the instantaneous delay needs to be 20.75 samples and we choose to use linear interpolation, we fetch the
20th and the 21st delayed samples and compute a new sample that is 0.75 of the amplitude difference
between sample 20 and 21. Feel free to try this if you have time. We will do more with interpolation in
future lab exercises.

Recirculating Delay Lines and Echo Generation
In Lab #2 you made a delay line by using the modulo addressing capability of the 56300. If only one of the
two stereo channels is delayed and the delay line is made long enough (more than a quarter second or so)
the sound coming out of the delay line is audibly distinct from the un-delayed signal: in other words, it
sounds like an echo. If the delay is short, however, the effect of the delayed channel may be perceived as a
spectral change or shift of the stereo image.

Now consider the effect of a recirculating delay line. In this case the output of the delay line is fed back to
the input, so the signal circulates and recirculates through the delay line over and over again.

Figure 3: Recirculating (feedback) delay line.

This structure is recursive (IIR—infinite impulse response), and implements a function with N equally
spaced poles located in a circle around the origin of the z-plane. Note that if the value of k is made greater
than or equal to unity, the recirculating signal will be amplified each time around the loop, resulting in an
unstable system (poles outside unit circle). The output of the filter for N=8 and k=0.8 is shown in Figure 4.

+

Delay Line (z-N)
k

Output could be taken here instead (see Fig. 5)

Input Output

ECEN4002/5002 DSP Lab #3 4

Figure 4: Unit sample response for N=8, k=0.8.

Exercise B: Make a recirculating delay line
Part 1: Find the z-transform expression for the system in Figure 3. Then using MATLAB, determine the
complex pole locations, unit sample response, and the frequency response magnitude for a recirculating
delay system with N=7 and k=0.7. Repeat with several different values of N and k. Include your results in
your report.

Part 2: Starting with the “maximum” delay line code you wrote for Lab #2 Exercise C, make a
modification that performs the recirculation as shown in Figure 3. Alter the feedback gain using the
Debugger and listen to the result. Start by using a short input signal (“blip”) so that you can hear each echo
without overlap. Confirm the echo behavior, and consider what happens if the recirculating signal level is
high enough to cause overflow (saturation) in the output signal. Can you place a scaling gain parameter
into the structure to keep the echo decay time unchanged while limiting the likelihood of overflow?

Exercise C: Long delay line using external SRAM
Now modify your program to use an even longer delay line. The ‘307 EVM boards have a 64k word
external static RAM (SRAM) that can be used by the DSP chip. Enabling the SRAM requires a small
modification to the initialization code in your pass2.asm program. Find the line near the START label
that programs the chip’s BCR register (x:M_BCR). Add a line before that line to enable the external bus
interface. The instructions will then look like this:

movep #$040821,x:M_AAR0 ;Compare 8 most significant bits
 ;Look for a match with address
 ;Y:0000 0100 xxxx xxxx xxxx xxxx
 ;No pack, no mux, Y enabled
 ;P and X disabled
 ;AAR0 pin active low
 movep #$012421,x:M_BCR ;One ext. wait state
See the 56300 Family Manual for a complete description of the AAR0 register.

This modification causes the 64k (65,536 words) SRAM to be located in the memory space between
Y:$040000 – Y:$04FFFF . Now modify your recirculating delay program so that the right channel uses the
entire SRAM as its delay line. NOTE that there is a limitation in the valid modulo length for the m registers

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 8 16 24 32 40 48 56 64 72 80 88 96

ECEN4002/5002 DSP Lab #3 5

of the address generation unit. Figure out a way to use the entire 64k delay. Listen to the output and
observe the delay time. Verify the performance of your software.

Artificial Reverberation
Reverberation is characterized by a gradual decay of sound energy over time. The decay rate is usually
characterized by the “reverberation time,” which is the time required for the sound pressure to decay 60 dB
from its initial value. The reverberation time of a full-size concert hall is usually in the range of 2-3
seconds. Therefore, reverberation filters must involve long time delays. In principle, one could apply a
tapped delay line (FIR filter) to create artificial reverberation. The tap weights of the delay line would be
the sampled impulse response of the concert hall. However, there are usually thousands of reflections
during the reverberation time, so due to memory and computation constraints the processor is usually only
capable of synthesizing perhaps a few hundred reflections. The computation required for the FIR approach
to reverberation may therefore be unreasonable--at least in the real time case.

As observed above, an IIR recirculating filter provides a computationally efficient approach to creating
delayed “echoes” for reverberation. The infinitely long, gradually decaying characteristic of reverberation
can be modeled by the impulse response of a suitable IIR recirculating delay filter. Unfortunately, the
impulse response of this IIR is too regular. We get the sequence of gradually decaying, regularly spaced
impulses as shown in Figure 4. This regularity results in temporal and spectral patterns that are readily
audible and sound unnatural. Real reverberation has an echo density that increases with the square of time;
the echo density of the simple IIR reverberator is constant. To use an IIR filter for reverberation, we need
to find a way to increase the density of its impulse response.

A feedback “unit reverberator” is shown in Figure 5. An example frequency response of this reverberator
is shown in Figure 6.

A common approach to increasing the complexity of the impulse response is to combine several unit
reverberators in parallel as shown in Figure 7. Here, the unit reverberators are feeding two all-pass filters in
series. The parallel unit reverberators have differing delay times, which are incommensurate so that the
individual response resonances do not coincide. The all-pass filter is almost the same as the unit
reverberator, but it has a feed-forward signal path in addition to the feedback path (see Figure 8). This adds
N zeroes to the response, and each zero is located at the same angle as one of the poles but with a radius
that is the reciprocal of the pole radius. This makes the steady-state frequency response magnitude uniform
over frequency (by definition). The purpose of the all-pass filters is to increase echo density without
interfering with the regular unit reverberators. By simply combining these basic building blocks
imaginatively, we can produce electronic reverberation with little coloration of the signal.

Figure 5: Unit comb reverberator

+ Delay Line (z-N)

k

ECEN4002/5002 DSP Lab #3 6

0

1

2

3

4

5

6

0 0.1 0.2 0.3 0.4 0.5

Normalized Frequency (/fs)

M
ag

n
it

u
d

e
(l

in
ea

r
sc

al
e)

Figure 6: Frequency response of unit comb reverberator (N=8, k=0.8)

Figure 7: Multiple unit reverberator system

Figure 8: Unit all-pass reverberator

k

-k

+ Delay Line (z-N) +

Unit Reverberator
#1

+

All-Pass
Reverberator #1

Unit Reverberator
#2

Unit Reverberator
#M

All-Pass
Reverberator #2

ECEN4002/5002 DSP Lab #3 7

Exercise D: Four Parallel Unit Reverberators
Write DSP code to construct a simple reverberator comprising four parallel unit reverberators. Delay times
should be in the following ratios:

delrat equ @POW(2.0,1.0/4.0)
delay1 equ @CVI(50.0*samp_rate/1000.0) ; you can change “50.0”

; to scale the reverb time
delay2 equ @CVI(delay1*delrat+0.5)
delay3 equ @CVI(delay2*delrat+0.5)
delay4 equ @CVI(delay3*delrat+0.5)

where @POW, and @CVI are assembler functions. @POW(a,b) tells the assembler to calculate ab , i.e., a to
the b power. @CVI(val) takes the integer part of val, i.e., truncates a fractional number to an integer.
Be sure to see the 56300 Assembler Manual for the complete definition of these and other assemble-time
functions!

Note that the delay times are related by the ratio delrat, which is an irrational number. That relationship
assumes minimal coincidence of the resonances. Use the following gains:

comb_k equ 0.83
combk1 equ comb_k*(1-0.46)
combk2 equ comb_k*(1-0.48)
combk3 equ comb_k*(1-0.50)
combk4 equ comb_k*(1-0.52)

Since the code for each of the four unit reverberators will be essentially identical, you may choose to use a
subroutine call (passing in the appropriate pointers, gains, and modulos), or perhaps even better would be a
macro reference. Subroutine calls generally minimize the amount of program memory used, but they may
be less efficient in computation due to the overhead of the subroutine setup, call, and return. A macro is
interpreted by the assembler and inserts replicas of the specified code into program memory, so
computation is fast—at the expense of program memory. For this exercise we probably won’t be limited
by computation or by program memory, so you can probably choose according to your own preference.
Think about the changes and effort that would be required to make a small change to each unit reverberator,
or to add a few more unit reverberators in parallel.

If you write your code as a sequence of similar instructions, you should try to keep a pointer for each unit
reverberator in its own address register so that you don’t have to move the pointer back and forth between
the address registers and memory.

Begin with a single reverberator unit and listen to the sound with music for input. Compare this to the echo
generator. This structure has a frequency response that resembles a pointy comb (see Figure 6, and also
compare to the feed-forward (zeroes) response of Figure 2). With long delays, you will hear the impulse
response of the comb filter. It corresponds roughly to the sound heard from the impulse response between
two parallel blank walls. You should be able to hear the spectral modification, particularly with shorter
delay times. Sometimes these effects are used as sound effects for music or film production.

Now using all four unit reverberators, play with their parameters. How does it sound? What parameter
measurements can you make (reverb time, for example)? It is easy to make the reverberator sound bad, but
it may be possible to make it sound better than it does with the initial choices for the parameters. Make
some modifications and record a set of parameters that sounds good to you.

ECEN4002/5002 DSP Lab #3 8

Additional exercise for Graduate Students:
Add a cascade of two all-pass unit reverberators to the output of the parallel bank of comb filters. Use the
following specifications for the all-pass units:

ALLP1D EQU 6.4*SRATE/1000.0 ; 6.4ms
ALLP1K EQU 0.7

ALLP2D EQU 6.7*SRATE/1000.0 ; 6.7ms
ALLP2K EQU 0.7

Listen to the sound of one of the all-pass filters alone. Even though the filter has a constant magnitude at
all frequencies (all-pass), it causes an audible coloration of the response. Why is that? What does the
phase response of the filter look like?

Report and Grading Checklist

A: Flanger effect

Code listing for flanger routine, with comments.
Measurements and data verifying design and implementation.
Written discussion of results.

B: Recirculating delay line

Part 1: z-transform expression and pole locations for several values of N and k.
Part 2: Code listing with comments for recirculating delay line.
Written discussion and comments on input scaling issues.

C: Long recirculating delay line using external SRAM

Code listing with comments for long external recirculating delay.
Written discussion and verification of design and implementation.

D: Unit reverberators and artificial reverberation

Code listing with comments for unit (comb) reverberators.
Written discussion and verification of design and implementation, including scaling issues, if any.
Suggested “improved” values of delay and feedback gain.
Grad students: code listing and discussion for 4 parallel comb plus 2-all-pass cascade
reverberator.

Grading Guidelines (for each grade, you must also satisfy the requirements of all lower grades):

F Anything less than what is necessary for a D.
D Exercise A with results and discussion.
C Exercise B with results and discussion.
C+ Exercise C with results and comments.
B Exercise D with complete results and lucid comments.
A Live demonstration (during office hours) of fully functional software. Demonstrate for

Nathan Gilles (TA) or Prof. Maher.

Note: grad student grading also requires the additional all-pass code for exercise D.

