
ECEN4002/5002 Digital Signal Processing Laboratory 
Spring 2002 

Laboratory Exercise #6 

Using a Fast Fourier Transform Algorithm 

Introduction 
The symmetry and periodicity properties of the discrete Fourier transform (DFT) enables a variety of useful 
and interesting decompositions.  In particular, by clever grouping and reordering of the complex 
exponential multiplications it is possible to achieve substantial computational savings while still obtaining 
the exact DFT solution (no approximation required).  Many “fast” algorithms have been developed for 
computing the DFT, and collectively these are known as Fast Fourier Transform (FFT) algorithms.  Always 
keep in mind that an FFT algorithm is not a different mathematical transform:  it is simply an efficient 
means to compute the DFT.  

In this experiment you will use a provided FFT macro to perform some frequency domain processing tasks.  
The framework for doing real time processing with an FFT algorithm is somewhat different than what was 
used in the previous experiments, since the DFT requires a block of input samples to be available before 
processing can begin.  So rather than being able to run the processing algorithm “in between” the sample 
period, it will be necessary to buffer a block of samples and then start the FFT while still receiving the new 
samples as they arrive from the A/D and providing the output samples to the D/A.  This inherent delay, or 
processing latency, is separate from the time required to compute the FFT itself. 

Working with the FFT 
There are a large number of FFT algorithms suitable for use with the Motorola 56307.  The version we will 
use was written for the original 56000 and is not particularly optimized for the ‘307, but it should work 
sufficiently well for our purposes.  Note that there will be a bunch of pipeline stall warnings when the code 
is assembled.  The DFT requires complex numbers (real, imaginary), and it is natural to use the Harvard 
structure of the processor to represent the complex data:  real part in X memory and imaginary part in Y 
memory.  The assembler allows the simultaneous declaration of memory in both the X and Y memory 
spaces by using the L memory specifier.  For example, to declare arrays of complex numbers:  

points equ 256  ;length of FFT input signal    

org L:$0200 
indata dsm points ;real,imag parts of signal 
outdata dsm points ;real,imag parts of FFT(signal) 
coef  dsm points ;twiddle factors, forward 
icoef  dsm points ;twiddle factors, inverse   

You can find a copy of the FFT macro file, fftr2cn.asm, on the course web site.  This particular FFT 
implementation is used as follows:  

fftr2cn   points,indata,outdata,coef  

where points is the FFT length, indata is the base address of the input data (real in X memory, 
imaginary in Y memory), outdata is the base address of the output buffers (real in X, imaginary in Y), 
and coef is the base address of the FFT twiddle factors (real X, imaginary Y). 
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The twiddle factors (complex exponential terms) are calculated using the macro file sincosw.asm.  The 
twiddle macro is used by:  

sincos   points,coef,icoef  

where (again) points is the FFT length, coef is the base address of the twiddle factors for the forward 
FFT, and icoef is the base address for the inverse FFT twiddles.  

The fftr2cn FFT macro is complex-in, complex-out, and the input and output arrays are in normal order 
(not bit reversed).  Be aware that if the input data is real only, you must set the imaginary part of the array 
(Y memory) to zero before calling the FFT.  Note also that this particular FFT implementation “consumes” 
the input array during the calculation, so don’t count on the input data being the same after the FFT is run.  
This makes the routine somewhat extravagant in memory usage, but somewhat faster to execute. 

 

There is a scaling detail to consider when using this FFT algorithm.  These forward and inverse FFTs are 
implemented without scaling, so the internal storage may overflow due to “bit growth” as the FFT 
butterflys are added together.  Although the usual DFT definition has the 1/N factor applied to the inverse 
transform, it is helpful to scale down the input signal by 1/N prior to the forward transform to avoid 
overflow.  The overall FFT/IFFT gain is not changed by this adjustment.  

Another detail is that the inverse FFT is computed using the same algorithm as the forward FFT, except the 
real and imaginary parts are exchanged.  Rather than actually copying the data between X and Y memory, 
the IFFT routine was re-written to refer to the complementary memory spaces.  

Exercise A:  Test the FFT using the debugger or the simulator 
Write a non-real time FFT test program that can be run on the EVM debugger or with the software 
simulator (sim56300.exe).  Provide a way to include an input signal generated by Matlab.  One way to 
do this would be to modify the file-writing portion of the firtable.m file to create a signal file to 
include in your test program.  Also determine the debugger or simulator commands necessary to save the 
DSP memory contents to a file on the PC.  

The program framework should be something like the following (see the file fft_test.asm from the 
course web site):   

;fft with input,output in normal,normal order  
include 'fftr2cn.asm'  

points equ 256  ;length of FFT signal   

org l:$0000 
data1  dsm points ;real,imag parts of signal 
odata1 dsm points ;real,imag parts of FFT output 
odata2 dsm points ;real,imag parts of IFFT[FFT(signal)] 
coef   dsm points ;twiddle factors, forward 
icoef  dsm points ;twiddle factors, inverse   

org     x:data1  ;put real input signal in x memory 
Your include file for the real part of the input signal goes here.  Your signal should be the same length 
as defined by points above. 

  

org     y:data1  ;put imag(signal) in x memory 
Your include file for the imaginary part of the input signal goes here (can be all zeros).  Your signal 
should be the same length as defined by points above. 
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include 'sincosw.asm'  ;macro to...  
sincos  points,coef,icoef ;...build twiddle factor tables   

org p:$0  
jmp begin   

org p:$100 
begin  

You should scale the input signal to avoid overflow in the FFT.  Multiplying the real and imaginary 
parts by (1/points) is a satisfactory approach.  Note that since points is a power of two, you can do the 
scaling using an arithmetic right shift (asr) of the appropriate number of bits. 

 

;FFT - do the FFT on data1 and store results in odata1, using the FFT 
; macro “fftr2cn”.  Note that the results will be scaled by 1/points 
; (just done above) compared to the textbook DFT definition.   

fftr2cn  points,data1,odata1,coef  

BREAKPOINT1 nop ; Putting a breakpoint here will allow memory to be    
;  examined after the FFT.  

;IFFT – Now do the IFFT on the odata1 FFT result.   

ifftr2cn  points,odata1,odata2,icoef  

BREAKPOINT2 nop ; Put a breakpoint here to look at IFFT result   

jmp * ;End by looping here forever   

If you use the debugger you will notice that the program takes a long time to load.  The main issue is that 
the constant declarations generated by the sincos macro for the FFT twiddles must be downloaded 
individually to the EVM board.  

Test the program using input sinusoids of several different frequencies (two cycles per buffer, 8 cycles per 
buffer, etc.), and some other test files of your own choosing.  Create the input data files (real and 
imaginary), assemble the program, and load into the debugger or the simulator.  Then place breakpoints 
after the FFT and the IFFT so that you can dump the memory contents to a file.  Compare the results from 
the 56307 FFT to results computed with Matlab.  Do you get what you would expect?  Comment on the 
results.  

Additional exercise for Graduate Students:

 

The fftr2cn.asm file contains code that is compact, but doesn’t handle the 56307 pipeline very well.  
Carefully examine the warnings generated by the assembler (look in the .lst file) and modify the FFT 
instructions to eliminate the warnings.  Perhaps start by inserting nop instructions, but try to re-order the 
execution to make useful actions with each line of code.  Be sure to verify that your changes still make the 
FFT work! 

 

Short-time Fourier transform in real time 
One interesting use of the FFT is to implement linear time-invariant systems.  The idea is to break the input 
signal into blocks, perform the FFT on each block, multiply by a filter function in the frequency domain, 
then IFFT to reconstruct the filtered time domain signal.  Because the FFT provides the means to reduce the 
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computational complexity of the DFT from order (N2) to order (N log2(N)), it is often feasible to do FFT-
based processing for DSP systems.  Even with the computational cost of doing both the FFT and IFFT may 
be lower than doing the equivalent computation with conventional time domain methods.  

The DFT is a frequency-sampled version of the Fourier transform, so multiplying the DFT by a filter 
function in the frequency domain is actually the equivalent of circular convolution, not linear convolution.  
This means that the resulting time domain signal may have “time domain aliasing” if the effects of the 
circular overlap are not accounted for.  Refer to the lecture notes or a DSP textbook for the details of this 
issue.  

Nevertheless, for this experiment we are going to use a somewhat crude short-time processing algorithm.  
The concept is as follows. 

(1) We will segment the input signal into overlapping blocks.  The overlap will be 50%, and each 
block will be “windowed” by a smooth raised-cosine function (hanning window).  The window 
will be chosen so that the original signal can be reconstructed perfectly if no signal modification is 
done (see Figure 1). 

(2) For each windowed block, the FFT will be calculated.  This gives a spectral “snapshot” of what is 
going on during that short block of the input signal. 

(3) We can now do some modification of the FFT data, such as multiplying by a spectral shape (filter) 
or some other type of frequency-domain processing.  Assuming that we had a real-only input 
signal and we want a real-only output signal, we need to make sure that whatever manipulation is 
applied gets done in a way that will keep the complex DFT data in conjugate symmetric form.  
That is, if we change anything in the DFT bins between 0 and N/2, the same change needs to apply 
to the mirror image bins N-1 down to N/2, and the resulting modified DFT data must remain 
conjugate symmetric. 

(4) After the spectral processing, the IFFT (inverse FFT) is calculated.  The resulting block is then 
overlap-added to the output buffer, thereby reconstructing the desired signal.   

Figure 1:  Signal segmentation and overlap-add reconstruction.  

Why is it necessary to window and overlap the analysis blocks?  There are several issues here.  It is 
theoretically possible to do a huge FFT over the entire input signal, but for practical reasons we usually 
want to limit the time delay and storage memory of a real time system.  Breaking the signal into shorter 
blocks provides this opportunity.  Applying the smooth window function is helpful in reducing the 
truncation effects that otherwise would be evident in the DFT data, but this may or may not be important 
depending on the application.  Finally, the overlapping windows provide a smooth transition from one 
block to the next, and this is important if the frequency domain processing varies with time.  

x[n] 

FFT performed on each 
overlapping windowed block
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The choice of FFT length, overlap amount, window shape, etc., can be made with a solid theoretical basis.  
Consult a DSP text book for more information on the theoretical underpinnings of the short-time Fourier 
transform.  

A skeleton program stft6.asm for the simple short-time FFT procedure is available on the course web 
site.  This program has a different set of interrupt service routines (ISRs) than we used for the previous 
assignments.  In the earlier exercises we did the DSP calculations in the interval between the arrival of each 
new sample:  the code polled the A/D for data, then called the process_stereo routine with a pair of 
{left, right} samples in the A and B accumulators.  For the FFT the procedure needs to be somewhat 
different, since the FFT can only run if an entire block of input samples has arrived.  

The STFT skeleton is organized as shown in Figure 2.  In the “background,” the ISRs collect the input data 
into left and right input buffers, and play the output data from the left and right output buffers.  In the 
“foreground” the FFT routine waits until a block of input data has arrived, then performs the 
window/FFT/modify/IFFT/overlap-add sequence for that block.  The foreground routine then waits for the 
50% overlap period, and runs again on the overlapped data.  This process continues over and over as long 
as the program is running.   

Figure 2:  STFT skeleton program flow.  

Your application code should be placed in between the FFT and the IFFT.  You will have access to the 
complex DFT data for each block, while the skeleton code handles the data I/O.  

 

Exercise B:  Run FFT/IFFT pass program 
Obtain the stft6.asm program and the supporting files (fftr2cn.asm, sincosw.asm, 
cdc_init.asm) from the course web site.  Assemble the program, check for any errors, and download to 
the EVM board for testing.  Note that the FFT will have numerous pipeline stall warnings (see graduate 
exercise above).  The skeleton should act like a “pass” program:  the LEFT CHANNEL input data is passed 
through the window/FFT/IFFT/overlap-add procedure without deliberate modification, while the RIGHT 

Input sample buffer 

Interrupt service routine fills modulo input buffer

 

FFT buffer 

Window 

FFT

 

FFT output buffer 
(modify data here) 

IFFT

 

IFFT out buffer 

Output sample buffer 

Overlap-add 

Interrupt service routine empties modulo output 
buffer
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CHANNEL is simply buffered and passed to the output (no FFT on the right channel).  Verify that this is 
working.  Also, determine the processing delay:  what is the lag between the input signal and the output 
signal?  Finally, insert some instructions in the “USER CODE GOES HERE!” position to change the gain 
of the pass program:  multiply the FFTLEN real and imaginary parts of the DFT by a constant.  Comment 
on the results.  

Exercise C:  STFT for signal processing 
Now that the basic pass program is working, you can consider some more interesting STFT-based 
processing.  In this exercise you will modify the DFT data in a frequency-dependent manner.  

Part 1:  Bandpass filter 
Devise a way to make a simple bandpass filter centered at 4kHz, with a narrow bandwidth.  The idea is to 
multiply the FFT bin(s) corresponding to 4kHz by unity, while setting all the other bins to zero.  Make sure 
you understand the DFT frequency sampling concept and the symmetry requirements.  Test your code 
using input signals with a range of frequencies so that you can plot the frequency response.  

Next, modify your code so that the program includes a data file describing the filter shape.  The include file 
should be a sequence of “dc   0.xxxx” statements giving the desired gain factor for each FFT bin.  
Remember the symmetry requirements!  Test your code for a few different filter response shapes (low pass, 
highpass, etc.).   

Part 2:  Frequency domain “noise gate” 
In this part you will do some signal-dependent processing.  Since the DFT gives a complex view of the 
input signal’s short-time spectrum, we can take advantage of the spectral analysis to do some signal 
enhancement.  

It is common to have an input signal that is contaminated with unwanted broadband noise.  One way to 
reduce the undesired noise is to use a spectral threshold.  The algorithm is to compare the spectral 
magnitude in each FFT bin to a threshold value.  If the magnitude is above the threshold, it is assumed to be 
“signal” and gets passed unaltered.  On the other hand, if the measured magnitude in an FFT bin is below 
the threshold, it is assumed to be noise and the bin is set to zero.  If the threshold is chosen carefully, the 
output signal will have less audible noise than the input signal.  This process is known as a “de-hisser” or a 
spectral “noise gate.”  

In order to do the threshold test you will need to write code to calculate the magnitude (or magnitude 
squared) of the complex DFT values.  This may be tricky due to overflow issues, so you will need to 
determine a good way to scale the data during the magnitude calculation.  You will also need to experiment 
with various threshold values, and try different types of input signals to verify that your de-hisser is 
working.  Construct some test signals with various levels of broadband noise and devise a way to 
demonstrate your code.   
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Report and Grading Checklist  

A:  FFT testing with non-real time code 
Description of your testing strategy and the test signals you used. 
Scaling discussion. 
Comparison with Matlab results, and comments on the behavior. 
Grad student exercise, if applicable  

B:  STFT testing with real time code 
Comments on testing of real time code. 
Source code for gain adjustment between FFT and IFFT.   

C:  STFT signal processing 
Part 1:  Your source code segment that implements the simple 4kHz bandpass filter, the source 
code segment that uses a filter shape file, and thedescription of the way you handled the symmetry 
issue.  Comments. 
Part 2:  Code listing with comments for spectral noise gate.  Provide a description of your 
processing strategy and how you tested your code.    

Grading Guidelines (for each grade, you must also satisfy the requirements of all lower grades): 
F Anything less than what is necessary for a D. 
D Exercise A results with Matlab comparison. 
C- Exercise B results with clear and concise comments, no gain adjustments. 
C+ Exercise B with gain adjustment code. 
B Exercise C part 1 (bandpass and general filter). 
A Exercise C part 2 (noise gate)  

Grad student grades also require the additional exercise (part A).  


