
trical forces on each other. When the two objects have like
charges they repel each other; when they carry opposite
charges they attract each other. The deflection of an elec-
tron stream in a TV set or a laboratory oscilloscope pro-
vides a practical example of electrical forces in action.

In addition to electric forces between charges at rest
there are magnetic forces between moving charges. We will
not define magnetism but will state some qualitative fea-
tures about magnetic forces. When an electric current exists
in a straight wire or in a loop of wire, a magnetic field is
produced. A magnetic field is capable of exerting a mag-
netic force on any moving charge in its vicinity. (A perma-
nent magnet may be thought of as due to many tiny atomic
current loops that have all been oriented in the same direc-
tion to produce an effective “internal” current loop in the
magnet.)

When a wire coil carrying a current is placed in a mag-
netic field it may be caused to move because of the mag-
netic force on its moving electrons; the greater the current
the larger the force. Conversely, when a wire coil in a mag-
netic field is moved, current may be produced because of
the magnetic force on the coil’s electrons; the larger the
motion, the greater the current. Electric motors, dynamic
loudspeakers, and dynamic microphones are based on this
principle.

When a wire loop is placed in a changing magnetic
field a current is induced in the coil. This is the principle
on which an electric generator is based.

3.6 Work

A detailed application of the concepts discussed earlier
in this chapter would be too laborious to be useful at this
point in your studies. The concepts of work, energy, and
power may provide alternative descriptions for most things
we find of interest in the physical aspects of music, speech,
and audio. These new quantities can be defined in terms
of the previously defined quantities, but in many ways they
are handier to use.

In our everyday life we often evaluate the difficulty of
a task in terms of the work involved. If a friend lifts a heavy
object for you, he may complain that he is working too
hard. If you push with all your strength against an immov-
able wall, you might claim that you are working equally
hard. An observing scientist, although sympathetic to the
effort you are exerting, would suggest that your friend is
working, and you are not. The scientific definition of work
takes into account the force exerted and the distance an
object moves when that force is applied. The force must
cause displacement of the object or the work done is zero.
The work done by a force is the product of the force times
the displacement in the direction of the force. Symbolically,

work = force × displacement (in direction of force) (3.8)

Because you exerted a force on a wall which did not
move, no work was performed. When your friend lifted
the heavy object, however, the force exerted caused the
object to be displaced upward and work was done. If we
double the load that your friend lifts, we double the work
done. Likewise, if the load is lifted twice as high, the work
is doubled. The unit of measurement in which work is
expressed is the product of distance and force units. In the
metric system, the unit of work is the joule (J), defined as
a newton-meter. One joule (rhymes with pool) of work
results when a force of one newton displaces an object a
distance of one meter in the direction of the force.

3.7 Mechanical Energy

“Energy” is perhaps the most fundamental unifying
concept in all scientific disciplines. Yet, despite the prevalence
of the term, it is an abstract concept which cannot be sim-
ply defined. You use “human energy” to turn the ignition key
when you start a car. The ignition key engages the battery
which converts chemical energy to electrical energy. The
electrical energy from the battery is used in the starter to
produce the mechanical energy which turns the flywheel
which in turn starts the engine. The engine then converts
chemical energy from fuel into heat energy. The heat energy
turns into mechanical energy which propels the car. If it is
dark you turn on the car’s headlights, which convert electri-
cal energy from the battery into light energy. If an animal
runs in front of your car you honk the horn (converting
electrical energy into sound energy) and step on the brakes
(converting mechanical energy into heat energy). The basic
points to remember in this hypothetical exercise are that
(1) energy in some form is involved in all our activities, (2)
energy can appear in many different forms, and (3) energy
can be changed from one form to another. We will begin
our discussion by considering mechanical energy, one of
the most recognizable forms of energy.

Consider a simple frictionless pendulum (or swing) as
shown in Figure 3.1. If we do work by applying a force to
the pendulum we can move it from its rest position B to
position A. If the pendulum is now released from position
A it will gain speed until it reaches B, then lose speed until
it reaches C, and then return through B to A. If the pen-
dulum is truly frictionless the motion will repeat itself indef-
initely, reaching the same height each time at A and C and
having the same speed at B. There is an implication here
that something is conserved, but that “something” can be nei-
ther height nor speed because both change throughout the
motion.

We define the conserved quantity as total mechani-
cal energy, energy because of position and energy because
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of motion. The energy from position is termed gravita-
tional potential energy expressed as

GPE = mgh = wh (3.9)

where m is the mass of the pendulum, g is the gravitational
constant, and h is the pendulum’s height above its rest posi-
tion. The GPE of the pendulum is just equal to the work
done by a force (equal to the pendulum’s weight, w, which
is the product mg) in lifting the pendulum to height h
above its rest position. The energy from motion is termed
kinetic energy, expressed as

KE = mv2 (3.10)
2

where m is the pendulum mass and v is its speed (magnitude
of velocity) at any instant. The total mechanical energy of
the pendulum is equal to the sum of KE and GPE and is
conserved. In other words it is constant. As KE increases
GPE decreases (and vice versa) so that their sum is always
the same. As the pendulum goes from position A through
position B to position C and back again, there is a contin-
ual transfer of energy from all potential (at A and C because
the pendulum is not moving there) to all kinetic (at B where
the speed is greatest). At the in-between points the energy
is a combination of potential and kinetic, but at any point
in the motion the sum of the potential and kinetic energy
is exactly the same as at any other point.

Potential energy may also be explained with a stretched
rubber band, a compressed spring, or a stretched drum-
head. Potential energy associated with stretching or com-
pressing objects is more relevant to our studies than is
gravitational potential energy. For example, the potential
energy of a spring is defined as

PE = sd2 (3.11)
2

where s is a “stiffness” associated with the spring and d is
the displacement magnitude of the spring from some rest
position. In the preceding example of the pendulum the
force required to lift the pendulum is constant (and equal
to the weight of the pendulum). The force required to com-
press (or stretch) the spring, however, increases as the spring
is compressed. The work done in compressing the spring is
proportional to the displacement and to the force which in
turn is proportional to the displacement. Hence, the work
done in compressing the spring is proportional to the square
of the displacement. Because the potential energy of the
spring is just equal to the work done in compressing it, the
potential energy of the spring is proportional to the square
of the displacement. A mass attached to the spring will be
accelerated and decelerated as the spring pushes and pulls
on it. The kinetic energy of the mass at any instant will be

KE = mv2 (3.12)
2

just as in the case of the pendulum.
The greater the amount of work done to raise a pen-

dulum or to compress a spring, the greater its potential
energy becomes. We have seen in the pendulum and spring
examples that the potential energy in each case is just equal
to the work done in raising the pendulum and in compress-
ing the spring, respectively. We can then surmise that
energy—potential, kinetic, or any other form—must be
expressed in the same units as work, namely the joule.

Whenever a given physical quantity remains constant
in a changing situation we generalize the result as a law. In
this case the law states that the total mechanical energy (the
sum of kinetic and potential energies) of a system remains
constant when no frictional forces are present. In any real
system there will always be some friction present and so
this law is only an approximation of reality. However, it is
still useful for analyzing vibrating systems, so long as its
limitations are not forgotten.

3.8 Other Forms of Energy

What becomes of mechanical energy when friction is
present? Consider the kinetic energy produced by a Girl
Scout rubbing two sticks together. Where does this energy
go? It turns into a different form of energy, one which we
observe as heat in the sticks. Whenever mechanical energy
disappears because of friction, heat energy appears. If we
accurately measure the total heat energy produced and the
total mechanical energy that disappears in a given situa-
tion, we would discover that the two amounts are equal;
the mechanical energy lost equals the heat energy gained.
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Exercises

3.1 Compute the average velocity in each of the following
cases. An auto moves 60 m west in 100 s. A bicycle moves
1 cm in 1 s. A person walking moves -0.1 cm in 10-3 s.

3.2 Compute the average acceleration for each of the fol-
lowing cases. The speed of an auto changes 6000 cm/ s in
10 s. The speed of a bicycle changes -1.0 cm/s in 10-2 s.

3.3 Instantaneous velocity can be determined by taking a
very small change in displacement (represented as ∆d) and
dividing it by the very small elapsed time (∆t) to give
v = d/∆t. Assume that a vibrating string moves a distance
of 0.001 cm in 0.000 1 s and calculate the instantaneous
velocity. (The ∆ notation is used to indicate a small change
of a quantity such as time, distance, etc.)

3.4 The relationship among instantaneous velocity, dis-
placement, and time can be written v = ∆d/∆t. If ∆d =
0.50 cm and ∆t = 0.01 s, find the instantaneous velocity.
If v = 100 cm/s and ∆t = 0.05 s, find ∆d. If v = 100 cm/s
and ∆d = 0.20 cm, find ∆t.

3.5 The instantaneous acceleration of an object can be writ-
ten: a = ∆v/∆t. When ∆v = 0.10 cm/s and ∆t = 0.05 s, find
a. When a = 6.0 cm/s2 and ∆t = 0.05 s, find ∆v. When a
= 5.0 cm/s2 and ∆v = 0.10 cm/s, find ∆t.

3.6 Imagine that you are driving your car on a perfectly
straight highway. Calculate your acceleration for each of
the following situations. You increase your speed from 20
km/hr to 40 km/hr in 10 s. You decrease your speed from
40 km/hr to 20 km/hr in 5 s. You remain at a constant
speed of 30 km/hr for 20 s.

3.7 Explain why spiked heels will puncture a hard floor
while a normal heel will not. As an example, compare the
pressure exerted by a 50 kg woman wearing 1 cm2 heels to
that of a 100 kg man wearing 50 cm2 heels

3.8 The blowing pressure in a clarinet player's mouth is
2000 N/m2. What force is exerted on a clarinet reed area of
1 cm2 by the blowing pressure. (The reed area should be
converted to m2 before calculating the force.)

3.9 Air near sea level has a mass density of 1.3 kg/m3 and
a corresponding weight of 12.7 N/m3. Although the den-
sity of the atmosphere decreases with altitude, the total
amount of air is equivalent to a column of "sea level air"
about 7900 meters high. What is the pressure of this air
column (expressed in N/m2 and Pa)? This pressure is

referred to as atmospheric pressure, which as you know
changes with altitude and with changing weather patterns.

3.10 How high a column of water would be required to
produce a pressure equivalent to that of the atmosphere?
(Water has a density of approximately 1000 kg/m3.)

3.11 Calculate the potential energy of a spring with a
spring constant of s = 500 N/m stretched 5 cm from its
rest position.

3.12 If the spring in Exercise 3.11 is stretched in 0.5 s,
what power is required?

3.13 How much work do you do in pushing your bicycle
100 m up a hill if a constant force of 10 N is required?

3.14 If the bicycle of Exercise 3.13 is pushed up the hill
in 10 s, what power is required? How much power is
required if 1000 s is taken?

3.15 If a clarinet reed is moved 1 mm under a force of 0.2
N, how much work is done? If the reed vibrates 500 times
per second and the work is done during one-quarter of a
vibration, what power is required?

3.16 Total energy of 500 J is received during a time of 10 s.
What is the power? If the receiving surface has an area of
10 m2, what is the intensity?

3.17 A microphone diaphragm has a diameter of 10 mm.
What power (in watts) does it receive from a sound hav-
ing an intensity of 10-5 W/m2? How much energy does it
receive in 25 s?

Activities

3.1 Demonstration of atmospheric pressure: Watch a can
get crushed by the atmosphere as it is evacuated. Try to
pull apart the two halves of an evacuated spherical shell.

3.2 Demonstration of energy conservation: Make a pen-
dulum by suspending a large mass on a light string. Set it
into motion. Observe the time required for the motion to
cease. What becomes of the energy?

3.3 Repeat Demonstration 3.2 for a mass on a spring.

3.4 Demonstration of Bernoulli's law: Place a Ping-Pong ball
inside a funnel through which air is streaming upward
through the narrow end. The ball will not be blown up
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and out of the funnel. Now invert the funnel and the ball
will be held in position rather than blown away by the air.
The airflow around the ball is constricted and the pressure
is consequently less than the atmospheric pressure below
the ball. The ball is actually pushed into the region of lower
pressure above it by the greater pressure below it, so that
it remains supported in midair.

3.5 The Bernoulli force can be demonstrated by placing a
small card (3×5) on a table. Place a thread spool on end and
centered on the card. Use a tack pushed through the cen-

ter of the card to keep it centered on the spool. Blow
through the spool and lift it away from the table. The card
will also come.

3.6 Get identical spherical balloons. Blow one up to twice
the radius of the other. Paste stickers on the balloons to just
cover their surfaces. How many times as many stickers are
required to cover the large balloon? Total balloon material
can be thought of as total sound power. The larger a balloon
becomes as it is blown up the less balloon material there is per
unit surface area—power per unit area or intensity.
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mass-spring system as it varies in time (horizontal axis) is
shown in Figure 4.4. The displacement (vertical axis) of a
wave as it varies along a string (horizontal axis) is shown in
Figure 6.6. This is just a “snapshot” at an instant as the
wave travels long the string. If one were to observe a single
point on the string, its displacement would vary in time
and could be represented by a sinusoid similar to that of
Figure 4.4.

6.6 Energy in Waves

The energy in waves comes in two forms with which
we are familiar (see Chapter 3): KE associated with particle
speeds and PE associated with deformations in the medium.
When a force produces a transverse wave in a medium such
as a string (or a membrane or a bar) the force does work
on the medium which results in an increase of energy in
the medium. The disturbance travels along the string,
deforming and changing the speed of local sections of the
string as it passes. The KE and PE associated with the dis-
turbance travel along with the disturbance.

When a vibrating source such as a loudspeaker
diaphragm pushes and pulls on the molecules in the sur-
rounding air it does work on the molecules and so increases
their energy. In some regions the velocity of the air molecules
increases, and the KE density is also increased. (Refer to
Chapter 3 for a discussion of energy density as energy per
unit volume.) In other regions the air molecules are com-
pressed into a smaller space resulting in an increased pres-
sure with its associated increase in PE density. When a
sound wave travels through the air any local region will
experience changes in both KE density and PE density as
the wave passes. The total energy density is just equal to
the sum of the KE and PE densities and to the maximum
of either. (This is analogous to the total energy of a simple
vibrator being equal to the sum of its KE and PE or to the
maximum of either.) Pressure is more easily measured than
speed, so the measurement of energy density is most often
in terms of PE density.

6.7 Summary

The oscillations of a vibrating object travel outward as
waves through the surrounding medium. The properties
of the medium, particularly the intermolecular forces, deter-
mine what wave types can propagate. Both transverse and
longitudinal waves can travel in solids. Fluids can only carry
longitudinal waves because the interactions between mole-
cules in fluids are weaker than in solids. Both transverse
and longitudinal waves can be represented by sinusoids,
with the positive value of the sinusoid indicating a positive
displacement or a positive pressure. The wave speed on a
string is proportional to the square root of the tension-to-

density ratio. The wave speed in gases is proportional to
the square root of the pressure-to-density ratio. Wave speed
is equal to the product of frequency and wavelength. The
wave speed in a medium may be considered constant unless
properties of the medium change. Waves carry potential
and kinetic energy through a medium in which they travel.
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Questions

6.1 Describe how an impulse travels through a solid and
how the "internal" forces of a solid help to transmit the
impulse. What keeps the solid from coming apart?

6.2 Describe how an impulse travels through a gas and
how the “internal” forces of a gas help to transmit the
impulse. What keeps the gas from coming apart?

6.3 What are several disturbances that travel in a gas? In a
liquid? In a solid?

6.4 What materials (solid, liquid, gas) will transmit longi-
tudinal waves? Why does a gas not transmit both kinds of
waves?

6.5 If a transverse wave cannot be propagated through liq-
uids, how do you explain water waves? What is the
medium for these waves?

6.6 What are displacement, velocity, and acceleration for
waves on a string?

6.7 What are displacement, velocity, and acceleration for
waves in a gas?

6.8 When a clarinet is played, is the clarinet reed free or
driven? Is the wave transverse or longitudinal? Does the
wave travel in a solid or a gas?



6.9 Repeat Question 6.8 for the vocal folds and also for
the vocal tract.

6.10 Repeat Question 6.8 for a piano string and for a
bowed violin string.

6.11 Repeat Question 6.8 for an oboe.

6.12 Repeat Question 6.8 for a drumhead and for a chime.

Exercises

6.1 Equations 6.1 and 6.2 give wave speeds for waves in a
string and waves in a gas, respectively. Explain how both
give the same units of m/s or cm/s for wave speed.

6.2 A wave has a frequency of 500 Hz and a wavelength
of 0.01 m. What is the speed of the wave?

6.3 Compute the wavelength of a wave with a frequency
of 100 Hz and a speed of 1.0 m/s.

6.4 Given a speed of 10.0 m/s and a wavelength of 0.10
m, find the frequency.

6.5 The tension in a string is 0.1 N, and the string has a
mass of 10-5 kg and a length of 1.0 m. What is the speed
of waves in the string?

6.6 The ambient pressure in air is 105 Pa and the density of
air is 1.3 kg/m3. Calculate the speed of sound in these con-
ditions.

6.7 Take the speed of sound in air to be 340 m/s. What is
the wavelength in air if f = 340 Hz? What is the frequency
when the wavelength is 0.10 m? What is the wave speed
in helium if f = 1000 Hz and the wavelength is 0.97 m?

6.8 The velocity of sound in air is about 340 m/s. If the
space between the Earth and the Moon were filled with
air, how long would it take sound to travel from the Moon
to the Earth (a distance of 4×106m)?

6.9 Calculate the speed of sound at the following temper-
atures: (a) 70'C, (b) 32'C, (c) 12'C, (d) 0° C, and (e) 20°
C.

6.10 Players bring their trombones in from the cold (0°
C) outdoors and sound a note without warming up. What
is the wave speed in their instruments under this condi-

tion? After warming up, the air in their instruments has a
temperature of 35° C. What is the wave speed in the
warmed-up condition? If they sounded a frequency of 110
Hz while cold, what frequency will they sound after warm-
ing up, assuming the wavelength is the same in both tem-
perature conditions?

6.11 An adult male vocal tract from larynx to mouth is
approximately 17 cm in length . How long does it take a
sound wave to travel from larynx to mouth if the temper-
ature is 35° C?

6.12 How long does it take a sound wave to travel from
the stage to the back of a small auditorium (a distance of 20
m) if the air temperature is 25° C?

6.13 Musical instrument wavelengths remain almost the
same but their frequencies change with wave speed.
Frequency changes of 0.5% may be important for musi-
cal purposes. What temperature change will produce a fre-
quency change of this amount?

6.14 A woofer in a loudspeaker system has a diameter of
40 cm. What frequency corresponds to a wavelength equal
to the loudspeaker diameter? Answer the same question
for a midrange diaphragm diameter of 8 cm.

6.15 Determine the range of wavelengths for audible sound
if the range of frequencies is 20–20,000 Hz.

6.16 A tuning fork sounds a frequency of 440 Hz. What is
the wavelength of the resulting sound in air if the wave
speed is 35,000 cm/s?

6.17 A trombone produces a sound with a wavelength of
100 cm. What frequency is it sounding if the air temper-
ature is 25° C?

6.18 A symphony broadcast originating in Boston travels
west at the speed of light (300,000 km/s) to a listener 4000
km distant. How long does it take the symphony sound
to reach the listener? How long does it take the symphony
sound within the concert hall to reach a listener 25 m away
from the orchestra?

Activities

6.1 Observe longitudinal and transverse waves in a hori-
zontally suspended slinky. Waves can also be seen in a
slinky lying on a table.
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CHAPTER 10

As noted in the previous chapter, large standing waves
can occur at any frequency on a "long" string where

the relationships between incident and reflected waves need
be considered at only one end of the string. In this chap-
ter we will consider the conditions that must be satisfied
to produce standing waves on "short" strings and in "short"
tubes where relationships between incident and reflected
waves must be considered at both ends of the system. In
particular, the boundary conditions at each end of a string
or tube determine the natural modes and natural frequen-
cies for standing waves. The same concepts are extended
to standing waves in two- and three-dimensional systems.

10.1 Traveling Waves and Standing
Waves

It is important to understand the differences between
traveling and standing waves and their respective represen-
tations. A traveling wave on a string is illustrated in Figure
10.1 where the solid curve represents the displacement of the
string at some initial time and the dashed curve represents
the displacement at a later time. The maximum displace-
ment shown at point A at the initial time moves to point B
at the later time. At any point along the string (A for exam-

ple) the displacement changes from large positive, to zero,
to large negative, to zero, and back to large positive as the
wave travels along the string.

A standing wave on a string is illustrated in Figure 10.2
where the solid curve represents the displacement along the
string at some initial time and the dashed curve represents
the displacement at a later time. At antinodal point A the
displacement changes from large positive, to zero, to large
negative, to zero, and back to large positive as time pro-
gresses. However, at nodal point B the displacement
remains zero at all times.

10.2 Standing Waves on Strings

Strings used on musical instruments such as guitars,
violins, or pianos are fixed at both ends. Any disturbance
produced on such a string will travel to the two ends of the
string where it will be reflected in accordance with the rules
discussed in Chapter 9. The various waves traveling back
and forth along the string will interfere with each other.
Nodes always exist at the two fixed ends of the string but
may or may not exist at other points on the string. If we
vibrate the string at just the right frequencies, we can pro-
duce standing waves where some parts of the string are sta-

Standing Waves

A B

Figure 10.1 Traveling wave on a string. The solid curve
shows the string's displacement at some initial time and the
dashed curve shows the string's displacement at a later time.
The arrow shows the direction of wave travel.

A

B

Figure 10.2 Standing wave on a string. The solid curve
shows the string's displacement at some initial time and the
dashed curve shows the string's displacement at a later time.



tionary and where other parts move with maximum ampli-
tude. The standing waves are examples of the natural modes
of multimass systems discussed in Chapter 5. We must now
explore these natural modes in more detail.

The simplest standing wave pattern which can be pro-
duced on a string fixed at both ends is that shown in Figure
10.3A. It consists of a node at each end of the string and
an antinode (point of maximum vibration) in the center.
The length of the string in this case is one-half wavelength.
The frequency corresponding to this wavelength is called
the fundamental frequency of the vibrating string, so-called
because it is the frequency associated with the first natural
mode which can form a standing wave pattern on the
string. If the string is vibrated more rapidly (thus increasing
the frequency) another standing wave pattern eventually
results, as shown in Figure 10.3B. This pattern consists of
a node at each end and one in the center. In this case the
length of the string is equal to one wavelength. The wave-
length is half as long and the frequency twice as great as in
the preceding case because the wave speed is the same for all
frequencies. The next standing wave pattern which can be
produced is shown in Figure 10.3C; the frequency in this
case is three times the fundamental frequency. These fre-
quencies are the first three natural mode frequencies of the
string and the wave pattern associated with each frequency
is called a natural mode of vibration.

The natural frequencies can also be calculated from the
relation

v = f λ (10.1)

where the wave speed is determined from the string’s den-
sity and tension. The wavelength can be expressed in terms
of the length of the string. For the first mode half a wave-
length is equal to the length of the string as can be seen in
Figure 10.3A. The wavelength of the first mode is then
twice the length of the string or λ = 2L. This results in

f1 = v/λ1 = v/2L (10.2)

for the fundamental frequency of a string fixed at both ends.
Similarly, for the second mode the wavelength is equal to the
string length or λ = L. This results in a second mode fre-
quency of

f2 = v/λ2 = v/L (10.3)

which is twice the frequency of the first mode. The third
mode has a wavelength one-third that of the first mode and
a frequency three times that of the first mode, and so on
for the higher modes.

From the foregoing we see that the frequency of each
mode is the mode number multiplied by the fundamental
frequency for a string fixed at both ends. If the fundamen-
tal frequency is 100 Hz, the second mode has a frequency
of 200 Hz, the third 300 Hz, and so on. We can summarize
by saying that the natural frequencies of a “fixed-fixed”
string, that is, a string fixed at both ends, are given by

fn = n× f1 (10.4)

where n = 1, 2, 3, ... . The natural frequencies of the fixed-
fixed string are termed harmonics because they are inte-
ger (whole number) multiples of the fundamental
frequency. More will be said in Chapter 16 about harmon-
ics and their role in musical harmony.

10.3 Standing Waves in Tubes

While musically useful strings are usually fixed at both
ends, musically useful air-filled tubes can be open at both
ends, as with the flute, or closed at one end and open at
the other, as with the clarinet. We can use the same basic
techniques to explore natural modes for air columns as we
used for strings.

In a tube whose diameter is small compared to the
wavelength of waves traveling in it, the pressure waves in
the air in the tube exhibit many of the same features as the
standing waves in a string, except that pressure is approxi-
mately zero at the open end of a tube. That is, a pressure
node exists at an open end. This is because the air outside
the tube is at atmospheric pressure which is the reference
or zero pressure. Hence, at an open end the incident and
reflected waves add together destructively, thus producing
a pressure node. At the closed end of a tube, a pressure wave

76 CHAPTER 10

3 /2

/2

L

(A)

(B)

(C)

FIXED END FIXED END

Figure 10.3 Natural modes of string fixed at both ends: (A)
first or fundamental mode with λ = 2L, (B) second mode
with λ = L, and (C) third mode with λ = 2L/3. The solid
curves show the string with maximum displacement and the
dashed curves show the string one-half period later with
maximum displacement.
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reflects with the same phase as the incident wave. The inci-
dent and reflected waves then add together constructively,
producing a pressure antinode at the closed end of a tube.

In many ways, pressure waves in an open-open tube
are analogous to displacement waves on a fixed-fixed string.
The simplest standing wave pattern that can be produced
in a tube open at both ends is shown in Figure 10.4. It con-
sists of a node at each end of the tube and an antinode
(point of maximum pressure fluctuation) in the center. The
length of the tube in this case is one-half wavelength. The
frequency corresponding to this wavelength is the funda-
mental frequency of the air column, so-called because it is
the frequency associated with the first (or fundamental)
natural mode that can form a standing wave pattern in the
tube. There are actually two representations of the wave
(similar to those in Figure 6.4) shown in Figure 10.4 so
that we can be reminded of the correspondence between
the graphical and “molecular” representations.

If the tube is driven at a higher frequency another
standing wave eventually results as shown in Figure 10.5.
This pattern consists of a pressure node at each end and
one in the center. In this case the length of the tube is equal
to one wavelength. The wavelength is half as long and the
frequency twice as great as in the preceding case because
the wave speed is the same for all frequencies. The third
mode would have three antinodes, a frequency three times
that of the first mode, and a wavelength one-third that of
the first mode.

The natural frequencies can be calculated from
Equations (10.1)–(10.4) that were used for the fixed-fixed
string. We can summarize by saying that the natural fre-
quencies of a tube open at both ends are given by Equation
(10.4) just as for the fixed-fixed string. The natural fre-
quencies of the open-open tube are termed harmonics
because they are integral multiples of the fundamental fre-
quency.

We consider now the simplest standing wave pattern
that can be produced in a tube closed at one end and open
at the other as shown in Figure 10.6. There is a pressure
node at the open end of the tube as before. However, there
is a pressure antinode at the closed end of the tube because
the pressure can become higher or lower than atmospheric
pressure. The standing wave shown in Figure 10.6 is the
smallest part of a sine wave that can “fit” in the tube and
still satisfy the endpoint conditions. Clearly this is one-
quarter of a wavelength, so the fundamental wavelength is
four times the length of the tube. The next smallest frac-
tion of wavelength that “fits” in the tube is shown in Figure
10.7. For this second natural mode three-fourths of a wave-
length fits in the tube. This mode has a wavelength equal to
one-third that of the fundamental and a frequency three
times that of the fundamental.

The modal frequencies of a closed-open tube can be
calculated in a manner similar to that used for the fixed-
fixed string. Referring to Figure 10.6, we see that the wave-
length of the lowest mode is four times the length of the
tube or λ = 4L. This results in

/2

L

(C)

OPEN END OPEN END

Figure 10.4 First (or fundamental) natural mode of an
air-filled tube open at both ends with λ = 2L. The solid
curve shows the tube when there is maximum positive
pressure at the antinode. The dashed curve shows the tube
one-half period later when there is maximum negative
pressure at the antinode. The upper molecule-filled tube
corresponds to the solid curve and the lower tube corresponds
to the dashed curve.

L

OPEN END OPEN END

Figure 10.5 Second natural mode of an air-filled tube open
at both ends with λ = L. The solid curve shows the tube
when there is maximum positive pressure at one antinode
and maximum negative pressure at the other antinode. The
dashed curve shows the tube one-half period later. The upper
molecule-filled tube corresponds to the solid curve and the
lower tube corresponds to the dashed curve.
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f1 = v/λ1 = v/4L (10.5)

as the frequency of the fundamental mode. For the second
natural mode (Figure 10.7), three-fourths of a wavelength
is equal to the tube length or λ = 4L/3 which results in

f2 = v/λ2 = 3v/4L
(10.6)

for the frequency of the second mode, which is three times
the frequency of the first mode. By studying higher modes
we discover that the higher natural mode frequencies are
odd integer multiples of the fundamental frequency. We
can summarize by saying that the natural frequencies of a
closed-open tube are given by

fn = (2n -1)× f1 (10.7)

where n = 1, 2,3 ... .
Two interesting features become apparent when we

compare an open-open tube with a closed-open tube. First,
for open-open and closed-open tubes of equal length, L,
and with the same wave speed, v, the fundamental fre-
quency of the open-open tube (f1 = v/2L) is twice that of
the fundamental frequency of the closed-open tube (f1 =
v/4L). Secondly, the open-open tube has natural frequencies
that are integer multiples of its fundamental frequency (see
Equation 10.4), whereas the closed-open tube has natural

frequencies that are odd integer multiples of its fundamen-
tal frequency (see Equation 10.7).

10.4 Losses and Impedance

Two important things happen when the initial and
reflected waves travel back and forth in a tube. The travel-
ing waves produce large standing waves at the natural fre-
quencies. These standing waves have antinodes at some
points in the tube produced by constructive interference
and nodes at other points produced by destructive inter-
ference. Traveling waves in the tube lose part of their energy
to frictional forces at the walls of the tube. These losses
limit the amplitudes of the standing waves. Because the
losses are generally greater at higher frequencies the higher
frequency modes will generally have smaller amplitudes.

The following method can be used to determine exper-
imentally the natural frequencies of a tube. In order to dis-
cover the frequencies at which the tube resonates and thus
produces the largest standing waves, a variable frequency
sine wave oscillator is used to drive a small loudspeaker that
is placed in the closed end of a tube as shown in Figure
10.8. A microphone is also inserted in the closed end to
measure pressure, and the corresponding microphone volt-
age output is displayed on an oscilloscope. A quantity
termed impedance (a kind of “resistance” to flow) can be
then be defined as the ratio of pressure (measured by the
microphone) to the volume of airflow (produced by the
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L

/4

CLOSED END OPEN END

Figure 10.6 First or fundamental natural mode of an air-
filled tube closed at one end and open at the other with λ =
4L. The solid curve shows the tube when there is a maximum
positive pressure at the antinode and the dashed curve shows
the tube one-half period later when there is maximum
negative pressure at the antinode. The upper molecule-filled
tube corresponds to the solid curve and the lower tube
corresponds to the dashed curve.

L

3 /4

CLOSED END OPEN END

Figure 10.7 Second natural mode of an air-filled tube
closed at one end and open at the other end with λ = 4L/3.
The solid curve shows the tube when there is maximum
positive pressure at one antinode and maximum negative
pressure at the other antinode. The dashed curve shows the
tube one-half period later. The upper molecule-filled tube
corresponds to the solid curve and the lower tube corresponds
to the dashed curve.
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quencies of membranes are often not integer multiples of
the fundamental. Rooms have natural modes which can
be composed of one, two, or three-dimensional standing
waves. Their natural frequencies are often not integer mul-
tiples of the fundamental.
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Questions

10.1 Why is pressure used to describe waves in tubes while
displacement is used to describe waves in strings? (Hint:
Which is easier to measure in air-filled tubes?)

10.2 Do displacement antinodes occur at open or closed
ends of air-filled tubes? Displacement nodes?

10.3 What gives rise to "dead spots" in rooms?

10.4 Describe how treating walls with absorbing materi-
als and placing objects in a room help to alleviate "dead
spots" in the room.

10.5 By what fraction of a wavelength are a node and its
nearest antinode separated? Nearest neighbor antinodes?
Nearest neighbor nodes?

Exercises

10.1 Sketch the third, fourth, and fifth modes for a fixed-
fixed string. Express the frequency of each mode in terms
of the fundamental frequency, f.

10.2 Sketch the third, fourth, and fifth modes for an open-
open tube. Express the frequency of each mode in terms
of the fundamental frequency, f.

10.3 Sketch the third and fourth modes for pressure waves
in a molecule-filled tube for an open-open tube.

10.4 Sketch the third and fourth modes for pressure waves
in a closed-open tube.

10.5 List frequencies of the next three modes of waves on
a fixed-fixed string if its first or fundamental mode has a
frequency of 200 Hz. What is the relationship of the
higher mode frequencies to that of the fundamental?

10.6 List frequencies of the next three modes of waves in
an open-open tube if its first or fundamental mode has a fre-
quency of 200 Hz. What is the relationship of the higher
mode frequencies to that of the fundamental?

10.7 List frequencies of the next three modes of waves in
a closed-open tube if its first or fundamental mode has a
frequency of 200 Hz. What is the relationship of the higher
mode mode frequencies to that of the fundamental?

10.8 Calculate the frequencies for (1,0), (1,2), (2,1), and
(2,2) modes of a square membrane with a side length 0.5
m if the wave speed is 30 m/s. What special relationship
exists between the (1,2) and (2,1) modes that does not hold
for rectangular membranes in general?

10.9 Determine the first, second, and third natural fre-
quencies for an open-open pipe 240 cm in length.

10.10 Determine the first, second, and third natural fre-
quencies for a closed-open pipe 240 cm in length.
Compare your results with those of Exercise 10.9.

10.11 Determine the first natural frequency for an open-
open pipe 240 cm in length when filled with carbon diox-
ide (v = 260 m/s). Do the same thing for a case in which the
pipe is filled with helium (v = 970 m/s). Compare your
results with the first natural frequency of the pipe in
Exercise 10.9.

10.12 Find the first three natural frequencies of a 50 cm
length of nylon string having a density of 0.01 gm/cm and
stretched with a force of 1 N.

10.13 A certain pipe of length 36 cm sounds A4 = 440
Hz. What length might be expected for a similar pipe that
sounds A3 = 220 Hz?

10.14 You are given a string of length 55 cm. What are the
wavelengths of its first four natural modes?
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10.15 Sketch the displacement at successive intervals of
time during one cycle for a string vibrating in its third
mode. Also indicate its direction of motion. (Hint: Use
the lower part of Figure 10.3 as a basis, but scale its ampli-
tude appropriately for each time interval.)

10.16 A cylindrical-tube musical instrument is open at one
end and closed at the other. If its second natural frequency
is 300 Hz, what are the frequencies of its first, third, fourth,
and fifth modes?

10.17 Determine the wavelength (in cm) of the second
mode for a tube closed at one end and open at the other
if the length of the tube is 80 cm.

10.18 Determine the frequency (in Hz) of the first mode
of an open-open tube if its length is 34 cm and the wave
speed is 34,000 cm/s.

10.19 The wave speed is 22,000 cm/s on a string of length
44 cm. What is its first natural frequency? What is its
fourth natural frequency?

10.20 By how much would the tension on a string have
to be increased to double its frequency?

10.21 A guitar string sounding flat is found to have a fre-
quency 6% too low. By how much must the string's tension
be increased to make it sound in tune?

10.22 An organ is to be designed to sound the lowest note
possible but the pipe length is limited by a floor-to-ceil-
ing distance of 6 m. What is the lowest frequency possi-
ble if an open-open pipe is used? If a closed-open pipe is
used?

Activities

10.1 "Standing waves in strings"—The apparatus shown
in Figure 10.11 is set up to produce standing waves in a
wire. A 60-Hz driver is attached to the left end. The den-
sity of the wire is D = 0.000642 kg/m. The length of the
wire is 1.0 m. The tension applied to the wire can be con-
trolled by adding mass. When a mass of 0.3 kg is sus-
pended from the wire, the fourth mode is produced as
shown. What is the wave speed for this mode? What is the
wavelength? What mass must be suspended to produce the
second mode? The first mode?

10.2 A loudspeaker is set in the corner of a hard-walled
rectangular room with dimensions of 3.0×4.0×5.0 m. A
sine wave generator is used to drive it. A sound level meter
is placed in a diagonally opposite comer to measure sound
pressure levels. A maximum sound pressure level is
observed to occur at a frequency of 78 Hz. What room
mode is being excited? What is the approximate sound
speed in the room? For what mode and at what next higher
frequency would another sound pressure level maximum
occur?

10.3 Observe the effect of resonance while you are singing
in a shower or bathtub. (R. D. Edge, 1985, "Physics in the
Bathtub or, Why Does a Bass Sound Better While
Bathing?," Phys. Tchr. 23, 440–444).

10.4 Listen to standing waves in a tube. (J. M. Reynolds,
1973, "Sound in a Tube," Phys. Tchr. 11, 31).

100 CM
DRIVER

STRETCHED
STRING

PULLEY

MASS

Figure 10.11 Apparatus to demonstrate standing waves in a
wire.
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in Figures 11.2 and 11.3 might be those of a struck mem-
brane or struck string, respectively. On the other hand, sys-
tems driven with a periodic driving force will have a
periodic response. Such is at least approximately true for
bowed strings and sustained sounds of speech.

11.2 Analysis of Complex Waves

As noted above, each ingredient of a complex wave is a
sinusoid having a different frequency. The spectrum for a par-
ticular wave tells us the frequency and amount of each
ingredient present. The analysis of a complex wave therefore
means determining the spectrum of the wave. Several com-
mon methods are used to analyze complex waves in order
to determine spectra, including electronic filtering and dig-
ital Fourier analysis. Because the several spectral analysis
methods produce similar results, the conceptually simpler
filter method will be discussed.

A filter is a device which allows certain frequencies to
pass through unchanged, while other frequencies are elim-
inated. Think of a set of frequency filters as functioning
like a set of screens, each with a different mesh size. The
screens sort a conglomerate of gravel into coarse, medium,
and fine components. Likewise, a set of three filters (each
having a different set of characteristics) could be used to
separate a complex wave into low-, medium-, and high-fre-
quency components. Figure 11.4 shows how a complex
wave could be resolved into its components by passing it
through a set of filters. The high-resolution spectrum ana-
lyzer described in Chapter 7 may be thought of as being
composed of some 200 to 400 filters. The greater the num-
ber of filters, the more finely the frequency components
can be resolved during a spectrum analysis; that is, with
more filters smaller frequency differences may be detected.

As an example of the spectral analysis of complex
waves, consider the three waveforms shown in the left col-
umn of Figure 11.5. The waveforms shown are the pictures
obtained when three different “stylized” instruments are
sounded: (a) a tuning fork, (b) a clarinet, and (c) a trumpet.
Because of the complex nature of these waveforms, little
information can be gleaned by observing them. If the wave-
forms are analyzed with a spectrum analyzer to obtain their
spectra, as shown in the right column of Figure 11.5, the
pertinent information is more apparent. We see, for
instance, that the tuning fork waveform consists of only
one component, the fundamental, while the clarinet dis-
plays predominantly odd harmonics. The trumpet is seen to
have all harmonics, but the second harmonic has the great-
est amplitude.

11.3 Synthesis of Complex Waves

In Chapter 9 we used the superposition principle to
add waves having identical or only slightly different fre-
quencies. The same principle can be used when waves of
quite different frequencies are added together. The synthe-
sis of a complex wave implies that the resultant wave is con-
structed by adding together simple sinusoids, “piece by
piece.” A repetitive waveform of any shape can be con-
structed by this method if enough components are added
together. As a simple example of a graphical method used
to add sinusoids, a mass is attached to a spring which is
mounted on a frame in a boat. When the mass is set into
vibration it repeats its motion every second when observed
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COMPLEX WAVE

FILTERS SINUSOIDS

F1

F2

F3

Figure 11.4 The analysis of a complex wave with a set of
filters tuned to different frequencies. (The sinusoids shown
occur after the initial transients have decayed.)

WAVEFORM SPECTRUM

A
M
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U
D
E

TIME HARMONIC

(a)

(b)

(c)

Figure 11.5 Idealized waveforms and spectra of several
"musical instruments": (a) tuning fork, (b) clarinet, and (c)
trumpet.
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from inside the boat. The boat rocks up and down once
every eight seconds due to passing waves. When the motion
of the mass is observed from the dock, we see a resultant
motion that is the sum of two motions. If we plot the
motion of the mass as seen from the boat we obtain Figure
11.6A. Figure 11.6B is a plot of the motion of the boat as
seen from the dock. Using a synthesis approach and adding
these two yields Figure 11.6C, which is the motion of the
mass as seen from the dock.

The procedure used to add two waves graphically is
illustrated in Figure 11.6. A point along the time axis of
the two waves (Figures 11.6A and 11.6B) is marked by the
dashed vertical line. A ruler is used to measure the displace-
ment of each wave at this point in time along the vertical
line. The two measurements are added, keeping in mind
that displacements above the axis are positive numbers while
those below the axis are negative. A mark is made in Figure
11.6C representing the result of the addition. The proce-
dure is repeated for the remaining points on the waveforms.
Connecting the marks provides a smooth curve.

An equation representing pressure waves can be written
as

p = A sin (360 ft + φ) (11.2)

where p is the quantity you would plot on a graph of pres-
sure versus time, A is the pressure amplitude of the sinu-
soid, f is the frequency, t is time, and φ is the phase in
degrees. As an example, we can obtain the relative ampli-
tudes for the first two nonzero partials of a square wave as
1.0 and 0.33 from Chapter 7. We do not get information
on the relative phases which some experimentation would
show should be 0 in both cases. If the frequencies for these
partials are 1 Hz and 3 Hz, we can write an expression for
our square wave as

p = p1 + p2

where

p1 = 1.0 sin (360t)

and

p2 = 0.33 sin (1080t)

We now construct Tables 11.1 and 11.2 which give values
for p1 and p2 at different instants of time. Adding p1 and
p2 for each instant of time gives p.

To produce smoother curves the graphs showing p1,
p2, and p in Figure 11.7 were plotted at much shorter
time intervals than those given in Tables 11.1 and 11.2.
The data points from the tables are also shown in the fig-
ure. The lower graph is a sum of the upper two. The total
time interval from 0 to 1.0 s was chosen to cover one cycle
of vibration.

Now consider a different relative phase for p2 so that

p2 = 0.33 sin (1080t + 180)
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(A)

(B)

(C)

Figure 11.6 (A) Vibrating mass as seen from boat. (B)
Motion of boat as seen from dock. (C) Motion of mass as seen
from dock.

t 360t (360t + 0) sin (360t + 0) p1
0.0 0 0 0.00 0.00
0.1 36 36 0.59 0.59
0.2 72 72 0.95 0.95
0.3 108 108 0.95 0.95
0.4 144 144 0.59 0.59
0.5 180 180 0.00 0.00
0.6 216 216 -0.59 -0.59
0.7 252 252 -0.95 -0.95
0.8 288 288 -0.95 -0.95
0.9 324 324 -0.59 -0.59
1.0 360 360 0.00 0.00

Table 11.1 Steps in calculation of p1= sin(360t + 0). Time t is in
seconds and arguments for sine function are in degrees.

t 1080t (1080t + 0) sin (1080t + 0) p2
0.0 0 0 0.00 0.00
0.1 108 108 0.95 0.31
0.2 216 216 -0.59 -0.19
0.3 324 324 -0.59 -0.19
0.4 72 72 0.95 0.31
0.5 180 180 0.00 0.00
0.6 288 288 -0.95 -0.31
0.7 36 36 0.59 0.19
0.8 144 144 0.59 0.19
0.9 252 252 -0.95 -0.31
1.0 360 360 0.00 0.00

Table 11.2 Steps in calculation of p2=0.33 sin(1080t+0). The
starting phase is 0°. (Whenever the sine argument exceeds 360°, it
is adjusted to lie between 0° and 360° by subtracting 360°.)
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11.4 Outline a method by which a musical tone may be
artificially created.

11.5 Explain why identical notes plucked on a guitar and
a banjo have distinctly different sounds.

11.6 In what physical characteristics do loud, high violin
tones differ from soft, low flute tones?

11.7 Is a steadily blown trumpet a free or a driven system?
Will its pressure waveforms be periodic or nonperiodic?
Will its spectrum have harmonic or inharmonic partials?

11.8 Is a bowed cello string with vibrato a free or a driven
system? Will its displacement waveforms be periodic or
nonperiodic? Will its spectrum have harmonic or inhar-
monic partials?

11.9 Is a plucked guitar string a free or a driven system?
Will its displacement waveforms be periodic or nonperi-
odic? Will its spectrum have harmonic or inharmonic par-
tials?

11.10 Is a struck piano string a free or a driven system?
Will its displacement waveforms be periodic or nonperi-
odic? Will its spectrum have harmonic or inharmonic par-
tials?

11.11 Is a struck bass drumhead a free or a driven system?
Will its displacement waveforms be periodic or nonperi-
odic? Will its spectrum have harmonic or inharmonic par-
tials.

11.12 When a steady vowel sound is produced, is the sys-
tem free or driven? Will the resulting pressure waves be
periodic or nonperiodic? Will its spectrum have harmonic
or inharmonic partials.

11.13 When a plosive burst such as the /p/ in “plosive” is
produced, is the system free or driven? Will the resulting
pressure waves be periodic or nonperiodic? Will the spec-
trum have harmonic or inharmonic partials?

11.14 Are the partials in a nonperiodic complex wave har-
monic or inharmonic?

11.15 Do inharmonic partials produce a periodic or a non-
periodic wave?

Exercises

11.1 Consider two sinusoids given by sin (360ft) and sin
(360ft + φ), where φ is the phase. Plot these two sinusoids
for f = 2 Hz and φ= 90° over an interval of 1 second.

11.2 What is the amplitude of each wave in Exercise 11.1?
The frequency? The phase?

11.3 The conventional spectra in Table 11.5 represent six
waves, some simple and some complex. The number pre-
ceding each "sin" is the amplitude or the amount of that par-
ticular sinusoid present. What is the fundamental frequency
of each wave? What are the frequencies and amplitudes of
the higher partials for each wave? Are the higher partials
harmonic or inharmonic relative to the fundamental?

11.4 Wave 4 in Table 11.5 is the sum of two sinusoids dif-
fering in phase by 180°. What is the net result?

11.5 Wave 5 in Table 11.5 is an approximately triangular
wave. Plot one cycle of it on graph paper by plotting each
component separately and then graphically adding the
three components to form the complex wave.

11.6 Waves 5 and 6 in Table 11.5 have the same spectra.
However, they differ in phase. If both of them are plotted
and the wave shapes compared, they look different but
they will sound the same. Plot the two waves. Then plot
their spectra as bar graphs.

11.7 The relative amplitudes for the first few partials of a
sawtooth wave are 1, 1/2, 1/3, 1/4, 1/5, and 1/6. The rel-
ative phases for all partials are zero. Plot one cycle of the
sinusoid representing the first partial of the sawtooth wave
on a sheet of graph paper. Next plot two cycles of the sec-
ond partial with the proper relative amplitude. Repeat this
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Wave 1: 1.0 sin (360f1t) f1 = 100 Hz
Wave 2: 1.0 sin (360f1t) + (360f2t) f1 = 100 Hz, f2 = 200 Hz
Wave 3: 1.0 sin (360f1t) + (360f2t) f1 = 100 Hz, f2 = 205 Hz
Wave 4: 1.0 sin (360f1t) + (360f1t + 180) f1 = 100 Hz
Wave 5: 1.0 sin (360f1t) + 0.11 sin (360f3t +180) + 0.04 sin (360f5t) f1 = 100 Hz, f3 = 300 Hz, f5 = 500 Hz
Wave 6: 1.0 sin (360f1t) + 0.11 sin (360f3t) + 0.04 sin (360f5t) f1 = 100 Hz, f3 = 300 Hz, f5 = 500 Hz

Table 11.5 Various waves and their components.

COMPLEX WAVES 89
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for the remaining partials. Now graphically add all of these
sinusoids together to produce a fairly good approximation
to a sawtooth wave.

11.8 Repeat Exercise 11.7 but with arbitrary phases. What
happens to wave shape?

11.9 A soprano sings a steady A4 =440 Hz with no vibrato.
What are the frequencies of the partials in the sound? Are
they harmonic or inharmonic?

11.10 A male voice produces a steady vowel sound. The
resulting complex waveform is seen to repeat every 8 ms.
What are the frequencies of its partials? Are they harmonic
or inharmonic?

11.11 A complex tone is composed of four sinusoids hav-
ing frequencies of 100, 201, 302, and 403 Hz. Would the
partials be best described as harmonic, slightly inharmonic,
or very inharmonic?

11.12 A complex tone is composed of four sinusoids hav-
ing frequencies of 100, 200, 300, and 400 Hz. What is
the frequency of the second partial? Of the fundamental
or first partial?

Activities

11.1 Complex waves: analysis. A function generator is con-
nected to a band-pass filter and its output is observed on an
oscilloscope. When the function generator is set to pro-

duce sinusoids at a frequency of 200 Hz, the voltages in
the "sine" row of Table 11.6 are measured on the oscillo-
scope at the frequencies shown. Similar measurements are
made when the function generator produces square waves,
triangular waves, and sawtooth waves, as shown in the
table. What can you say about the spectrum for each of
the four wave types? Why were some voltages only slightly
different from zero measured?

11.2 Analyze various complex waves by running them into
an oscilloscope to see the waveform and a spectrum analyzer
to see the spectrum. Use a function generator, tape record-
ings, and microphone signals as inputs.

11.3 Synthesize various complex periodic waves with a
Fourier synthesizer. Run the output to an oscilloscope, a
spectrum analyzer, and a loudspeaker. Does the "output"
of the spectrum analyzer agree with the "input" of the syn-
thesizer? Change relative phases and observe the waveform
and the sound. Which change with phase? Why?

11.4 Listen to sound "through" a seashell, a papertowel
tube, and so on. Describe what you hear and explain why.

Function 200 Hz 400 Hz 600 Hz
Sine 10 0.01 0.02
Square 10 0.03 3.3
Triangular 10 0.02 1.1
Sawtooth 10 5 3.3

Table 11.6 Voltages measured at three different frequencies for four
different functions.
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In discussion of JNDs we discovered that at a constant
intensity level the ear can discriminate several thousand

frequencies. However, this represents a far too many fre-
quencies to be useful in music, where a few hundred fre-
quencies are found to be sufficient. The actual set of
frequencies used to create music has evolved over many
centuries. Melody (homophony), or tones played in
sequence, probably exerted some influence on the notes (or
frequencies) chosen. Multiple concurrent melodies
(polyphony) may have exerted further influences on the
tones selected. However, the appearance of harmony, in
which two or more tones are sounded concurrently to form
chords or other harmonic musical structures, has probably
had the most significant influence on the selection of notes
used in the scales of Western music. In parts of the world
where harmony play a less important role in music, the
tones selected differ from those in Western music. In this
chapter, after introducing some basic definitions, we will
consider some of the systems of tuning that have been given
serious consideration over the years. We will then briefly
consider a physical basis for the evolution of Western har-
mony.

16.1 Scales and Intervals

No one knows when humans created the first musical
melody, but we can be reasonably certain that the human
voice was the first musical instrument. The word melody
itself derives from two Greek words, melos (song) and
aoidos (singer), indicating the important role of our vocal
apparatus in producing melodies. Although we usually asso-
ciate the word “melody” with a pleasing succession of tones,
it is almost impossible to obtain agreement as to which suc-
cession of tones is pleasing and which is not. We have a
natural bias toward the succession of tones which our par-
ticular culture has dictated as “pleasant,” while the tones
used in other cultures may seem strange, or “out of tune.”

To avoid cultural bias, we define melody as a succession of
tones arranged in a particular order. Melodies in classical
music of the Western world are arranged as a series of def-
inite pitches. Melodies of the epic singing of Eastern
European countries may slip and slide in a seemingly ran-
dom way around a tonal center. Between these two extremes
there are other systems, such as the music of India and
American “soul” music which combine a set of basic pitches
with fluctuating tones (called microtones) having a much
smaller frequency variation.

The particular set of basic tones used to construct
melodies, when arranged in order of ascending and
descending pitches, is called a scale (from the Latin, scala,
“a ladder”). An individual frequency or pitch of a scale is
called a note, or tone, of the scale. (The word “note” is also
used to connote a symbol on a sheet of music paper or the
name of a musical tone.) Different scales are characterized
by the number of notes per octave; a chromatic scale has
12 notes per octave, a diatonic scale has seven, and a pen-
tatonic scale has five.

The “pitch spacing” between two notes is called an
interval and may be given special names such as octave,
fifth, third, etc. Intervals may be expressed in terms of fre-
quency ratios such as 2/1, 3/2, 5/4, etc. An octave is an
interval between two tones so that the ratio of their funda-
mental frequencies is 2/1. Probably because there is a near
identity of a tone with its octave, the octave appears in vir-
tually every system. We will limit our discussion of scales
to a description of the way in which the notes within an
octave are defined. The notation used to specify which
octave is being referred to will be that of the USA Standards
Association. In this notation, the octave numbering starts
on C, with C4 being middle C. A4 is the A above C4, C5
is the C an octave above middle C, C3 is an octave below
middle C, and so on.

Since the terminology of interval names has reference
to a piano keyboard, we digress briefly to consider the evo-
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lution of the piano. The piano keyboard was borrowed from
a much older instrument, the organ. In 1361 in the Saxon
city of Halberstadt an organ builder, Nicholas Faber, com-
pleted a three-manual instrument which was destined to
exert a substantial influence on all future organs. The upper
two manuals of the Halberstadt organ had a series of nine
front keys and five raised rear keys in groups of two and
three, as shown in Figure 16.1. Even though these keys were
made to be struck by the fists, this was the prototype of the
now well-known seven white and five black keys per octave.
(“Prototype” does not imply color, as black and white keys
were not used until 1475, and even at that time the con-
vention was reversed, a practice that prevailed for the next
300 years.)

The modern piano keyboard is shown in Figure 16.2
along with an example of musical notation. If we number
the white keys starting with C as one, we find that F is the

fourth white key or “fourth,” and G is the “fifth.” The
octave ends on the eighth white key, which is C again.
Consecutive white keys, however, actually contain two dif-
ferent types of interval: whole tones and the semitones. The
interval between any two consecutive keys, white or black,
is a semitone, regardless of whether we go from white to
black, white to white, or black to white. A whole tone is
arrived at by passing through two semitones. The interval
from C to D is a whole tone, while the interval from E to
F is a semitone. Musical intervals can be defined from any
starting note. Figure 16.2 shows that the interval from C
to G (a fifth) consists of 7 semitones, while a third (C to
E) consists of 4 semitones. The third of G is thus seen to
be B, while the fifth of G is the D above. But what is the fifth
of B? If we go up by 7 semitones we end on a black key,
F#, which is the fifth of B.

We have seen that intervals can be expressed as fre-
quency ratios. An octave is a frequency ratio of 2/1, a fifth
is a ratio of 3/2, a fourth is a ratio of 4/3, and so on. When
two intervals are combined, the frequency ratio of the com-
bined interval is given by the product of the original ratios.
For example, combining a fifth and a fourth gives an octave
whose frequency ratio is

(3/2)× (4/3) = (2/1)

The interval-combining procedure can be simplified
by expressing the intervals in such a way that they can be
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Figure 16.1 Third manual of the Halberstadt organ. (After
Praetorius’ Syntagma Musicum, 1619.)
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Figure 16.2 Section of a modern piano keyboard with note names (upper) and corresponding treble cleff and bass cleff musical
notation for the white keys (lower).



16.3 Calculate the fundamental frequencies for an equal-
tempered diatonic scale from C4 to B4 when A4 is tuned
to 440 Hz.

16.4 Calculate the fundamental frequencies for an equal-
tempered diatonic scale from C5 to B5 when A4 is tuned
to 440 Hz.

16.5 Consider the discussion of the A-major triad given
in the section entitled “Harmony and Its Evolution.”
Assume that each note of the chord has the first six har-
monics present. Calculate the frequency of every differ-
ence tone that will be present.

16.6 The cent can be defined as some scaling constant
times the logarithm of the frequency ratio of one one-hun-
dredth of a semitone. Let SC be the scaling constant and we
can write 1 cent = SC× log(1.00057779). Use a calculator
to determine the value of SC. How does it correspond to
the scaling constant in the text?

16.7. Any musical interval expressed as a frequency ratio
can be expressed in cents by Equation (16.2). What is the
interval in cents for a semitone whose frequency ratio is
1.059463?

16.8 What is the interval in cents for an octave whose fre-
quency ratio is 2?

16.9 What is the interval of a musical fifth expressed in
cents? Of a musical fourth? Does the tuning make a dif-
ference?

16.10 The frequency ratio for a semitone is defined as the
one-twelfth root of two so that the product of 12 of these
ratios gives the octave ratio as (21/12)12 = 2. How does it
correspond to the semitone frequency ratio in the text?

16.11 Repeat Exercise 16.10 for an interval of one cent.

16.12 How many semitones are there in an octave (such
as C4 to C5)?

16.13 How many semitones are there in an interval of a
fifth (such as C4 to G4)? What note is a fifth above G4?

16.14 How many semitones are there in an interval of a
third (such as C4 to E4)? What note is a third above E4?

16.15 Determine the frequency of A4 in a diatonic scale
with Pythagorean tuning if C4 is tuned to 260 Hz. (Refer
to Table 16.3.)

16.16 If A4 were tuned to 440 Hz in Exercise 16.15, what
would the frequency of C4 be?

16.1. Determine the frequency of A4 in a diatonic scale
with just tuning if C4 is tuned to 260 Hz. (Refer to Table
16.3.)

16.18 Determine the frequency of A4 in a diatonic scale
with equal-tempered tuning if C4 is tuned to 260 Hz.
(Refer to Table 16.3.)

16.19 Name the intervals formed by the following note
pairs: C4/C #4; C4/D4; C4/E4; C4/F4; C4/G4; G4/ A4;
and G4/C5. (Refer to Table 16.3.)

16.20 Express the intervals of the note pairs in Exercise
16.19 in semitones.

16.21 Express the intervals of the note pairs in Exercise
16.19 in frequency ratios assuming equal-tempered tun-
ing.

16.22 What three intervals (by name, semitones, and ratio)
occur in the C-major triad C5/E5/G5? What three inter-
vals occur in the C-minor triad C5/D #5/G5?

16.23 We will see later (in Chapter 34) that a clarinet can
be approximated as a closed-open tube having natural
mode frequencies related by the odd integers. The lowest
note on a clarinet is D3. By opening a register hole a note
with three times the frequency is possible. This interval is
referred to as a twelfth. What is it in semitones? What
interval can be combined with an octave to give a twelfth?

16.24 In addition to our semitone scale with 12 equal
intervals in the octave, scales with 19, 24, and 53 equal
intervals in the octave have been proposed. How close
could the “best” notes in a 19-tone scale come to those in
a justly tuned diatonic scale?

16.25 How close could the “best” notes in a 24-tone scale
come to those in a justly tuned diatonic scale?

16.26 How close could the “best” notes in a 53-tone scale
come to those in a justly tuned diatonic scale?

16.27 It is stated in the text that sinusoids differing in fre-
quency by one-quarter of a critical band produce maxi-
mum roughness. This suggests that musical intervals will
have different amounts of roughness depending on the fre-
quency range in which they are sounded. Imagine that the
tone pair C4/C #4 is sounded and then successive chro-
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matic tone pairs C4/D4 ... C4/C5. What predictions can
you make about the relative roughness of each pair? Would
things change if C1/C #1 were the starting pair? If C7/C #7
were the starting pair? Does the number of partials in each
tone in a pair play any role?

16.28 Do the predictions made in Exercise 16.27 depend
in any way on the number of harmonics present in the
tones in a pair? Consider, for example, sinusoids, square
waves, sawtooth waves, piano tones, bowed string tones,
and various wind instrument tones.

16.29 Do the considerations in Exercise 16.28 suggest
which tones might be better for tuning? (Hint: Greater
potential roughness implies greater ease of tuning.)

16.30 What musical intervals can be combined to form an
octave? Verify your predictions by multiplying the fre-
quency ratios of the intervals to see if you get a result of
two. Verify your predictions by adding the intervals
expressed in cents to see if you get a result of 1200.

16.31 Assume that the frequency difference producing
maximum roughness when two sinusoids are sounded
together is approximately equal to one-quarter of a criti-
cal band of their average frequency. What frequencies (both

lower and higher) will produce maximum roughness when
sounded with a frequency of 250 Hz? 500 Hz? 1000 Hz?
2000 Hz?

16.32 Tuning forks designed for use in science labs were
tuned to C3 = 128 Hz, C4 = 256 Hz, and C5 = 512 Hz.
Consider corresponding Cs tuned to A4 = 440 Hz and
determine how many cents sharp they are relative to the
lab tuning fork Cs. Why is the result the same in all three
cases?

Activities

16.1 Use a monochord to recreate some of the Pythagorean
consonance experiments.

16.2 Set up two function generators to operate into a
mixer, scope, and speaker system. Check perceived rough-
ness as a function of waveform and frequency difference.

16.3 Explore many two- and three-note combinations on
the piano in the low, mid, and high octaves.

16.4 Sound the tone pairs suggested in Exercise 16.27 and
rate each in terms of roughness. Compare your rating with
the predictions of the exercise.

144 CHAPTER 16



wall must be massive and without openings so that sound
will not be transmitted through the wall. The only sound
then able to reach the listener is diffracted over the top of
the wall. The reduction in sound level is given approxi-
mately as

R = 10×log(3+10N) (20.1)

where N = (2/λ)x(d1+d2-d) is the Fresnel number.

Note that lower frequencies with longer wavelengths
have smaller N values because they diffract more sound
over the wall. Also note that making the wall higher will
result in higher N values because d1+d2-d will be larger.
As an example, suppose in Figure 20.1 h=3m, d1=d2=
10m, so d=19m. At f=100 Hz lambda=3.4m, N=0.59,
and R=9.5 dB. At f=1000 Hz lambda=0.34m, N=5.9,
and R=18 dB. Thick walls produce double diffraction
and may provide several decibels of additional attenua-
tion.

20.4 Enclosures as Barriers

Even under the best circumstances, with control of
noise emission, zoning, and external barriers, significant
amounts of unwanted noise may still remain. Some sources
of external noise and their transmission paths are illus-
trated in Figure 20.3. These can be prevented from enter-
ing a living/listening environment by enclosing the
environment. The enclosure serves as a barrier to sounds
arriving from external sources.
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Figure 20.3 Some external and internal sources of sound and some of the paths through which they are transmitted.



As an example of a structure where the external environ-
ment was a particular problem, consider the J.F. Kennedy
Center for the Performing Arts in Washington, D.C. The
Center is near the Potomac River and close to the National
Airport. Aircraft often fly as low as 100 meters above the
roof, and low-flying helicopters are often seen in the imme-
diate vicinity of the Center. In addition, the structure is
surrounded by the usual noises of automotive traffic. The
design used to suppress external noise in the Center is the
“box-within-a-box” concept. The Center’s three auditori-
ums are completely enclosed within an exterior shell. The
exterior shell is a double-walled construction with enclosed
air spaces. The columns supporting each auditorium have
been designed to isolate both airborne noise and mechan-
ical vibrations from the interior surfaces. At all outside
entrances special doors are used, and there is a “soundlock”
region between the foyer and the interior of each audito-
rium. Because of this special construction it is possible for
patrons to enjoy performances free of interference from
external noise.

20.5 Sound in Enclosures

Once a location has been selected for a living or listen-
ing structure, typical noise conditions at the site should be
measured so that appropriate construction materials can be
used to provide acceptable internal background noise lev-
els. The “acceptability” of noise levels depends on the nature
of the sound, as discussed in Chapter 18. However, for
noises without distinct tone colors it is possible to specify a
meaningful noise level in terms of a single criterion. The
noise criteria (NC) is the number used to rate noise lev-
els, given approximately by NC = 1.24 (dBA - 13), where
dBA is the A-weighted sound level. Typical acceptable NC
values are shown in Table 20.1 for various environments.
The external sound level at the site, minus the acceptable
background level, gives the required transmission loss .
Building materials can then be selected to achieve this trans-
mission loss.

20.6 Barrier Materials

Barrier materials should satisfy two basic conditions:
they should be massive, and they should be airtight. Sound
waves are transmitted effectively from one medium to
another when the two media have similar densities and
sound speeds. However, when sound waves in air strike a
massive barrier, they are mostly reflected because of the
mismatch in sound speed and density between the air and
the barrier. Even though a barrier is massive, it will not be
effective unless it is made fairly airtight. For example, a
poorly fitting window may have cracks around the edge
equal in area to 1 % of the window area. Of the total sound
energy striking the window, about 1–4% (depending on
frequency) will leak into the building. This limits the atten-
uation produced by the window to 14 dB for 4% leakage or
20 dB for 1% leakage, while an airtight window may pro-
vide a loss of 30 dB. Poor-quality construction can negate
the value of an otherwise good sound barrier.

When selecting materials to be used in sound barriers,
one must consider their sound transmission-loss character-
istics. Typical transmission-loss characteristics are shown in
Table 20.2 for various materials and structures. Generally,
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Enclosure NC Value

Studio 15–20

Concert Hall 15–20

Theater 20–25

Auditorium 25–30

Bedroom 25–30

Living Room 30–35

Business Offices 30–35

Restaurant 35–45

Table 20.1 Typical acceptable noise levels in enclosures.

Frequency (Hz)

Barrier 125 500 2000
Solid wall

Density of 0.25 kg/m2 - 23 Average
Density of 1.0 kg/m2 - 29 for
Density of 5.0 kg/m2 - 38 100 Hz
Density of 25 kg/m2 - 50 to 3200 Hz

Double wall with air core – increase in loss over solid wall
with same mass.

4 cm air core 1 2 8
15 cm air core 4 11 18

Double wall with filled core
17 cm foam core 28 51 61
6 cm foam core and 27 45 58

1 cm soundboard
10 cm mineral wool and 28 46 60

1 cm soundboard
Hollow core door (14 kg) 11 16 22
Solid door (27 kg) 15 14 25
Solid core door (42 kg) 20 14 26
Solid glass window (3mm) 12 20 25
Insulating glass window 17 19 27

(10 mm)
Insulating window with 16 27 35

storm sash

Table 20.2 Typical sound transmission losses for various acousti-
cal barriers. The losses expressed in dB are for the frequencies shown
and assume no leakage around the barrier.



have a spectrum not too different from that of the direct
sound, and it must not be too much louder than the direct
sound.

The arrival time of early sound is controlled by the dis-
tance of reflecting surfaces from source and listener. The
first reflection from the nearest wall (shown at top of Figure
21.8) will be the first early sound to arrive at the listener.
First reflections from more distant walls, along with multiple
reflections, will arrive later, but still soon enough to be part
of the early sound.

The earliest reflections arriving within 20–30 ms of
the direct sound play a special role in determining the “inti-
macy” of a concert hall. This early sound should come from
the walls rather than the ceiling because people prefer sound
lying in the plane of the ears and the source. Halls designed
to provide early lateral reflections should be rectangular in
shape and should not be too wide. In fan-shaped halls, the
earliest reflections to reach the listener come from the ceil-
ing and not from the walls.

Reverberant sound is all reflected sound arriving later
than the early sound. The purpose for which an enclosure
is designed largely determines how the early and reverber-
ant sounds should be managed. Rooms designed for speech
generally require a reduction in the reverberant sound so
that spoken sounds at a given instant are not blended with
and masked by previously spoken sounds. Speech intelli-
gibility requires a large amount of early sound compared
to reverberant sound. Increasingly more reverberant sound
is desirable for small musical ensembles, opera, orchestra,
and organ (in that order). Reverberant sound plays an
important role in determining the “liveness” and the sense
of being immersed in sound. The longer the reverberant
sound lingers the greater the sense of immersion. The rever-
berant sound is controlled by the absorptive properties of sur-
faces and objects in a room.

21.5 Reverberation Time

A hypothetical one-dimensional room is a useful con-
ceptual device used to introduce the concept of “reverber-
ation time,” the time required for a sound in an enclosure
to “die out.” We take as our one-dimensional room a hard-
walled tube 34 m in length, as shown in Figure 21.10. We
imagine that a pulse of sound is somehow introduced into
the tube so that it bounces back and forth between oppo-
site ends of the tube. We assume that no sound energy is
lost to the air in the tube or to the sides of the tube, and
that all losses are at the ends of the tube. (In many cases,
such as with a wind instrument, this assumption does not
hold true. As a wave travels in a tube, part of the sound
energy is absorbed by the walls of the tube so that the pulse
weakens as it travels.) If the ends of the tube were com-
pletely nonabsorbing, the pulse would bounce back and
forth forever. If the ends of the tube were moderately
absorbing, the pulse would bounce back and forth for a
long time, but would eventually die out. If the ends of the
tube were highly absorbing, the pulse would die out quickly.

We can place a microphone at the midpoint of the tube
(see Figure 21.10) and measure how quickly the pulse dies
out. The microphone will detect the pulse once every trip
along the tube, or, because t = L/v, once every t = 0.1 s. For
purposes of illustration we consider two cases, one with
small absorption and another with large absorption. Case 1
assumes that 27% of the energy incident on a tube end is
absorbed and 63% is reflected. (Since pressure amplitude
varies as the square root of energy, the pressure amplitude
of the reflected pulse will be √0.63 = 79% of that of the
incident wave.) The sound level decrease (in dB) after each
reflection can be determined by taking ten times the loga-
rithm of the fraction of energy reflected. The sound level
decrease for this case is just 10× log(0.63) = -2 dB. Case 2
assumes that 75% of the incident energy is absorbed and
25% is reflected, resulting in a decrease of 6 dB per reflec-
tion. Sound levels of the reflected pulse are shown at one-
tenth-second intervals for the two cases in Figure 21.11.

On examining Figure 21.11 we see that the pulse “dies
out” in an amount of time that depends on how often it
encounters an absorbing surface, and what fraction of its
energy is lost on each encounter. The reverberation time
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Figure 21.9 Simulated microphone response for sound in a
two-dimensional room such as shown in Figure 21.8.
(Courtesy of S. N. Li.)
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Figure 21.10 Hard-walled tube in which a stimulated pulse
of sound bounces back and forth between the partially
absorbing ends. The “display” on the scope is the output of the
microphone.



(RT) is specifically defined as the time required for the
sound level to decrease by 60 dB. We note that for case 1 the
sound level decreases by 2 dB each tenth of a second so that
its RT is three seconds. For case 2 the sound level decreases
by 6 dB each tenth of a second so that it has decreased 60
dB in one second and has a RT of one second. The larger
the amount of absorption the shorter the RT, and RT may
be expressed as being inversely proportional to absorption.
For the sound pulse in a tube the RT also depends on the
length of the tube and the speed of sound in the tube. If
the pulse moved faster or if the tube were shorter, the RT
would be shorter because the pulse would strike the ends
of the tube more times per second.

21.6 Reverberation Time in Rooms

The behavior of sound in three-dimensional enclosures
such as auditoriums and concert halls is of primary interest
in building design. Although the three-dimensional nature
of rooms makes reflected sounds harder to visualize, the
microphone response (see Figure 21.12) is similar to that
found in two-dimensional rooms. The direct sound and
the first few reflected sounds are quite distinct, followed by
a nearly continuous, diffuse sequence of reflected sounds.

A smoothed version of the microphone response in a
room is usually used to estimate the RT of the room. Such
a smoothed response is shown in Figure 21.13 for the
microphone response of Figure 21.12.

The RT in three-dimensional structures is of signifi-
cant interest in building design. As might be expected on the
basis of the one-dimensional example, RT varies inversely
with absorption, but it depends on the volume of the enclo-
sure (rather than on length) as in the one-dimensional
example. An expression for reverberation time, called the
Sabine equation, is

where V is the room volume in cubic meters and TA is total
absorption associated with the interior surfaces of the room.
If all the surfaces of the room were completely absorbing, TA
would be equal to the surface area of the room in square
meters. (The only perfect absorber, however, is an opening
to outside free space.) If, instead of a perfect absorber, we
have twice the area of some material which absorbs half of
the incident sound energy, the resulting TA will be the
same. The absorption coefficient (AC) of any material is
defined as the fraction of energy absorbed on each reflec-
tion of a sound wave. Thus, we can see that for any surface
area, S,

TA = S×AC (21.2)

When many different surfaces are present the total
absorption is given by

RT = 0.16 V (21.1)
TA

194 CHAPTER 21

0 1.0 2.0 3.0

80

60

40

20

EN
ER

G
Y

LE
V

EL
(d

B)

TIME (SEC)

Figure 21.11 Energy levels of successively reflected sound
pulses in the 34 m tube of Figure 21.10. No energy is lost to
the walls. Two conditions at the ends of the tube are
considered: one in which 63% of the energy is reflected (�)
and the other in which 25% of the energy is reflected (+).
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Figure 21.12 Simulated microphone response for a sound
pulse in a large (30 m × 23 m × 18 m) concert hall.
(Courtesy of S. N. Li.)
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Figure 21.13 Smoothed microphone response for the
simulated microphone response of Figure 21.12. (Courtesy of
S. N. Li.)



TA = S1 × AC1 + S2 × AC2 +S3 × AC3 (21.3)

where the subscripts represent different surfaces. It will be
noted that TA has the dimensions of an area and that it is
smaller in magnitude than the total surface area of the room.

21.7 Example of Reverberation Time

As one example, consider a room 8 × 10 × 6 m with
heavy carpet on the floor, acoustical plaster on the ceiling,
and 0.30 cm plywood paneling on the walls. Assume that
50 people are present in the room. Calculation of RT
requires absorption coefficients, typical values of which are
shown in Table 21.1. (Note that the values vary with fre-
quency for any given material and that most materials are
more highly absorbing at higher frequencies.)

The RT at 500 Hz is calculated in the following man-
ner. The room volume is given by V = 8 × 10 × 6 = 480
m3. The total absorption is given by

TA = 8 × 10 × 0.60 (floor) + 8 × 10 × 0.50 (ceiling) +
2 × 8 × 6 × 0.10 (end walls) + 2 × 10 × 6 × 0.10 (side
walls) + 50 × 0.45 (people) = 132.1 m2.

We then obtain the RT from the Sabine equation as

RT = 0.16 × 480/132.1 = 0.58 s.

From Table 21.1, we see that absorption coefficients
for different materials vary with frequency, which means
that RT will be different at different frequencies. Some con-
trasting examples of RT as a function of frequency are
shown in Figure 21.14. The anechoic room is seen to have
extremely short RTs because of its highly absorbing walls
(see Figure 21.3). The racquetball court is seen to have very
long RTs because of its hard reflecting walls. The two class-
rooms have RTs somewhere between the anechoic room
and the racquetball court.

21.8 Ambient Sound Levels

So far we have discussed the relationship of the RT of
a room to the room volume and the room absorption. The
buildup time of the sound and the final sound level pro-
duced by a constant-power sound source in a room are two
related aspects of interest. If a sound source having con-
stant power output is placed in a room, the sound level in
the room will increase until it reaches some final value, at
which time the sound power being absorbed is just equal
to the sound power being supplied by the source.

The relationship between absorption, power input, RT,
buildup time, and final sound level can be illustrated using
a bucket with small holes (representing absorption)
punched in its side from bottom to top. Water from a gar-
den hose provides a steady flow rate (source of constant
power). Water from the hose pours into the bucket and the
time required (buildup time) for the water level to reach
its highest possible point (final sound level) is observed.
The hose is removed and the time required for the water
to drain from the bucket (RT) is observed. The buildup
time and the RT both tend to be of about the same length.
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Frequency (Hz)

Material 125 500 2000

Acoustical plaster 0.15 0.50 0.70
Acoustical tile 0.20 0.65 0.65
Brick 0.02 0.03 0.05
Carpeted floor

heavy, on heavy pad 0.10 0.60 0.65
light, without pad 0.08 0.20 0.60

Concrete 0.01 0.01 0.02
Draperies

heavy 0.15 0.55 0.70
light 0.03 0.15 0.40

Fiberglass blanket
2.5 cm thick 0.30 0.70 0.80
7.5 cm thick 0.60 0.95 0.80

Glazed tile 0.01 0.01 0.02
Paneling – plywood

supported at 1m
intervals and backed
with 5-cm air space
0.15 cm thick 0.10 0.20 0.06
0.30 cm thick 0.30 0.10 0.08

Plaster 0.04 0.05 0.05
Vinyl floor on concrete 0.02 0.03 0.04
Wood floor 0.06 0.06 0.06
Adult person (TA) 0.30 0.45 0.55

Table 21.1 Typical absorption coefficients for some building mate-
rials. Actual values depend on backing and mounting of material.
TA values for adult person and upholstered chair are expressed in
square meters.
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Figure 21.14 Measured RTs in one-third-octave frequency
bands for four different rooms. (Courtesy of R. H. Brey and
R. W. Harris.)



If the holes in the bucket are small (small absorption), both
times are relatively long and the final water level (sound
level) is high. For large holes both times are relatively short
and the final level is low.

Now consider the large concert hall of Figures 21.12
and 21.13 with a volume of 12,420 m3 and a total absorp-
tion of 994 m2, so that its RT is 2.0 s. A 10 watt sound
source is placed at one position in the hall and a micro-
phone is placed at a position some distance from the source.
When the source is turned on, the sound level (measured at
the microphone) initially increases as illustrated by the curve
labeled RT = 2.0 in Figure 21.15. After the sound level
reaches its final value, it remains constant as long as the
sound source is on. When the source is turned off the sound
level decreases until some background level is reached. A
concert hall having the same volume but four times the
total absorption would have the sound level curve labeled
RT = 0.5 in Figure 21.15. Comparing the two curves we
see that the greater the absorption, the shorter the buildup
time and RT, and the lower the final sound level.

A formula that gives the final sound level in a room in
terms of the sound power of the source and the total
absorption of the room is

SL = 10 log(P/10-12) + 10 log(4/TA) (21.4)

where P is the source power in watts and TA is the total
absorption in square meters. Referring to the first example
in Figure 21.15, we calculate the final sound level as

SL = 10 log(10/10-12) + 10 log(4/994) = 106 dB

A similar calculation for the second example in Figure
21.15 is

SL = 10 log(10/10-12) + 10 log(4/3976) = 100 dB

21.9 Nonuniform Reverberation

An additional aspect of reverberation not obvious from
the foregoing discussion is that reverberant sound should
decay uniformly. A nearly ideal reverberation curve is shown
in Figure 21.13, in which the reverberant sound level dies
away uniformly with time in almost a straight-line. This
kind of uniform reverberation response is highly desirable
because the sound is getting “soft” at an even rate. Figure
21.16 shows a highly irregular response in which the sound
level decreases, then increases, then decreases again in a
kind of erratic warble. Generally, the more diffuse the sound
field, the less likely the chance of finding this type of irreg-
ular curve. Finally, Figure 21.17 shows another situation
which is very undesirable, even though the reverberation
curve is smooth. In this illustration, the reverberant sound
falls off rapidly during the first half-second, thus telling the
ear that the RT will be short. In actuality, RT is 2.0 s as
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Figure 21.16 Smoothed microphone response curve showing
irregular reverberant-energy decay. (Courtesy of S. N. Li.)
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Figure 21.17 Smoothed microphone response curve showing
double-sloped reverberant-energy decay. (Courtesy of S. N. Li)



common building materials. Generalizing his empirical
data, he obtained the well-known formula for reverbera-
tion time which enables one to calculate RT as a function
of volume and absorption. He could then make his contri-
bution to the acoustical design of the symphony hall.

21.14 Summary

Sound in an enclosure can travel directly from source
to receiver, it can undergo specular and diffuse reflections,
it can be diffracted, it can be transmitted through walls,
and it can be absorbed. The acoustical properties of an
enclosure are determined by the interplay of these behav-
iors. An anechoic room and a reverberation room lie at the
extremes of room acoustical properties. Defects to avoid in
rooms are: echoes, sound focusing, sound shadows, flutter,
distortion, room resonances, and acoustical glare. Three
types of sound in rooms are direct, early (within 80 ms of
direct), and reverberant (all later sound). Reverberation
time is the time required for a sound level to decrease by
60 dB. Reverberation time depends on room volume and—
inversely—on total room absorption. Ambient sound level
in a room depends on source power and total room absorp-
tion. Irregular and/or double-sloped room decay is unde-
sirable. Optimum reverberation time depends on room size
and program material. Various methods are used to meas-
ure the reverberation time of a room.
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Questions

21.1 The level of reverberant sound necessary for optimum
results varies between speech and music. Why should the
optimal level of reverberant sound generally be less for
speech than for music?

21.2 What type of music requires the greatest reverberant
sound for optimum results? What type of music requires
the least reverberant sound for optimum results?

21.3 Describe qualitatively the absorption characteristics
and reverberation time you might expect to find in each
of the following rooms: concrete-walled room, living room,
bathroom, anechoic room, concert hall, recording studio,
and wood-paneled room.

21.4 Discuss the acoustical reason for each of the modifi-
cations made in the Frostburg State University lecture hall.

21.5 Explain why miles of wire stretched across the ceil-
ing of a reverberant room absorb only a negligible amount
of sound energy.

21.6 The large lecture hall whose RT is shown in Figure
21.4 had poor speech intelligibility. Why?

Exercises

21.1 Suppose people in the front row of a room receive
strong reflections from the back wall 20 m away. Will the
reflections be perceived as an echo?

21.2 Suppose a time delay of 200 ms produces maximum
interference for a lecturer. How far away from the lecturer
is a rear wall that will produce reflected waves giving rise
to maximum interference? How does this distance com-
pare with the distance between the stage and the back wall
in typical theaters and concert halls?

21.3 What is the repetition rate of flutter echoes in a hall
having parallel side walls 20 m apart? Does the repetition
rate depend on where a listener stands? How can these flut-
ter echoes be reduced?

21.4 A concert hall has dimensions of 30 × 23 × 18 m. A
sound source is located at one end of the hall. Are there
any places in the hall where strong reflections from the
ceiling or walls will produce echoes? (Make some sketches
of listener positions in the hall to get path lengths and
travel times of reflections.)
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21.5 Consider an auditorium 30×20×15 m high. Assume
that the floor is concrete, with an average of one uphol-
stered chair every square meter. Assume that the ceiling
and walls are plastered. Calculate the RT at 500 Hz. What
is the sound level in the hall if the orchestra produces a
sound power of 2 W?

21.6 What would the RT be for the auditorium for
Exercise 21.5 if the seats were made of wood? If half of the
wood seats were filled with people?

21.7 A listener is seated 5 m from the rear wall, 7 m from
one sidewall, and 13 m from the other sidewall in the audi-
torium of Exercise 21.5. Does the first reflected sound
come from a wall or the ceiling? Determine where the first
several reflections come from and their time delays rela-
tive to the direct sound. Will the precedence effect play an
important role in this auditorium?

21.8 Compare the absorption coefficients for concrete,
plaster, and plywood at 500 Hz. What TA value would
100 m2 of each material provide?

21.9 What are reasonable values for RT in a 300 m3 hall at
frequencies of 125, 250, 500, 1000, and 2000 Hz if the hall
is to be used for speech? For opera? For orchestral music?

21.10 Calculate RT for a 3000 m3 hall with all concrete sur-
faces. Would it be satisfactory for speech? For organ music?

21.11 Suppose that a halving of loudness from one syllable
to the next is required for good speech intelligibility. If a
SL decrease of 10 dB cuts the loudness in half, will a RT of
2 seconds be adequate for fast speech spoken at a rate of 8
syllables per second? What RT would be required for
speech spoken at this rate? What speaking rate should be
used with the original RT of 2 seconds? (Remember that RT
is the time required for the SL to decrease by 60 dB.)

21.12 What RT would be optimum for a Brahms symphony
in a hall of 3000 m3 volume? In a hall of 12,000 m3 volume?

21.13 A small church often used for concerts has no heat-
ing or cooling system so patrons wear light clothing in
summer and heavy clothing in winter when attending con-
certs. The hall has a floor area of 300 m2 with an average AC
of 0.4 when empty, 0.6 when occupied in summer, and
0.8 when occupied in winter. What are the RT values for
the three conditions if the average AC is 0.2 for the other
surfaces?

21.14 A band rehearsal room of 3000 m3 volume has con-
crete surfaces everywhere. What is its RT with a 100 mem-
ber band present? Is this likely to be satisfactory? How
much TA must be added to reduce the RT to 1 second?
Would this be feasible to accomplish at 500 Hz with light
drapery? With acoustical tile?

21.15 A small ensemble can generate 1 watt of acoustic
power. What SL can it produce in a small (300 m3) prac-
tice room with an RT of 1 second? What SL can it produce
in a small (3000 m3) auditorium with an RT of 1.2 second?

21.16 Some modern auditoriums use reversible panels to
adjust the RT. What is the shortest RT that can be achieved
in a 20 × 20 × 20 m enclosure if 200 m2 of panel are per-
fectly absorbing and the rest of the enclosure has an aver-
age AC of 0.2? What is the longest RT possible if the panels
are perfectly reflecting?

21.17 What is the RT at 500 Hz in a 6 × 8 × 3 m living
room with heavy carpet on the floor and plastered walls
and ceiling? How adequate would this be for normal con-
versation? For playing the piano?

21.18 If the wall and ceiling surfaces of the room in
Exercise 21.17 were covered with materials having an aver-
age AC of 0.3 what would the RT be? Would the room be
improved for conversation? For playing the piano?

21.19 Use equation 21.1 to eliminate TA from equation
21.4 Does the resulting equation justify the claim that
sound level can be kept constant if RT is increased with
volume?

Activities

21.1 Make a sharp clap or pop a balloon to provide an
impulsive sound source in various rooms, large and small.
Comment on the RT you experience.

21.2 Choose an auditorium known to have good acoustics.
Perform various qualitative tests to estimate its RT and
other sound properties.

21.3 Choose a poorly designed auditorium and perform
various tests to estimate its RT and other sound properties.

21.4 Experiment using cans or pipes with various-sized
holes punched in them (as described in the text) to demon-
strate the effect of total absorption and source power on
final sound level and RT.



22.2 Will broadening of the modes in Figure 22.4 to
widths of 5 Hz result in an even room response? Will
broadening to 10 Hz?

Exercises

22.1 Change the length value of the 9x6x4 m room to
10 m. What width value is required to keep the volume
constant? Calculate frequencies similar to those for the
modified room dimensions in the text. Are these in any
way better?

22.2 Calculate the length-height tangential mode frequen-
cies that lie within the 105–115 Hz range for the concert
hall in Section 22.2.

22.3 Calculate the width-height tangential mode frequen-
cies that lie within the 105–115 Hz range for the concert
hall in Section 22.2.

22.4 Calculate ten oblique mode frequencies that lie within
the 105–115 Hz frequency range for the concert hall of
Section 22.2.

22.5 Scale the dimensions of the studio in Section 22.4 to
accommodate 10–15 musicians. Calculate the crossover
frequency and the lowest mode frequency. Calculate axial
mode frequencies within this range.

22.6 A listening room has dimensions of 6.6 x 5.0 x 3.0
m. What frequencies lying below 200 Hz will be empha-
sized? What frequencies will be under emphasized? Assume
bandwidths of 6 Hz.

22.7 A large family room (9.6m × 4.8m × 3.6m) serving
as a listening room was found to have a very strong
response to an organ tonal mass at a particular frequency.
What was the most likely frequency?

22.8 The first reflection in a studio is received 15 ms after
the direct sound. The control room is to be designed so
that it’s first reflected sound is received by the mixing engi-
neer 20 ms after the direct sound from the monitor loud-
speakers. If the engineer is positioned midway between the
front and back walls of the control room, what should be
the length of the control room if the first reflection comes
from the back wall?

Activities

22.1 Place a sinusoidally driven loudspeaker in the corner
of a hard walled room with a microphone placed in a diag-
onally opposite corner. Record the room response as the
frequency is varied. Beyond what frequency do you get a
fairly even response?

22.2 Place a sinusoidally driven loudspeaker in the corner
of a living room with a microphone placed in a diagonally
opposite corner. Record the room response as the frequency
is varied. Beyond what frequency do you get a fairly even
response?

22.3 Design a listening room limited by a height of 3m
and a volume of approximately 200 m3. Determine fre-
quencies that are most likely to give coloration. Specify
how these frequencies are to be handled.
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What sound level would be produced at 200 m under the
same conditions?

24.3 Estimate the surface area over which the sound will
be spread at a distance of 100 m from the loudspeaker clus-
ters in Figure 24.10. If the sound level is 100 dB at this
distance, what total acoustical power passes over the sur-
face? Estimate the electrical signal power supplied to the
loudspeakers if they are 10% efficient in converting electri-
cal power into acoustical power.

24.4 The RT in the Marriott Center is 4 s. What is the
average absorption coefficient of its surfaces if one assumes
its shape is square with a height of 14 m?

24.5 By how many dB does the one-third octave at 1600
Hz exceed the preferred response in Figure 24.15?

24.6 About 3900 W of electrical power are required to pro-
duce 23 W of acoustical power in the Marriott Center.
What is the efficiency of the sound system?

24.7 How do the assisted RTs in Figure 24.17 compare
with optimum RTs discussed in Chapter 21 for a concert
hall with a volume of 25,000 m3?

24.8 Suppose two loudspeaker clusters are mounted next to
the walls in a church with floor dimensions of 40 m by 20
m wide. Will a person sitting next to a wall and 10 m back
from one cluster hear an “echo” if both clusters radiate the
same signal?

24.9 If distributed loudspeakers are mounted 7 m apart
from front to rear in a hall, what should the signal delay
time be between neighboring loudspeakers?

24.10 Suppose a digital delay line is used to provide the
delay of Exercise 24.9. In the digital delay the signal is sam-
pled and the samples are stored in memory. There must
be enough memory to store a number of samples equiva-
lent to the time delay. How much memory is required if
the sampling rate is 20,000 samples per second?

24.11 If a tape loop system (now obsolete) is used to pro-
vide the time delay of Exercise 24.9, what must the tape
speed be if the record and playback heads are 1 cm apart?

24.12 A listener is 100 m away from a sound source where
the critical distance is 25 m. How many dB below the
reverberant sound will the direct sound be at the listener’s
position?

24.13 A room has a volume of 2600 m3 and total absorp-
tion of 400 m2. Approximately what acoustical power is
necessary to achieve a sound level of 80 dB? (Refer to
Chapter 21.) What electrical input power is required if the
speakers are 10% efficient?

24.14 How far from the source are the direct and rever-
berant sound levels equal in a room of 6×5×3 m with RT
= 0.5 s? In a room of 30×23×15 m with RT = 2.0 s? Is it
true that reverberant sound dominates in most of a room?

24.15 What is the largest room in which a 0.0002 watt
voice source can produce a sound level of 70 dB without
sound reinforcement? Do factors other than room volume
play a role? If so, make plausible assumptions in answer-
ing the question.

24.16 An important criterion for flat frequency response
of a microphone is that the diaphragm diameter be no
larger than half a wavelength. What is the maximum
diaphragm diameter for speech with frequencies up to
10,000 Hz? For the upper end of the audio range at 20,000
Hz?

24.17 What is the efficiency of a loudspeaker producing a
sound level of 95 dB at a distance of 10 m when the elec-
trical power input is 5 W? Calculate values for radiation
patterns assumed to be spherical and hemispherical.

24.18 At what lowest frequency would self-enhancing feed-
back occur in a sound-reinforcement system where the
microphone is 6 m in front of the loudspeaker? What
higher frequencies would result in self-enhancing feedback?

Activities

24.1 Set up in a room a sound-reinforcement system con-
sisting of microphone, amplifier, and loudspeaker. Experi-
ment with amplifier gain to see how it affects feedback
resulting in squeal.

24.2 Move the microphone and loudspeaker of Activity
24.1 to different locations to see how feedback depends
on location.

24.3 Gain access to halls in which sound systems have been
installed to meet different needs. Experiment with differ-
ent adjustments of the sound system if possible to see how
they affect the sound. Explore the effects of signal delay
and equalization if possible.
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to airflow changes rather drastically as the glottal area
changes. In practice, doubling the area more than doubles
the airflow (especially for small areas) if all other conditions
are constant. (3) The pressure across the glottis is not con-
stant. Even if we assume the pressure in the trachea to be
constant, the pressure in the larynx will be fluctuating
because of standing waves in the vocal tract. The fluctuat-
ing pressure across the glottis gives rise to fluctuations in
the airflow.

Standing waves in the vocal tract will affect the pres-
sure across the glottis. This in turn affects the glottal air-
flow. The glottal airflow affects the strength of the Bernoulli
force which drives the vocal folds. Standing waves that typ-
ically occur in the vocal tract do not have much influence
on the vocal folds themselves. However, when vocal tract
resonances occur at low frequencies, they may influence
vocal-fold vibration frequency. Later, when we come to con-
sider the lips as a similar vibrating system for wind instru-
ments, we will find that the tube of the instrument exerts a
very substantial influence on the lips.

An idealized spectrum typical of the nominal glottal
airflow of Figure 25.8 is shown in Figure 25.9. In this exam-
ple the airflow is shut off for part of a cycle. The resulting
flow is pulse-like. The flow begins rather gradually after
being shut off, but then is shut off rather abruptly after
reaching some largest value. The spectrum shows a rich har-
monic content because of the pulse-like nature of the wave.

25.5 Vocal-Fold Oscillation

Muscular adjustments establish an equilibrium posi-
tion for the vocal folds in preparation for voice production.
Air pressure from below and between the folds pushes them
apart. The muscular tension in the folds opposes this
motion and tends to pull them back together. Potential
energy is stored in the folds as they are pushed apart, but
is partly recovered when the folds return to their equilib-
rium position. Because there is resistance, the vocal fold
motion will die out unless energy is supplied to them. The

air “driving” them from below and rushing between them
supplies the needed energy. A simplified version of the inter-
action among glottal area, vocal fold velocity, glottal pres-
sure, and power input to the vocal folds is shown in Figure
25.10. An idealized (though reasonably realistic) glottal
opening waveform is shown in the upper part of the fig-
ure. The vocal-fold velocity (upper middle) is positive as
the glottal opening increases and then becomes negative as
it decreases. When the glottis is very small on opening, the
glottal pressure (lower middle) tends to force the folds apart,
but as the glottis gets larger, the rushing air creates a reduc-
tion in pressure between the folds (from the Bernoulli effect
described in Chapter 3). In some instances (as in this exam-
ple) the glottal pressure may become negative as the glottal
opening decreases, tending to assist the fold tension in
bringing the folds back together.

The bottom part of the figure shows the power input
to the vocal folds which maintains their oscillation. During
the opening of the glottis, the glottal pressure is positive.
It acts in the same direction as the motion of the folds, thus
providing a power input to the folds. As the glottal opening
becomes larger, the flow increases and the glottal pressure
decreases because of the Bernoulli effect. During closing of
the glottis the glottal pressure and the negative fold veloc-
ity act in opposition and extract power from the vocal folds.
Toward the end of glottal closing, the glottal pressure
becomes negative (in this example) and acts in the same
direction as the motion of the folds. This again provides
power to the folds. (The energy gained is equal to the power
times the time it acts, which is the “positive” area minus
the “negative” area of the power curve.) When the vocal
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system is adjusted for phonation, the vocal folds gain energy
from their interaction with the glottal pressure during each
vibratory cycle. The energy gained by the vocal folds can
maintain their oscillation by offsetting energy losses from
other causes.

25.6 Other Sound Sources

The voicing source is located at the vocal folds, but
noise sources may occur at any one of several different loca-
tions in the vocal tract. Any time air is forced through a
small or irregular constriction, the smooth flow of the
airstream is disrupted and the flow becomes irregular and tur-
bulent. The resulting noise source serves for the produc-
tion of unvoiced fricative sounds, such as the /s/ in sue.
Typical points of constriction in the tract are teeth to teeth,
teeth to tongue, and teeth to lips. When the vocal tract is
constricted and the vocal folds are also caused to vibrate, a
mixture of both voice and noise energy results. The voic-
ing causes alternate puffs of air to pass through the con-
striction, giving rise to repetitive bursts of noise. The
resulting mixed source serves for the production of voiced
fricatives, such as the /z/ in zoo.

It is possible to block off the vocal tract completely
while trying to force air from the lungs, increasing the pres-
sure on the lung side of the constriction. If the constric-
tion is suddenly removed, the sudden release produces a
burst of energy which is characteristic of many of the
unvoiced plosive sounds, such as the /p/ in pat. A more
gentle release of a smaller amount of pressure, typical of
the voiced plosive sounds, such as the /b/ in bat, usually
results in a negligible burst of energy.

You can discover for yourself what energy types are
used in the production of the various speech sounds by
applying the following techniques. Test for the presence of
voicing by placing the fingertips gently on the Adam’s apple;
a slight vibration will be felt when voice energy is present.
Test for the presence of noise energy simply by listening
for a “hissy” character in the sounds produced. If both of
these conditions are satisfied, we say the result is a mixture
of voice and noise energy. Look for burst energy by noting
whether a large amount of pressure is built up in a con-
stricted tract and, if so, whether or not it is suddenly
released.

25.7 Classification of Speech Sounds

A convenient concept in dealing with speech is that of
the phoneme, defined as a “distinguishable speech sound.”
The number of phonemes to be used depends to some
extent on how finely one wishes to divide the world of
speech sounds. The human vocal mechanism is capable of
producing an almost infinite variety of different sounds.

However, most of these are not readily distinguishable from
one another. We will use the phonemes listed in Table 25.1
Grouping of speech sounds in the table is done partly on
the basis of energy type. In later chapters other ways of
grouping and classifying phonemes will be discussed.

IPA symbol Example
Vowels i beet

I hit
ε bed
e ate
ae had
a father

awl
U put
u cool
Λ fun

Diphthongs eI may
aI sigh
I oil

au shout
ou tone

Nasals m me
n no
η sing

Liquids l law
r red

Semivowels w we
j you

Unvoiced when
fricatives h he

f fin
θ thin
s sin
∫ shin
t∫ chin

Voiced v view
fricatives δ then

z zoo
mirage
judge

Unvoiced p pea
plosives t tea

k key

Voiced b bee
plosives d down

g go

Table 25.1 Phoneme classification with corresponding symbols in
the text and International Phonetic Alphabet (IPA) symbols. An
example of each phoneme used in a word is given in the last column.
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25.8 Summary

The speech production system consists of many parts.
A person can produce three types of energy when speak-
ing: voiced energy, noise energy, and burst energy. Voiced
energy is created when airflow is interrupted periodically
by the vibrating vocal folds. Observation of the vocal folds
has been achieved in various ways. Three models can be
used in representing different aspects of vocal fold action:
the simple vibrator model, the vocal cord model, and the
multi-mass model. There are three reasons the glottal airflow
is not sinusoidal: the glottal area does not vary sinusoidally,
the glottal airflow is not directly proportional to the glottal
area, and the pressure across the glottis is not constant. The
pulse-like nature of the glottal airflow has a spectrum with
many harmonic components. Noise energy is created when
air is forced through a small or irregular constriction in the
vocal tract. Burst energy is produced by the sudden release
of pressure from the vocal tract. Combinations of the three
forms of energy are used in the production of the various
sounds of speech.
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Chapter 7 discusses vocal fold properties. Chapter 8
discusses control of fundamental frequency.
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of the Effects of Various Laryngeal Configurations on
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Questions

25.1 What are the basic parts of the human vocal mecha-
nism, and what is the function of each?

25.2 What is the primary force that causes the vocal folds
to vibrate?

25.3 What controls the fundamental vibration rate of the
vocal folds?

25.4 Why would you expect the vibration frequencies of
adult female vocal folds to be higher than those of an adult
male? Frame your description in terms of a simple vibra-
tor model of the vocal folds.

25.5 What ranges of fundamental voicing frequency are
associated with the speech of adult males, adult females,
and children? Are these ranges comparable to the respec-
tive singing ranges?

25.6 What effect does a higher blowing pressure have on the
behavior of the vocal folds? How does this affect the spec-
trum of the vocal fold waveform?

25.7 What features of vocal fold action are well represented
by the single mass model? What features are poorly repre-
sented, if at all?

25.8 When voiced speech sounds are produced, the air-
flow through the glottal opening is approximately peri-



odic. What does this imply about the spectra being har-
monic or nonharmonic?

Exercises

25.1 What is the mass of an adult male vocal fold if its
dimensions are 10 mm × 5 mm × 5 mm? (Assume the tis-
sue density is 1 gm/cm3.) What stiffness (in dynes/cm) is
needed to produce a fundamental frequency of 125 Hz?

25.2 What is the mass of an adult male vocal fold if its
dimensions are 16 mm×3 mm×3 mm? What stiffness (in
dynes/cm) is needed to produce a fundamental frequency
of 250 Hz?

25.3 Assuming the vocal cord model is valid, what is the
cord length of a child’s vocal fold in comparison to that of
an adult male?

25.4 The product of pressure (in Pa) and flow (in m3/s)
gives power (in W). Suppose that in normal breathing the
pressure is 200 Pa and the flow is 100 cm3/s. What power
is generated?

25.5 Suppose that in vowel production at a conversational
level the pressure is 1000 Pa and the flow is 120 cm3/s.
What power is generated?

25.6 Suppose the vowel sound of Exercise 25.5 produces a
sound level of 70 dB at a distance of 1 m. What is the

intensity? Calculate the total acoustic power at this dis-
tance by assuming spherical radiation. What fraction of
the “breathing power” of Exercise 25.5 is converted into
acoustic power?

25.7 Suppose a singer’s lung volume allows the singer to
exhale 3000 cm3 of air in voice production. How long can
a softly sung vowel be sustained if the flow rate is the same
as that claimed for speech in Exercise 25.5?

Activities

25.1 Convince yourself that the act of exhaling in and of
itself is not sufficient to produce disturbances that are use-
ful in the speech communication process. To do this, exhale
without using the vocal folds and without constricting the
vocal tract.

25.2 Bernoulli force: Place one small sheet of paper on top
of another small sheet. Tape them together at one end,
leaving a small opening in the middle. Insert one end of a
soda straw into the opening and tape around it to prevent
air leakage. Blow into the straw so that air flows between the
two sheets of paper. What happens? Why?

25.3 Produce each of the phonemes listed in Table 23.1
and determine its energy type (voice, noise, mixture, burst).
Apply the tests described in the text.
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speech sounds. Spectra of vowels and other voiced speech
sounds are harmonic and show the different formant fre-
quencies (Figures 26.12 and 26.13). Airflow through con-
strictions in the vocal tract produces fricative sounds with
inharmonic spectra (Figure 26.14). Pressure built up by
closing the mouth and suddenly releasing it produces the
plosive sounds. In addition to changing vocal tract shape,
formant frequencies can be changed by changing vocal tract
length and/or by filling the tract with gases other than air.
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Questions

26.1 What are the main components of the vocal tract?

26.2 What is the function of each component of the vocal
tract?

26.3 What determines the spectrum of the output speech
waveform?

26.4 How might the vowel spectra of Figure 26.12 change
for softer voicing? For louder voicing? Would the formant
frequencies shift or would their relative amplitudes change?

26.5 If helium is breathed into the vocal tract the result-
ing speech sounds have a “Donald Duck” quality. Is this

because of changes in formant frequencies or fundamen-
tal frequency?

26.6 Suppose the vocal fold tension is increased and the
vocal tract is lengthened. What happens to fundamental
frequency and formant frequencies?

Exercises

26.1 Suppose a “neutral female tract” is a cylindrical tube
14 cm long. At what frequencies will the first three for-
mants occur?

26.2 A “neutral child’s tract” is 11 cm long. What are the
first three formant frequencies?

26.3 Suppose a neutral tract 17 cm in length is filled with
pure helium (v = 970 m/s). At what frequencies will the
formants occur?

26.4 What would the formant frequencies be if a neutral
tract 17 cm in length were filled with krypton (v = 200 m/s)?

26.5 Use Figures 26.6 and 26.8 to determine the spectrum
for /i/. How does your result compare with Figure 26.12?

26.6 Use Figures 26.6 and 26.9 to determine the spectrum
for /a/. How does your result compare with Figure 26.12?

26.7 How do the ratios of F2 to F1 and F3 to F1 from
Table 26.1 compare for male and female speech? Does this
provide any clues as to how we are able to perceive the
same vowel for male and female speech even though the
actual formant frequencies are different?

26.8 Estimate the length ratio of an average male tract to
an average female tract on the basis of ratios of third formant
frequencies for different vowels. Do you get the same result
for all vowels?

26.9 Use the spectra in Figure 26.12 to determine the
approximate frequencies of the first three formants for the
phonemes /Λ/, /a/, /æ/, /u/, and /i/ by looking for the
broad peaks in the spectrum. Record the results. How do
your results compare with those for men in Table 26.1?

26.10 Estimate relative female and male vocal tract lengths
on the basis of relative heights of females and males. How
does your estimate compare with the text?

26.11 An alternative means can be used to determine
which frequencies the neutral vocal tract will emphasize.



Consider, for example, the effect of the neutral tract upon
air pulses. The time required for a single pulse to travel the
length of a 17 cm tract is equal to 0.5 ms. At the end of
0.5 ms the first pulse will be at the open end of the tract
and will be reflected back toward the closed end as a neg-
ative pulse. After a total elapsed time of 1 ms (0.5 ms to
return) the negative pulse will be back at the closed end of
the tract. At the closed end of the tract the negative pulse
is reflected toward the open end. After another 0.5 ms the
pulse arrives at the open end of the tube, where it is
reflected as a positive pulse to return to the closed end. If
a new positive pulse is produced just as the positive pulse
arrives back at the closed end, the two positive pulses add
together to produce a larger positive pulse. From this exam-
ple we deduce that the tube serves to enhance the pulses
if they are produced at a rate of one every 2 ms. To what fre-
quency does the pulse period of 2 ms correspond? How
does this relate to the first formant frequency?

26.12 Repeat Exercise 26.11 for pulses produced at the
rate of one every 1 ms. Are these pulses enhanced or
diminished?

26.13 If a neutral vocal tract is shortened by 10%, what is
the approximate change in formant frequencies? What
changes would be produced by a 10% lengthening?

26.14 If an average female vocal tract is about 17% shorter
than an average male vocal tract what might be expected
for the ratio of average female-to-male formant frequen-
cies? Take a few values of formant frequencies from Table
26.1 and calculate the ratios between female and male and
compare with the preceding result. How do you account
for discrepancies?

26.15 Draw output spectra for a multitube /i/ sound by
combining the “source” spectrum of Figure 26.4 with the
“filter” spectrum of Figure 26.8.

26.16 Draw output spectra for a multitube /a/ sound by
combining the “source” spectrum of Figure 26.4 with the
“filter” spectrum of Figure 26.9.

26.17 Make an F2 versus F1 plot for the male and female
vowels in Table 26.1. Plot F2 on the vertical and Fl on the
horizontal axes, respectively. Do the overall vowel patterns
have the same shape and differ mostly by a scale factor?

26.18 Calculate the amplitudes corresponding to the trans-
mission, source, and radiated pressure levels at 1000 Hz
in Figures 26.3–26.5. (Assume the levels were obtained
from 20 times the logarithm of the amplitudes.) Does the
product of the transmission and source amplitudes give
the radiated pressure amplitude? Does the sum of 20 times
the logarithms of the transmission and source amplitudes
give the same result as 20 times the logarithm of the radi-
ated pressure amplitude?

Activities

26.1 Attach a sinusoidally driven loudspeaker to one end
of a model vocal tract. Use a microphone hooked to an
oscilloscope at the other end to pick up the pressure wave.
Measure the response as the frequency is varied.

26.2 Take short sections of tube and place them in contact
with your lips so as to extend your lips while producing
vowel sounds. Does the vowel color change? Why? Does the
pitch change? Why? If possible, perform spectral analyses.

26.3 Perform spectral analyses of voiced and whispered
vowels. Are the formant frequencies the same or different?
Why? Do harmonic lines appear in the spectra of both?
Why?

26.4 Estimate relative female and male vocal tract lengths
by having a marshmallow stuffing contest. Determine the

250 CHAPTER 26



sources of speech spectra. Chapter 10 discusses coar-
ticulation effects.

Strong, W. J. (1967). “Machine-aided Formant
Determination for Speech Synthesis,” J. Acoust. Soc.
Am. 41, 1434–1442.

Strong, W. J., and E. P. Palmer (1975). “Computer-Based
Sound Spectrograph System,” J. Acoust. Soc. Am. 58,
899–904.

Questions

27.1 Which of the phonemes in Table 25.1 is “steady”?
Which of the phonemes is “transitory”? For each phoneme,
indicate the place of articulation (where appropriate) as
one of the following: labial, labiodental, alveolar, palatal,
velar, glottal. For each phoneme, indicate the manner of
articulation as one of the following: vowel, semivowel, liq-
uid, nasal, voiced fricative, unvoiced fricative, voiced plo-
sive, unvoiced plosive.

25.2 What are the distinguishing features typically seen in
a spectrogram for the following categories of sounds: nasals,
voiced fricatives, unvoiced fricatives, diphthongs, voiced
plosives, unvoiced plosives? (For example, vowels are typ-
ically characterized by three or more fairly well-defined
energy bands or formants.) Describe what the vocal folds
and the vocal tract are doing to produce the observed spec-
trographic features

27.3 Compare the sound-pressure wave in Figure 27.1 with
the spectrograms in Figures 27.4 and 27.5. All were
obtained from the same utterance of “Joe took father’s shoe
bench out.” What are the corresponding features of the
three?

Exercises

27.1 Fundamental frequency can be determined by meas-
uring the frequency of some higher harmonic (such as the
10th) and then dividing by the harmonic number (10 in this
case). Use this technique to determine the fundamental
frequency at various points in the narrow-band spectro-
gram of Figure 27.5.

27.2 Sketch spectrographic features in the form of stylized
spectrograms for the various categories of sound in
Question 27.2.

27.3 Compare formant frequencies obtained from approx-
imately steady portions of the spectrograms in Figures 27.4
and 27.6 with values obtained from the spectra of Figures

26.12 and 26.13. How well do they agree? List some vari-
ables that might account for the discrepancies.

27.4 Compare the spectrogram in Figure 27.6 to the “for-
mant spectrogram” in Figure 27.7. Both are for the same
utterance, “Robby will like you, daddy-oh.” Describe sim-
ilarities and differences between the two spectrograms.

27.5 Show the approximate time duration of each
phoneme in Figures 27.4 and 27.6 by bounding each with
vertical lines. Note transition regions and the influences
of one phoneme on another.

27.6 Imagine you have a sheet of spectrogram paper. Draw
a stylized spectrogram for the diphthong /a/I/. First draw a
spectrogram at the left side for /a/. Then draw a spectro-
gram at the right for /I/. Connect the first, second, and third
formants of the /a/ to those for the /I/. Compare your styl-
ized spectrogram with the long “i” in “like” of Figure 27.6.

27.7 Suppose a two-formant speech synthesizer is to be
controlled by means of a lapboard. A lapboard (shown in
Figure 27.13) is used by placing a pointer on the board in
a position appropriate for the first two formant frequen-
cies of the desired sound. The first formant frequency is
controlled by the horizontal position of the pointer as it
increases from left to right, and the second formant fre-
quency is controlled by the vertical position of the pointer
as it increases from bottom to top. Show on the diagram
of the lapboard where the pointer should be placed to pro-
duce the following vowel sounds: /i/, /I/, /ε/, /æ/, /a/, /U/,
and /u/. Also show approximate paths that might be traced
out by the pointer to produce the diphthongs /aI/ and /au/,
and to produce the syllables /d/a/, /g/a/, /b/i/, /d/i/, and
/g/i/. Use information from Figure 27.12.
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Figure 27.13 Lapboard for controlling first and second
formant frequencies of a two-formant synthesizer.



27.8 Estimate the fundamental frequency for different
voiced parts of the narrow-band spectrogram in Figure
27.5. Do this by determining the frequency difference
between two adjacent harmonics indicated by the horizon-
tal striations.

27.9 Estimate the fundamental frequency for different
voiced parts of the narrow-band spectrogram in Figure
27.5. Do this by determining the frequency of a strong
harmonic and dividing by the harmonic number.

27.10 Estimate the change in F1 and F2 of “dy” in “daddy-
oh” from Figures 27.6 and 27.7. How long do the transi-
tions take?

Activities

27.1 Perform an analysis of energy types in speech. Identify
the portions of the waveform in Figure 27.1 associated
with the various phonemes in “Joe took father’s shoe bench

out.” Determine the degree of periodicity in each part of
the wave (much, some, none) for each of the 12 phonemes.
Compare these “periodicity” results with the “energy type
results” of Activity 25.3. What correlation is there between
periodicity and voicing or noise?

27.2 Use a sound spectrograph to produce a sound spectro-
gram for your own voice while speaking a sentence that is
about 2 seconds in length. Interpret the sound spectro-
gram by labeling different parts of the spectrogram with
appropriate phoneme symbols. Also indicate points of high
and low pitch.

27.3 Use a speech synthesizer to synthesize some steady
vowel sounds and some consonant-vowel syllables.

27.4 Listen to synthetic speech produced by a “Speak &
Spell” or other commercial synthesizer. Comment on the
intelligibility and naturalness of the synthetic speech.
Suggest what the deficiencies might be.
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50 clock pulses and -1.0 after 100 clock pulses. The pro-
cedure could then be repeated to give an appropriate num-
ber of cycles. (The same disclaimers as for the square wave
apply here.)

The representation of a sine wave generator is more
complex because it cannot be done with simple changes of
sign as with the square wave or by adding fixed increments
as for the sawtooth. A method commonly used for sine
wave generation is table lookup in which the values of the
sine function are stored in a table. The clock pulse count
effectively produces an argument for the sine function and
so specifies where in the table to obtain the sine value.
(Interpolation between adjacent table values can be used
to obtain a more precise sine value.) Another method of
sine wave generation is left to the exercises.

A simple low-pass filter can be represented by

OC = (l -ED)× IC + ED×OP

and a simple high-pass filter can be represented by

OC = IC - IP + ED×OP

where OC is the current output of the filter, OP is the pre-
vious output, IC is the current input to the filter, IP is the
previous input and ED = exp(-6.28fT) with f the filter cut-
off frequency and T the clock period. Bandpass filters can
be represented in a similar, though more complex, way.

The preceding examples are intended to illustrate how
some of the digital components might be implemented.
One additional component important for many electronic
organs is a frequency divider, where it is important to pro-
vide frequencies at octave intervals. Let us suppose that we
have the frequencies (or actually periods) specified for the
12 notes in some upper octave. We can think of a pulse
generated for each period of the fundamental of each note.
For a note an octave lower we want period pulses gener-
ated only half as often and a frequency divider is used to
accomplish this. The frequency divider receives period
pulses from the higher octave note and then produces out-
put pulses only for every other pulse it receives. By succes-
sive application of frequency division, frequencies can be
obtained for all lower octave notes.

42.6 Electronic Organ Controls

A player has access to two basic sets of controls on an
electronic organ: the keyboard (and pedalboard) and the
stops. The stops can be used to select particular voices
(which determine tone color and, sometimes, attack and
decay characteristics) available on the organ. Waveforms
produced by different voices on a given organ are deter-
mined by the manufacturer’s choice of a synthesis method
and its implementation. (Synthesis methods will be dis-

cussed in Chapter 43.) Stops can also be used to determine
expressive features such as tremolo and vibrato. Once the
stops have been selected, the player depresses the keys and
pedals to produce the appropriate note frequencies and
durations. When a key is depressed on the organ, a step
voltage is produced as shown in the upper part of Figure
42.9; when the key is released the voltage returns to its pre-
vious value. In order to illustrate some additional compo-
nents and their functions, suppose that a voice has been
selected that generates the waveform shown at the lower
left in the figure. The voltage from the key goes to an enve-
lope generator (ENV) whose function is to smooth abrupt
initial and final voltage changes. A low-pass filter described
above can be used to provide the ENV function. The out-
put of the ENV is a smoothed initial transient, followed
by a level voltage for as long as the key remains depressed,
and terminated with a gradual decay. The output from the
ENV is used to control a voltage-controlled amplifier
(VCA) whose function is to modulate the amplitude of the
input voice waveform. The output of the VCA is the wave-
form shown at the lower right in the figure and is just the
voice waveform as amplitude modulated by the ENV con-
trol signal. (A VCA is implemented digitally in terms of a
point by point multiplication of the two waveforms
involved.)

We now repeat the single organ tone example, but with
the addition of amplitude tremolo selected with a stop. The
amplitude tremolo is achieved by using a voltage-controlled
oscillator to provide an amplitude modulation signal as
shown in Figure 42.10. A voltage-controlled oscillator
(VCO) generates waveforms with the frequency controlled
by the voltage sent to it—increasing the voltage raises the fre-
quency and vice versa. The control voltage can come from
a keyboard, from another VCO, or from any control source.
(A VCO can be implemented digitally in terms of the sine
wave, sawtooth, or square wave generators described above.)
Note that the outputs of the ENV and VCO are combined

VCA

ENV

KEY
DEPRESSED

KEY
RELEASED

VOLTAGE FROM KEY

CONTROL VOLTAGE
FROM ENV

INPUT OUTPUT

Figure 42.9 Amplitude modulation of a waveform with a
time envelope. Signal from key goes to the ENV which sends
a signal to the VCA.
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(with a point by point digital addition) to form a compos-
ite signal to control the VCA. The resulting waveform is
amplitude modulated in such a way as to have an attack, a
tremolo, and a decay as shown in Figure 42.10.

42.7 Electronic Organs

Electronic organs come in many sizes and styles,
including small portable models, spinet models, church
models, and concert models. The smaller ones may have
one or two abbreviated keyboards and a few foot pedals,
while the largest ones may have three keyboards, a full pedal
board, and numerous stops and controls. A typical church
model organ is illustrated in Figure 42.11. Most organs use
the method of subtractive synthesis for tone generation.
Basically, it involves starting with a complex waveform such

as a sawtooth and then filtering out (subtracting) some of
the harmonic energy. Subtractive synthesis is used in organs
such as the Baldwin, Conn, Rodgers, and so on. Sawtooth,
square wave, and sine wave generators are used to produce
periodic waveforms with rich harmonic content; noise gen-
erators are used to produce waveforms with random con-
secutive values, but rich in frequency content. (Refer to
Chapter 7 for details on waveforms and spectra.) Low-pass,
high-pass, and bandpass filters are used to shape the spec-
tra. As an example, suppose that an oboe-like sound is to
be produced on an electronic organ. This might be done
by taking a sawtooth wave (having all harmonics) and pass-
ing it through two bandpass filters set to match the peaks in
the oboe spectral envelope of Figure 34.19.

There are other synthesis methods including additive
and waveform sampling, which are being used more and
more frequently in electronic organs. The older Hammond
organs using tone wheels (see Figure 42.5) were the best-
known examples of an instrument using additive synthe-
sis. With this instrument the performer had control over
the relative amplitudes of nine independent harmonics,
each having different frequencies but related to the funda-
mental. The various amounts of the nine harmonics were
added together to give steady-state spectra matching those
of various musical instruments, including the pipe organ.
The fact that the Hammond was unable to even approach
a reproduction of such tones indicates the importance of
factors other than steady-state spectra. Factors such as attack
transients, decay time, and choral effects must all be consid-
ered if a realistic tone is desired.

Although considerable work has been done toward
achieving realistic attack and decay times, the complex
attack and decay transients of organ pipes cannot be dupli-
cated inexpensively in electronic organs. Even though the
steady state can be duplicated more effectively, it is not as
important as the attack transient. One of the major defi-
ciencies of electronic organs is the lack of an ensemble
effect, as many models use only 12 tone generators for the
entire instrument. A set of 12 master oscillators is used to
generate the notes in a high-frequency octave, which are
then frequency divided to produce notes in the lower
octaves. This results in all oscillators being mathematically
in tune, with only small amounts of beating occurring (see
Chapter 33). In comparing this to even a small pipe organ
having hundreds of individual tonal sources, it is no won-
der that the imitation is a rather poor one. Some organs
use many individually tuned oscillators which provide a
more realistic ensemble effect, but the basic deficiencies of
tone remain. Some of the more expensive electronic organs
use several loudspeakers to produce a source with spatial
properties more like those of pipe organs. The Allen organ
uses a digital computer in a version of waveform sampling
in an attempt to produce pipe organ sounds. When the

ENV VCO

VCA

ADG SIGNAL VCO SIGNAL

COMBINED
CONTROL
SIGNAL

OUTPUTINPUT

Figure 42.10 Amplitude modulation of a waveform with a
time envelope. Signals from the ENV and VCO are added to
provide a control signal to the VCA.

Figure 42.11 Quantum© model Q385 Digital Organ
(Courtesy of Allen Organ Co.)
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Exercises

42.1 Sketch an electronically assisted flute. Where might
the transducer be placed?

42.2 Figure 42.7 is a diagram of an electronically assisted
clarinet. How could the frequency divider be used to
change the sound? How could the filters be used to change
the sound?

42.3 The following describes an alternative method for
sine wave generation. Suppose we assume some previous
value for the sine function as SP and a corresponding value
for the cosine function as CP. The current value for the
sine function can be calculated as

SC = SP×CD + CP×SD

and the current value for the cosine can be calculated as

CC = CP×CD - SP×SD

where CD = cos(360fT), SD = sin(360fT), and T is the
clock period. Take f = 500 Hz and T = 20 µs to calculate
CD = 0.9980 and SD = 0.0628. Now suppose that the pre-
vious value of the sine function was 0 with a corresponding
value of the cosine function of 1.0. Now calculate the current
value of the sine function as 0.0628 and that of the cosine
function as 0.9980. The values for the sine function are the
output of our sine wave generator, while those of the cosine
function provide the output for a cosine wave generator. The
current values for sine and cosine become the previous val-
ues at the next step in the calculation and so waveforms of
arbitrary duration can be generated. Generate additional
sine values and compare them to those from a calculator.

42.4 Repeat Exercise 42.3 with f = 440 Hz and T = 100
µs.

42.5 Imagine an electronically assisted trumpet setup sim-
ilar to that shown in Figure 42.7 for a clarinet. How real-
istic will the sound picked up in the trumpet mouthpiece
be relative to that directly radiated by the trumpet? Which
will have relatively more high-frequency energy?

42.6 The electronic part of the electronic trumpet in
Exercise 42.5 takes the trumpet mouthpiece pressure and
produces a bassoonlike tone an octave lower. What compo-
nents are needed to achieve this tone modification?

42.7 If tone wheels having 100 and 106 teeth are rotated
at the same speed, what musical interval results? Does the
interval depend on the speed of rotation? At what speed
would they need to rotate for the 100 tooth wheel to sound
A3 = 220 Hz? A4 = 440 Hz?

42.8 Sometimes an attempt is made to create more real-
ism in electronic organ sounds by producing frequency
modulation with a moving loudspeaker. If a loudspeaker
moves in a circular path of 15 cm radius at 0.33 revolu-
tion per second, what is its speed? What maximum fre-
quency shift is produced? Is it the same for all listening
positions?

Activity

42.1 Visit several music stores and observe the tonal char-
acteristics of the various electronic organs.
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Receiver, the Human Auditory System,” J. Audio Eng.
Soc. (39), 115–126.

Questions

49.1 What percent of your stereo budget would you allo-
cate for purchase of the loudspeakers, the amplifier, and
the cassette deck in a basic stereo system?

49.2 What percent of your stereo budget would you allo-
cate for each of the components in a 5.1 system?

49.3 If you have a limited budget, would it be wiser to
invest the money in a high-quality, four-component sys-
tem or a lesser-quality, six-component system? Explain the
pros and cons of each approach.

49.4 List several reasons why the largest budget allocation
should be for speakers.

49.5 Summarize the recommended procedure for purchas-
ing loudspeakers.

49.6 Describe how speaker placement in various locations
within a room can produce different amounts of bass boost.

49.7 Describe the “dispersion test.” Why is a speaker with
wide-angle dispersion characteristics desirable?

49.8 Describe how you might expect the perceptual audi-
tory experience to differ between binaural listening with
earphones and stereo listening with loudspeakers.

Exercises

49.1 What acoustic output power from your speakers is
required to achieve 95 dB (in an average living room)? 105
dB?

49.2 For a speaker that is 10% efficient, compute the
required input power for both cases in Exercise 49.1.

49.3 For a speaker that is 1% efficient, make the same cal-
culations as in Exercise 49.2.

49.4 Do the calculations of Exercise 49.2 for a speaker that
is 0.5% efficient in a highly absorptive room.

49.5 Which of the following speakers is most efficient.
Speaker A: 200 watts in, 2 watts out; Speaker B: 20 watts
in, 1.6 watts out; or Speaker C: 2 watts in, 0.02 watt out.

49.6 A speaker with an efficiency of 5% receives 120 watts
of electrical power. How much of the input power is lost as
heat? How much power is radiated as sound?

49.7 A room has dimensions of 3 × 4.8 m. Determine
where the speakers should be placed in order to get the
largest area of good listening. Should the speakers be placed
on the shorter or the longer wall?

49.8 How far apart should stereo loudspeakers be placed
for the best reproduction of the original sound field? What
happens if the speakers are too close? Too far apart?

49.9 A large cathedral-ceilinged room has a volume of 300
m3 and a RT of 1 s. What acoustic power is required to
produce a sound level of 95 dB? What amplifier power is
required if the loudspeaker is 5% efficient?

49.10 Calculate the first four natural frequencies of a room
with dimensions 10 m×8 m×3 m. (Refer to Chapter 22.)
Sketch the room and indicate where pressure maxima will
occur. Will the pressure maxima in the room enhance any
audio frequencies? Will loudspeaker placement have any
effect on the enhancement?

Activities

49.1 Visit some audio stores and obtain specifications and
prices of various stereo systems. Listen to the systems and
decide which system would be your choice if you were in
the market.

49.2 What exactly should you be listening for when you
audition a loudspeaker, and how should you listen for it?
First, think about how and where the speakers will be used,
and try to duplicate this placement in the store. Next, be cer-
tain that the speakers you are comparing are placed accord-
ing to the manufacturers’ recommendation, and that
neither set has an unfair advantage, because of placement,
over the other. Finally, concentrate on listening for tonal
balance, bass extension, and stereo imaging.
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A1. Review of Elementary Math

Definitions

(1) Numerical constant: a quantity that always retains
the same value. Example: speed of sound in air at T
= 200 C.

(2) Arbitrary constants: numerical values assigned to
a particular situation. Example: Assuming a con-
stant speed of 20 mph, a man travels ten miles in
one-half hour.

(3) Independent variable: variable for which the
numerical value is chosen arbitrarily. (A variable is
a quantity to which an unlimited number of val-
ues can be assigned.)

(4) Dependent variable: variable for which the numer-
ical value depends on the value chosen for the inde-
pendent variable. Example: Given that a car is
traveling at a constant speed of 20 mph, two vari-
ables are still involved, time and distance. Taking
time as the independent variable, choose any arbi-
trary time interval, such as two hours. Then the
dependent variable (distance) is determined to be 40
miles.

(5) Ratio: a quotient or indicated division, often
expressed as a common fraction.

Review of Symbolic Relations and Equations

The math used in physics can be thought of as a set of
symbolic relations used to show how “real things” relate to
or depend on one another. For example, the distance trav-
eled by an auto can be expressed with word symbols as the
distance traveled is equal to the speed of travel multiplied
by the time traveled. Alternatively, this relation can be
expressed with mixed symbols as length = (speed) (time)
or with other symbols, as L = (v)(t).

We often deal with equations, which show some set of
symbols equal to some other set. In many cases all symbols
but one have known values. Then it becomes our task to
calculate a value for the unknown symbol. To solve alge-
braic equations, a simple rule is to treat each side of the
equation as one of a pair of identical twins. Each time
something is done to one side of the equation (or twin) the
same thing must be done to the other side of the equation
(or twin). The object is to get the unknown quantity on
one side of the equation and the known quantities on the
other. Consider the following examples:

(1) f = 1/T T = 0.1 f = ?

putting the value of T in the equation gives f=1/0.1=10

(2) L = (v)(t) L = 1000 t = 5 v = ?

putting values of L and t in the equation gives 1000 =
5v dividing both sides of the equation by 5 gives
1000/5 = 200 = v so we find v = 200

Review of Square Roots and Logarithms

In addition to equations there are some special sym-
bols that represent operations or special actions. √ is the
square root symbol. It means to find a number which when
multiplied by itself gives the number under the square root
symbol. Study the following examples:

(1) √4 = 2 2 × 2=4.
(2) √5 ~= 2.24 2.24 × 2.24 ~= 5

The logarithm (or “log”) of a number is the power to
which 10 must be raised to produce that number. The log
of the product of two numbers is the sum of the logs of the
two numbers. Study the following examples:
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(1) log10=1 101 = 10
(2) log 1 = 0 100 = 1
(3) log 100 = 2 102 = 100
(4) log 0.1 = -1 10-1 = 0.1
(5) log 100 = log (10)(10) = log 10 + log 10 = 2
(6) log 20 = log (2)(10) = log 2 + log 10 = 1.3

The Sine Function

The “sine” of an angle (where the angle is expressed in
fractions of a cycle or degrees) is simply a number. The
number can represent “real things,” such as displacement,
force, etc. The reason for using the “sine function” is that it
can conveniently represent different kinds of waves. The
sine for different angles can be generated by taking a stick
L units in length, pinning one end at the point where the
horizontal and vertical axes cross each other, rotating the
stick through an angle θ, and measuring the displacement
D of the other end of the stick from the horizontal axis, as
shown in Figure Al. 1. Note that the sine values will be the
same for all rotations after the first so the table of sine val-
ues needs to go only from 0 to 360 degrees. The sine of the
angular rotation θ is defined as the displacement D divided
by L or sine θ = D/L. Once a table of sine values has been
put together we can look in the table for the sine value we
want, rather than generating it with our rotating stick.

Exercises

A1.1 If v = f λ ,and you are given λ = 3 and v = 21,
find f.

A1.2 If f = 6 and λ = 3, find v.

A 1.3 If f = 8 and v = 12, find λ.

A 1.4 If f = 1/T, and you are given T = 0.2, find f.

A1.5 If f = 30, find T.

A1.6 If d = vt, and you are given d = 30 and v = 10,
find t.

A1.7 If v = 2 and t = 5, find d.

A1.8 If t = 100 and d = 2, find v.

A1.9 If f = 0.16 √s/m and you are given s = 90 and
m = 10, find f.

A1.10 If s = 360 and m = 10, find f.

A1.11 Use Table A6.3 to determine the following:
sin 180°, sin 270°, and sin 45°.

A1.12 Use Table A6.3 to determine the following:
sin 0°, sin 90°, sin 162°, and sin 360°.

A1.13 Why is the sine table only given for 0 to 360
degrees?

A1.14 Set up the “sine generator” of Figure A1.1 and com-
pare values generated by it with those given in Table A6.3.
Where do negative values come from?

A1.15 Solve for the following by finding the number in
the first column of Table A6.2 and its corresponding log-
arithm in the second column: log 100, log 1000, log 2,
log 4, log 10, and log 1.

A1.16 Solve for the following by finding the exponent in
the second column of Table A6.2 and its corresponding
power of ten in the first column: 100, 101, 106, 103, and
102.

A 1.17 Solve for the following by factoring the number
into two or more smaller numbers, finding the logarithms
of the smaller numbers in Table A6.2, and adding the log-
arithms: log 200, log 40, log 60,000, log 4000, and log -
9000.

A1.18 The logarithm of a number specified by a
single nonzero digit followed by a string of zeros can be
obtained by counting the zeros and adding to this the log-
arithm of the digit. Why does this work? Apply this proce-
dure to Exercise A1.17.
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Figure A1.1 Rotating stick method for generating values of
the sine function.



A2. Graphs and Graphical Analysis

It is frequently useful to observe how one part of a
physical system changes with respect to some other part;
that is, when one variable (the independent variable) is
changed, how does another variable (the dependent vari-
able) change? If a quantitative relationship exists between
the variables, the relationship may be expressed (1) in an
equation, (2) in a table, or (3) in a graph. As examples, we
analyze some typical relationships found in the physical
world. The relationships between the variables may be lin-
ear, nonlinear, or oscillatory. In each example the informa-
tion is expressed in equation form, in tabular form, and in
graphical form. An example of graphical addition is also
given.

Linear Relationship

The distance a car travels on a straight road when mov-
ing at a constant speed is given by d = vt, where d is dis-
tance, v is speed, and t is time. The distance traveled (in
km) is tabulated in Table A2.1 at six different times (in hr)
for a car moving with a speed of 40 km/hr. The values in
the table are plotted in Figure A2. 1. The plotted values are
connected with a straight line to show the linear relationship
between distance and time. The dependent variable (d in
this example) changes by equal amounts when the inde-

pendent variable (t in this example) changes by equal
amounts in a linear relationship.

Nonlinear Relationship

The height of a rock above ground level when dropped
from a 100 m high cliff is given by h = 100 – 4.9 t2, where
h is height (in m) and t is time (in s). The height is tabulated
in Table A2.2 at different times. The values in the table are
plotted in Figure A2.2. The plotted values are connected
with a curved line to show the nonlinear relationship
between height and time. The dependent variable (h in this
example) changes by unequal amounts when the independ-
ent variable (t in this example) changes by equal amounts
in a nonlinear relationship.
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Time (hr) Distance (km)

0 0
1 40
2 80
3 120
4 160
5 200

Table A2.1 Distance traveled at a constant speed of 40 km/hr.

Figure A2.1 Plot of the linear relation d = 40t.

Time (s) Height (m)

0 100.0
0.5 98.8
1.0 95.1
1.5 89.0
2.0 80.4
2.5 69.4
3.0 55.9
3.5 40.0
4.0 21.6

Table A2.2 Height of a rock dropped from a cliff.

Figure A2.2 Plot of the nonlinear relation d = 100—
4.9t2.



Oscillatory Relationship

The displacement of a child in a swing is given by d =
2.0 sin (180t), where d is displacement (in m) from the
swing’s resting position and t is time (in s). The displace-
ment is tabulated in the second column of Table A2.3 at
different times. (The argument of the sine function is
assumed to be given in degrees.) The values from the table
are plotted in the upper part of Figure A2.3. The plotted
values are connected with a sinusoidal curve to show the
oscillatory relationship between displacement and time.
The dependent variable (d in this example) oscillates
between positive and negative values as the independent
variable (t in this example) increases.

Graphical Addition

It is often useful to add two simple oscillations to form
a complex oscillation because this situation occurs in many
everyday phenomena. Suppose we have an oscillator whose
displacement, given by d = 1.0 sin (90t), is tabulated in the
third column of Table A2.3 and plotted in the middle part
of Figure A2.3. This oscillation can be added to the swing
oscillation described in the previous section by adding the
values in the second and third columns of Table A2.3 to
give the values in the fourth column.

These two sinusoidal oscillations (upper and middle
parts of Figure A2.3) can also be added graphically to give
a complex oscillation (lower part of Figure A2.3). We will
consider the addition of the numbered points to illustrate
various features of graphical addition. Upper and middle
points 1 are both positive; when they are added they produce
the larger positive value plotted as point 1 in the lower
graph.

Upper point 2 added to middle point 2 gives lower
point 2; lower point 2 is equal to middle point 2 because
upper point 2 is zero and adds nothing.

Upper point 3 added to middle point 3 gives a lower
point 3 of zero because both the upper and middle points
have values of zero. Adding middle point 4 to upper point
4 gives a value smaller than upper point 4 because middle
point 4 is negative. The result appears as lower point 4.
Again, the points of the complex waveform (lower curve)
are connected with curved lines to show the nature of the
combined waves.

Exercises

A2.1 Tabulate and graph values of v for the relation
v = f λ as f is varied from 1 to 25 if λ = 4.

A2.2 Tabulate and graph values of F for the relation
F = ma as a is varied from 1 to 10 if m = 10.

A2.3 Tabulate and graph values of f for the relation
f = 1/T as T is varied from 0.1 to 10.
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Figure A2.3 Plot of d = 2 sin (180t) in the upper curve, d
= sin (90t) in the middle curve, and their sum in the lower
curve.

Displacement (m)
Time (s) Swing Oscillator Combined

0 0 0  0
0.2 1.18 0.31 1.49
0.4 1.90 0.59 2.49
0.6 1.90 0.81 2.71
0.8 1.18 0.95 2.13
1.0 0 1.00 1.00
1.2 -1.18 0.95 -0.23
1.4 -1.90 0.81 -1.09
1.6 -1.90 0.59 -1.31
1.8 -1.18 0.31 -0.87
2.0 0 0  0
2.2 1.18 -0.31 0.87
2.4 1.90 -0.59 1.31
2.6 1.90 -0.81 1.09
2.8 1.18 -0.95 0.23
3.0 0 -1.00 -1.00
3.2 -1.18 -0.95 -2.13
3.4 -1.90 -0.81 -2.71
3.6 -1.90 -0.59 -2.49
3.8 -1.18 -0.31 -1.49
4.0 0 0  0

Table A2.3 Swing displacement, oscillator displacement, and their
combined displacement.
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A2.4 Tabulate and graph values of f for the relation
f = 0.16√——–(s/m) as (s/m) is varied from 0 to 100.

A2.5 Tabulate and graph values of dB for the relation dB
= 20 log (p/20) as p is varied from 20 to 20,000.

A2.6 Plot sin θ in Figure A2.4 for values of θ between 0 and
360°.

A2.7 Graphically add the upper and middle curves in
Figure A2.5 and plot the result in the lower part of the fig-
ure. (A ruler can be used to carry out the point-by-point
additions.)

Figure A2.4 Grid to be used for plot of Exercise A2.6.

Figure A2.5 Upper and middle curves to be graphically
added and plotted in the lower part of the figure as Exercise
A2.7.
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A3. Symbols, Quantities, and Units

In the hypotheses and abstractions of science it is nec-
essary to express relationships between natural phenomena.
Special symbols are typically used as a shorthand way of
representing various physical quantities. Relationships
expressed symbolically permit a great deal of economy as
compared to writing everything out in words. Special sym-
bols are not peculiar to science; they are used extensively
in music, speech, and other facets of our lives. It is very
helpful to use standardized symbols so that new symbols
do not have to be learned every time a different person’s
writings are studied. However, although much standardi-
zation exists in science, uniformity of symbol usage is not
complete.

When carrying out the measurement step in a scien-
tific method it is necessary to quantify the results of the
various measurements. Standard units of measure should
be employed so that one set of measurement results can be

easily communicated to and interpreted by others.
Combining the prefixes of Appendix 4 with standard unit
symbols makes a whole range of standard units available.
For example, ms (millisecond) is the symbol for one thou-
sandth of a second and cm (centimeter) is the symbol for
one-hundredth of a meter. Scientists making similar obser-
vations can easily compare their experimental results with
one another when standard units of measure are employed.
(Think for a moment of the confusion that might develop
in comparing various measurements of length of a particu-
lar object if each of ten different observers used as a unit
of length the length of his shoe or index finger. In this case,
you can see that the same object would be described in
terms of ten length measures, each having a different
numerical value.)

The definition of standard symbols and standard units
of measure is quite arbitrary in many respects. Once the
definitions have been made, however, a consistent use of
the standards makes their utility value vary significant.
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Symbol Quantity Common Units

a acceleration m/s2

d displacement m (meter)
f frequency Hz (cycles per second)
i electric current A (ampere)
L length m (meter)
m mass kg (kilogram)
n integer —
p pressure Pa (pascal)
q electric charge C (coulomb)
s stiffness N/m
t time s (second)
v velocity or speed m/s
w weight N (newton)
x any unknown quantity
A amplitude various
D mass density kg/m3, kg/m
E energy or work J (joule)
F force or tension N (newton)
K constant —
I intensity W/m2

P power W (watt)
R electric resistance Ω (ohm)
S surface area m2

T period s (second)
V volume m3

∆ indicates small change
λ wavelength m (meter)
φ phase degree
θ angle degree

Table A3.1 Symbols, quantities, and units.

Symbol Quantity

AC absorption coefficient
ADC analog-to-digital conversion
AFC automatic frequency control
CB critical band
DAC digital-to-analog conversion
DRT diagnostic rhyme test
GPE gravitational potential energy
IMD intermodulation distortion
JND just noticeable difference
KE kinetic energy
LL loudness level
NC noise criteria
PCM pulse code modulation
PE potential energy
PTS permanent threshold shift
RMS root-mean-square
RT reverberation time
SHM simple harmonic motion
SIL sound intensity level
SL sound level
S/N signal-to-noise ratio
SPL sound pressure level
STC sound transmission class
TA total absorption
THD total harmonic distortion
TTS temporary threshold shift
VCA voltage-controlled amplifier
VCF voltage-controlled filter
VCO voltage-controlled oscillator

Table A3.2 Symbols and quantities.
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Continuous equivalent level: (Leq dBA) A scale for non-
steady noises; the dBA level averaged over time to yield
an equivalent dBA level of steady sound that would
provide the same total sound energy in the same time.

Continuous wave: A disturbance of continuing duration.

Contour tones:Tones in which contrasts are made among
changing pitch contours.

Coulomb: (C) Unit of measure of electric charge—the
total charge of 6.24 ×1018 electrons.

Critical band: (CB) A frequency range within which two
sinusoids interact significantly. The frequency range
of a critical band depends on the “stimulation width”
on the basilar membrane.

Crossover network: A system that divides an output sig-
nal into different ranges and routes them to the appro-
priate driver units.

Crosstalk:The leakage of information between two adja-
cent tracks on recording tape.

Crystal microphone: A microphone that employs the
piezoelectric effect.

Cutoff frequency: The frequency at which waves begin
to travel into an open-hole section of tubing, rather
than being reflected.

Cutoff frequency: The lowest frequency that can be effi-
ciently transmitted by a horn speaker.

Damped oscillation: Oscillation in which the amplitude
of an oscillator decreases with time.

Damping factor: A description of an amplifier’s ability to
“dampen” or control unwanted residual movements
of the speaker cone, resulting from inertia, after a sig-
nal is terminated.

Damping time: The time required for an amplitude to
decrease to one-half its initial value.

Day-night average level: A measure of sound level that
adjusts for greater sensitivity to noise at night.

Deductive reasoning: Beginning with a generalization and
searching for evidence of it in scientific observations.

Demi-syllables: Acoustic segments employed in concate-
nation systems consisting of either the first half or the
last half of a syllable and containing transitions from
consonants to vowels and vowels to consonants.

Density: (D) The mass occupied by a standard volume of
a material; mass divided by volume.

Destructive interference: The out-of-phase addition of
waves to create a smaller wave.

Diapasons: A rank of cylindrical open pipes that go
“through all” the notes of an organ keyboard (meaning

there is a pipe for each key) and produce a tone which
is the most characteristic of the organ.

Diaphragm: A muscular structure at the bottom of the
chest cavity that controls pressure in the chest cavity
surrounding the lungs.

Diffraction: The bending of waves around obstacles or
through openings.

Diffuse reflection:The reflection in many different direc-
tions occurring when a wave encounters a rough sur-
face.

Diffusion: An approximately equal distribution of sound
energy throughout a room; usually produced by irreg-
ularly shaped objects which scatter the sound.

Digital-to-analog conversion: The conversion of num-
bers into discrete voltages which are then smoothed
into continuous voltages.

Digitizing: Converting an analog signal into a string of
discrete numbers.

Diphones: Acoustic segments employed in concatenation
systems consisting of the last half of one phoneme and
the first half of the next phoneme, including the inter-
phoneme transition boundaries.

Direct sound: The sound going directly from the sound
source to the microphone (or listener) with no reflec-
tions.

Discrimination testing: A test used to measure whether
the difference between two speech signals can be
detected.

Dispersion:The “spread” of a sound wave emanating from
a loud-speaker.

Displacement amplitude: (A)The maximum displace-
ment in either direction from the rest position of an
oscillator.

Displacement: The change in position of an object, as
measured by distance and direction.

Distortion: In auditorium acoustics, any undesirable
change in the quality of a musical sound because of
the uneven or excessive absorption of sound at certain
frequencies.

Dolby Pro-Logic: A surround sound encoding/decoding
system where the center (C) and surround (S) chan-
nels are extracted from the left (L) and right (R) chan-
nels. The LRCS information is encoded into two
channels that go to the recorder. On playback the
LRCS channels are decoded from the two channels to
drive five speakers.

Dolby Surround: A surround sound encoding system that
creates a rear speaker surround channel as L-R with
Dolby-B noise reduction, but delayed by 15 or 20
msec.
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Doppler effect: The change in the apparent frequency of
a sound due to a relative motion between the sound
source and the listener.

Driven vibrator: Any vibrator to which energy is contin-
uously supplied by an external source.

Dynamic headroom: The number of dB of power above
the rated continuous power an amplifier can deliver
for short time periods without exceeding the rated
THD.

Dynamic loudness: An assessment relative to what might
be anticipated between a pianissimo and a fortissimo,
corresponding to the physical measure of strength.

Dynamic microphone: A microphone where the trans-
ducing element is a coil of wire attached to the
diaphragm and is free to move between the poles of a
permanent magnet.

Dynamic pickup: A pickup that couples mechanical
motion to a coil in a magnetic field.

Dynamic range: The difference in dB level between the
softest perceivable signal that is not noise, and the
loudest signal within the given limits of distortion
(THD and IMD).

Dynamic range: The range of amplitudes over which a
tranducer’s output response is nearly linear.

Early Decay Time: (EDT) Defined in terms of the first
10 dB of sound decay. It is multiplied by a factor of
6 to correspond to RT, which accounts for 60 dB of
decay.

Early sound: The direct sound and any reflected sound
arriving within approximately 35-80 ms of the direct
sound.

Echo: Loud reflected sounds arriving more than 50 ms
later than the direct sound.

Echoes: When a reflected or delayed sound (having the
same frequency content as the direct sound) is heard by
a listener as separate and distinct from the direct
sound.

Effective perceived noise level: (EPNdB) A noise level
scale that takes into account maximum loudness and
duration.

Electret condenser microphone: A condenser microphone
which eliminates the need for a high-voltage bias sup-
ply by using a permanently-charged material.

Electric charge: (q) A measure of the unbalanced electric-
ity in a body of matter as determined by the number
of positively charged particles versus the number of
negatively charged particles.

Electric current: (i) The amount of charge passing a given
point per unit time.

Electrical potential difference: (V) Difference between
two points which will cause current to flow in a closed
circuit; measured in volts.

Electromagnetic effect: When a current flows through a
coil in a magnetic field, the electrons and the coil con-
taining them experience a magnetic force.

Electronic hearing aid: Consists of a microphone which
converts sound into electrical energy, an amplifier, and
an earphone (receiver) to convert the electrical signal
back into sound.

End correction: Any adjustment made in the measure of
the actual length of a flute’s main tubing to determine
its effective length. End corrections can result from
how the air interacts at the open end of the tube or
the geometry of the tube.

End correction: The distance from the end (or mouth) of
the pipe to the node of the fundamental pressure wave.

Ensemble: A performer attribute of a hall that enables per-
formers to hear each other, and thus to play in time, in
tune, in balance, and with a blending of their sounds.

Envelopment: The degree to which reverberant sound
appears to come from all directions.

Epiglottis: A cartilage flap that can cover the tracheal open-
ing.

Equal-tempered tuning: Division of the octave into 12
equal intervals, or semitones, any two consecutive
notes having the same frequency ratios. In an equal-
tempered octave, a whole tone is equal to exactly two
semitones.

Equilibrium position: “Rest” position of an object where
the sum of all forces acting on it is zero.

Esophagus: A muscular tube behind the trachea that trans-
ports materials from the pharynx to the stomach.

Experimentation: The observation of changes in one or
more dependent variables as a result of manipulating
one or more independent variables.

Facts: The experimental observations or data measure-
ments made by scientists.

Falsetto register: Vocal register used for the production
of mid to high fundamental frequencies. The follow-
ing features are characteristic of the falsetto register:
(1) The vocal folds are longer (up to 50%) and thin-
ner, with smaller vibrating mass. (2) Longitudinal ten-
sion in the ligament is comparatively high. (3)
Vibration amplitude of the folds is small. (4) The vocal
folds tend to lack complete closure during any part of
the vibratory cycle. This results in increased airflow
and a more breathy quality. (5) The signal produced
by glottal airflow tends to be poorer in higher har-
monics. (6) The conversion of “lung energy” into
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