
EE475 Lab #1 Fall 2005

Getting Started With Simple C Programs

The object of this lab is to use the Microsoft Visual C compiler to create, build, and run
several simple C programs. We will be using other code development environments
specifically designed for embedded programming, but it is useful to have access to a
conventional C compiler for testing and prototyping.

Logging On:
1. Wake up the computer (or turn on the power if it is off).
2. Begin by pressing Ctrl+Alt+Delete (Windows XP).
3. Enter your username and password, and select the proper domain.

Launching :
Start the development application: Start > All Programs | Microsoft Visual Studio .NET
2003 | Microsoft Visual Studio .NET 2003

Setting up a Visual C software project:
1. From the Visual Studio File menu, create a "new project." Make it a Win32

Console Project, give it the name "Lab1", and save it in a directory you have
read/write permission: c:\eeclasses\ee475 is a good choice.

2. Again from the File menu, create a new text file. Use the Save As… menu
item to save the file with the name Lab1-1.c into the Lab1 subdirectory that
was created for the project in step 1.

3. In the “Solution Explorer” pane, look at the Sources and the Headers project
folders: if they contain any .cpp files, go ahead and remove them.

4. Select the “Project Properties…” option from the View menu. Look through the
C/C++ options and make sure that the “Use precompiled headers” option is
DISABLED: we are just going to be doing old fashioned C programs.

5. Again in the Solution Explorer pane, do a right-click on the Source Files project
folder and add the Lab1-1.c file to the project. You are now set to write some
C code!

Running a simple program:
Locate the Lab1-1.c window in the workspace and type in the following lines. NOTE
that the editor recognizes that this is a C program because of the .c file extension, and
therefore it highlights various keywords, automatically indents, and so forth.

#include <stdio.h>
#include <stdlib.h>

int main(void)
{

printf("Hello, World!\n");
exit(0);

}

 1

Save the Lab1-1.c file, then select "Build Solution" from the Build menu.

Any compiler or linker errors will appear in the window at the bottom of the display. If
the build reported any errors or warnings, go back to the edit window and fix the
problems.

Finally, select the "Start Without Debugging" option from the Debug menu and see what
happens: a console window should pop up and show the results of your program.

Ask for help if any of the preliminary steps did not work properly.

→ Next, add a few lines of code to your program so that it requests the user to type a line
of input text and echoes it (prints it out). One possibility is something like:

#include <stdio.h>
#include <stdlib.h>

int main(void)
{

char buffer[50];

printf("Hello, World!\n");

printf("Enter a line of text: ");
gets(buffer);
printf(buffer);
printf("\n\n");

exit(0);

}

Save, build, and run. Did it work?

→ What would happen if the user entered more characters than would fit into buffer?
Try it!

→ Also, deliberately make an error in the file, like leaving a semicolon off a line or
misspelling a word, and see what the compiler error(s) look like.

Problems to do in the lab:
For the following lab problems you need to demonstrate a working program to get credit
for it. Have the instructor sign the verification sheet for each working assignment that is
completed. Each problem is weighted equally.

 2

Problem #1: Modify the Lab1-1.c program so that in addition to echoing the input
string it will also return each letter of the input string on a separate line.

For example, your program should take the input:

Hello

And return:

H
e
l
l
o

→ How do you know how long the input string is? In other words, how does C indicate
the end of the input string?

Problem #2: Modify the Lab1-1.c program so that the input string is also echoed in
reversed order. That is, an entry of

Hello

results in an output of

olleH

Problem #3: Find the size in bytes of each of the following data types, using the
sizeof() function. Consult a C reference to see what each type means.

char
unsigned char
signed char
short
short int
int
long int
float
double

 3

Problem #4: The term "little endian" means that the least significant byte is stored in the
first (lowest) address location followed by the more significant bytes in order. The term
"big endian" means that the most significant byte is stored in the first (lowest) address
location. Some microprocessors use little endian storage and others use big endian.

(a) To find out how the PC stores its data, write a new C program called Lab1-2.c
that:

1. Assigns the integer 255 to a variable of type int.
2. Declares a pointer of type unsigned char * , then forces the pointer to point

to the integer variable.
3. Prints out each of the bytes of the integer using the pointer reference.

For example:

int i, val;
unsigned char *ptr;

val=255;

/* Convert the address of val into a pointer of type
unsigned char */
ptr = (unsigned char *) &val;

printf("val is: %d\n",val);
for(i=0;i<sizeof(int);i++)
 printf("byte %d: %d\n",i,*(ptr+i));

→ How many bytes are used by the compiler to store an int variable on this computer?
→ Does the processor appear to be little endian or big endian?
→ Can you have the bytes be displayed as hex digits instead of decimal digits? What
about displaying in binary?

(b) Now modify your program to store the negative number -42563 in the integer
variable. Observe the output bytes and explain the result.

(c) Finally, modify your program again to store the negative number -42563 into a
float variable and print out all of the bytes in order.

→ Locate a floating point format reference book (print or on the web), find out how the
bits are deployed, and explain the resulting value in each byte.

BE SURE TO KEEP COPIES OF YOUR CODE AND INPUT/OUTPUT
EXAMPLES. Even though you may work in pairs in the lab, each student needs
to write his or her own individual report.

 4

Lab Report: Due at THE START OF THE LAB PERIOD NEXT WEEK.

The lab report is to be written up in the Memo format. Each student should submit a
separate lab report. For each problem, write a short description of what you did to solve
the problem. Include commented C code excerpts for each problem and include them
within the memo.

Note: You will need to include the instructor verification sheet to get any credit for the
lab.

Instructor Verification Sheet
EE475 Lab #1

Fall 2005

Student Name:

 Instructor Signature Date
Problem #1 runs correctly

Problem #2 runs correctly

Problem #3 results

Problem #4 runs correctly

Note: This verification sheet must be signed by the instructor and submitted with the lab
report to get any credit for the lab.

 5

	Logging On:
	Launching :
	Setting up a Visual C software project:
	Running a simple program:
	Problems to do in the lab:

