
ECEN4002/5002 Digital Signal Processing Laboratory 
Spring 2002 

Laboratory Exercise #7 

Nonlinear and Adaptive Processing 

Introduction 
An important area of real time DSP involves nonlinear and adaptive algorithms.  Nonlinear systems include 
modulation/demodulation in communications, automatic gain control, noise and interference suppression, 
and various types of pulse forming and wave shaping schemes.  

In this experiment you will investigate a few processing tasks with data-dependent behavior, and systems in 
which signals are multiplied together.  While for linear systems we have a great deal of analytical muscle in 
the form of transforms and decompositions based on the superposition property, for nonlinear systems we 
often must use “linearizing” assumptions like small signal models and perturbation analysis. 

Dynamic Range Compression 
There are a variety of situations in which it is desirable to modify the level of a signal using some sort of 
automatic adjustment.  For example, we may have a detection algorithm that works best if its input signal is 
maintained at a relatively constant amplitude even if the signal itself varies greatly with time.  Another 
example is compensation for channel characteristics.  We may find that the dynamic range of a signal is too 
great to fit within the dynamic range of a channel due to the presence of low-level noise or high-level 
distortion.  In this case we would like to adjust automatically the level of the input signal so that it stays 
within the allowable dynamic range.  This sort of automatic level adjustment is known as an automatic gain 
control (AGC), a dynamic range compressor/expander, or as a signal limiter.  

The basic gain control concept is depicted in Figure 1.  The input signal, x[n], is sent through a side chain 
consisting of a level detection block and a gain control block.  The level detector computes a useful metric 
of some kind that indicates the current amplitude, signal power, or loudness envelope of the input signal.  
The level measurement, c[n], is then fed into a block that computes the proper gain multiplier signal, G[n], 
to apply to the input signal.  

Figure 1:  Automatic gain control structure.  

There are many ways to determine c[n] and G[n], depending on the needs of the application.  One method 
is to have the level depend on the absolute value of the input signal, with some “memory” of the previous 
values to smooth the response.  This can be achieved with the expression  

Level 
Detector 

Gain 
Controller 

x[n] 

c[n] 

y[n]=G[n] • x[n] 

G[n] 

( ) ][1]1[][ nxncnc λλ −+−=



ECEN4002/5002 DSP Lab #7 2 

where λ controls the balance between quickly following the instantaneous amplitude (λ<<1) and more 
gradually tracking the ups and downs of the signal (λ≅1).  It is also possible to make the attack time of the 
level detector (rate at which c[n] increases) different from the decay time (rate at which c[n] decreases).  
For audio signal processing, the choice of attack and decay time constants is usually a tradeoff between 
responding promptly to level changes in the input signal, while avoiding abrupt gain changes that would 
result in clicks or noticeable signal distortion.  

Once c[n] is calculated, its value is processed to determine the actual gain control value, G[n], for the gain 
adjustment.  If it is desirable to limit the maximum value of the input signal, we need to design a 
compressor function that reduces the gain when c[n] exceeds a threshold value.  This gain reduction is 
sometimes called the compression ratio, which is expressed as the amount of dB change in the input signal 
that causes a unit dB change in the output signal, such as 2:1 or 3:1.  For example, if the compression ratio 
is 3:1, a 3dB change in the input signal level causes just a 1dB change in the output level.  

Exercise A:  Implement and test an automatic gain control 
Write a real time DSP program that implements the non-linear gain control block diagram shown in 
Figure 1.  

The signal level detector should be a simple envelope follower or “leaky” peak detector.  One possibility 
would be:  

if( |x[n]| > c[n-1] ) 
c[n]= α c[n-1] 

else c[n]= β c[n-1]  

where α>1 controls the attack rate and β<1 controls the decay rate.  Feel free to consider an envelope 
detector of your own design!  

Your gain compressor must provide a gain reduction when the signal peak level exceeds 50% of full-scale, 
and the gain control must have attack time and release time constants that can be varied independently over 
the range from about 1ms to 30ms.  The gain reduction should be chosen so that when the input signal level 
is near full-scale, the output signal level is 70%.  

Using the test file leveltst.wav that will be posted to the course web site, play the signal and observe 
the output using the oscilloscope, or better yet, figure out a way to record portions of the output signal—
perhaps using another computer to do the recording.  Make sure that you adjust the input signal so that the 
signal exceeds the 50% threshold, but not so high that it clips the A/D converter.  Carefully sketch the 
output signal for several values of attack and decay time constants.  Also try your compressor with some 
speech and music signals.  Include in your report a description of the results.  

Additional exercise for Graduate Students:

 

Modify your program to be a gain expander:  reduce the gain when the signal level goes below 50% of full 
scale.  Adjust the expansion factor so that the output signal level is near zero when the input signal is below 
10% of full scale.  Carefully verify that your code works properly and include your results and tests in your 
report. 

 

Adaptive Interference Cancellation 
The most common type of adaptive filter is based on the familiar FIR structure.  The concept of an adaptive 
filter is to adjust automatically the filter coefficients so that the average squared-error between the filter 
output signal and a reference signal is minimized.  The adaptation process occurs incrementally:  the filter 
coefficients are updated gradually at each step in the process, and the output error is used to determine the 
amount of change to be made at each step.  As long as the input and reference signals are correlated and the 
statistics of the signals does not change too rapidly, the adaptive filter will reach a stable state and provide 



ECEN4002/5002 DSP Lab #7 3 

the desired filtered output signal.  It is important to keep in mind that the adaptive process generally takes 
some time to converge, so this must be taken into account when designing the signal processing system.  

A typical application of adaptive filtering is depicted in Figure 2.  Note that the filter structure has two 
inputs, x[n] and d[n], and the “error” signal is the difference between the filter output, y[n], and the 
reference signal d[n].  

Figure 2:  Adaptive noise canceller diagram.  

In this example, the reference signal is a “measured” signal consisting of the desired signal, s[n], and an 
unknown additive noise, ε[n].  We also have a separately measured signal εc[n] that is correlated with the 
noise in the signal.  This would be the example if we had a microphone recording someone talking in a 
noisy room (s[n] is speech, ε[n] is background noise) while we also had a separate microphone located 
some distance away that was recording mostly the background noise (εc[n]).  We would like to adjust the 
adaptive FIR filter so that we minimize the power of the signal e[n].  This would occur if the adaptive filter 
was able to make its output y[n] as close as possible to the unknown noise signal ε[n], so that e[n] would 
become approximately s[n], the desired speech-only signal.  

So how is this possible?  Without looking at the theory in detail, the concept is to alter the coefficients of 
the FIR filter in such a way that the expected value of e2[n] tends toward a minimum.  Consider the 
mathematical expression  

e[n]= d[n] – y[n] 
    = d[n] – BT[n] X[n],  

where BT[n] is the vector (transpose) of FIR filter coefficients, and X[n] is the vector of current and past 
input samples of x[n].  The squared error is therefore given by  

e2[n] = d2[n] –2d[n]XT[n]B[n] + BT[n]X[n]XT[n]B[n]  

and the expected value E{ } of e2[n] is  

E{ e2[n] } = E{ d2[n] } –2R(x,d)B[n] + BT[n]R(x,x)B[n],  

where R( ) indicates a correlation matrix.  Note that this expression involves at most the square of the filter 
parameters, so it should be possible (for stationary signals) to find the adjustment of each filter coefficient 
to cause a decrease in the mean-square error.  In other words, we should find the gradient of the mean-
square error with respect to each of the coefficients, then update each coefficient to follow the gradient’s 
steepest decrease.  

In theory, it is possible to do the minimization perfectly if we know the exact autocorrelation and cross 
correlation information for x[n] and d[n], and everything is stationary.  In practice, however, we usually do 
not have truly stationary signals and we also don’t typically know the correlation matrices, or they may 
drift with time.  Thus, we need to use an approximation to the theoretical method. 

+ 
- 

Adaptive FIR

 
d[n]=s[n]+ε[n]

x[n]=εc[n]

 

y[n]

 

e[n] 



ECEN4002/5002 DSP Lab #7 4  

The LMS Algorithm 
The LMS (least-mean-squares) algorithm is a popular method to obtain an approximate solution to the error 
minimization problem.  The algorithm is expressed as an update equation:  the next set of filter coefficients 
are calculated from the current set of coefficients and an estimate of the error gradient.  

{ }( )][ˆ5.0][]1[ 2 neEKnBnB ∇−=+ ,  

where K is the loop gain parameter (positive number less than 1) which controls the rate of convergence.  
The estimate of the gradient of the mean-square error for the LMS algorithm is usually just taken as the 
gradient of the current error sample, which turns out to be simply  –2e[n]X[n].  This makes the LMS 
expression become  

B[n+1] = B[n] +K e[n] X[n]  

So, for each FIR coefficient bi[n] we can write the individual update expression as   

bi[n+1] = bi[n] + K e[n] x[n-i]  

The steps to the LMS algorithm can be summarized as follows.  

1. Obtain next samples of d[n] and x[n] 
2. Run FIR filter on x[n] to obtain y[n] 
3. Subtract y[n] from d[n] to get e[n] 
4. Apply the update expression to get each bi[n+1] for next time 
5. Repeat  

The choice of K can be a bit arbitrary in practice, but it is best to start with a relatively small number, say, 
0.25.  Increasing the value of K towards 1 will speed up the adaptation process, but this may make the filter 
coefficients hop around and fail to converge.  Decreasing the value of K towards zero helps to stabilize the 
adaptation, but it also slows down the rate of convergence and this may be undesirable if the filter needs to 
track changes in the input signals.  

Exercise B:  Adaptive noise reduction 
Write an assembly language program for the 56307 EVM that implements the LMS algorithm.  An 
example framework is given below.  Start with a filter of length 8, and then consider trying some other 
filter lengths.  Your code should assume the d[n] signal is in the left channel and the correlated noise signal 
x[n] is in the right channel.  Note that the desired output signal is e[n].  The code below does not contain 
any deliberate errors, but it HAS NOT BEEN FULLY TESTED:  BE SURE to understand what the code is 
doing and fix any bugs!!  

adapt_fir macro ntaps,kval 
; On entry the following must be already set: 
; Accumulator A has d[n] 
; Accumulator B has x[n] 
; r0 points to filter state (x memory) 
; r4 points to filter coefficients (y memory) 
; m0, m4 set for ntaps-1   

; Do FIR filter on contents of a  
move b,x0  
clr b   x0,x:(r0)+ y:(r4)+,y0  
rep #ntaps-1 



ECEN4002/5002 DSP Lab #7 5  

mac x0,y0,b  x:(r0)+,x0 y:(r4)+,y0  
macr x0,y0,b 

; Filter output is in b 
; Now calculate e[n]  

sub b,a  

; NOTE:  you need to do something here to save contents of a (it is the output signal)  

; Calculate kval * e[n]  
move #kval,y1  
move a,x1  
mpy x1,y1,a  
move a,y1  

; Now update the coefficients  
do #ntaps,update_loop  
move y:(r4),a  x:(r0)+,x0  
mac x0,y1,a  
move a,y:(r4)+ 

update_loop 
; reset filter state pointer  

lua (r0)-,r0  
nop  

; NOTE:  you need to arrange for the output signal to be in the right registers  

endm  

A few test files will be placed on the course web site.  buzzsine.wav has a noisy sine wave in one 
channel and correlated noise in the other channel.  buzztalk.wav contains a speech signal in one 
channel that is contaminated by a “noise” signal, and then a correlated noise sound is in the other channel.  
Make sure the desired signal ends up in the accumulator you expect, e.g., d[n] in A and x[n] in B !  

Play the test files, observe the “desired” output signal, and comment on the results.  Why isn’t the 
cancellation perfect?  Try some different values of filter length (ntaps) and loop gain, K.  Describe the 
system behavior.  



ECEN4002/5002 DSP Lab #7 6 

Report and Grading Checklist  

A:  Automatic gain control 
Commented assembly code and description of your approach. 
Results for provided test signals, and validation of attack/decay and level behavior. 
Comments on results with speech and music signals. 
Grad student exercise, if applicable.  

B:  Adaptive interference suppression 
Source code and comments for your noise reduction algorithm. 
Description of debugging and verification. 
Results for provided test signals, and comments on the details.   

Grading Guidelines (for each grade, you must also satisfy the requirements of all lower grades): 
F Anything less than what is necessary for a D. 
D Exercise A code with meager evaluation. 
C Exercise A validation and comments.  Results for several time constants. 
B Exercise B source code and comments, little evaluation or verification. 
A Exercise B with complete results and description.  

Grad student grades also require the additional exercise (part A).  


