
EE475 Lab #3 Fall 2005

Memory Placement and Interrupts

In this lab you will investigate the way in which the CodeWarrior compiler and linker
interact to place your compiled code and data in the memory of the HC12 evaluation
board. You will also install an interrupt function that is called when the IRQ button is
pressed.

Preliminaries
1. Make a temporary local folder for your work:

c:\EEClasses\EE475\tempxxx .

2. Launch CodeWarrior and create a new project using the New Project Wizard (see
Lab #2 if you don't recall the procedures).

3. Make (compile and link) a dummy main.c program (empty main() routine).

4. In CodeWarrior, open the linker input file, simulator_linker.prm. The
.prm file tells the linker the regions of memory that are available. The ROM and
RAM labels are defined and used to locate the program�s code and data.

→ From the simulator_linker.prm file, record the ROM and RAM address
ranges and include this information in your memo report.

5. Now open the linker output map file, simulator.map. The .map file is
generated by the linker, and lists the results of the linking process, i.e., where the
code and data segments were placed in the HC12 memory. For this minimal C
program note that the program occupies only a few dozen bytes, and there are no
constants and no static data.

Exercise #1:
Now see what happens to the actual memory allocation when you declare an array in
various ways: automatic, static, automatic initialized, static initialized, and global. Do
this by making the following modifications to your C program:

1. Edit your C program by adding the statements within the main() block:

 char buf[40];
 buf[0]='\0';

This creates an automatic storage class array and simply sticks a null in it.

→ Build the program, open the simulator.map file, find the
SECTION-ALLOCATION SECTION and fill out the first column of the table on
the check-off sheet, indicating the size of each of the specified segments. If the

EE475 Lab #3 2

segment is not present, just leave that box blank. Ignore the .abs_section
lines.

2. Now edit your C program to change the declaration to be initialized:

 char buf[40]={"test"};
 buf[39]='\0';

→ Rebuild and note the size of each segment from the linker output file in column 2
of the table.

3. Again edit your C program to change the declaration to static, without initializing:

 static char buf[40];
 buf[0]='\0';

→ Rebuild and note the size of each segment in column 3.

4. Once again edit your program to use a static initialized array:

 static char buf[40]={"test"};
 buf[39]='\0';

→ Rebuild and note the size of each segment in column 4 of the table.

5. Finally, make the buf array declaration global by moving it up outside of the
main() function, i.e.,

char buf[40];

void main(void)
{…

 buf[39]='\0';
…

→ Rebuild and record the size of each segment in column 5.

→ Using the .map file information, demonstrate for the instructor that you can
locate each section and view the memory contents using the debugger.

Note that the memory requirements and linker behavior differ depending on the class of
storage used.

1. If the buffer is automatic and uninitialized, it will only appear on the stack and no
memory is allocated explicitly in the program.

EE475 Lab #3 3

2. If the buffer is automatic but must be initialized, the code image now must
include the initialization string AND some additional instructions that will copy
the initialization string into the buffer (on the stack) before it is used.

3. If the storage class is static, the buffer is placed in a static data segment.

4. Finally, if the buffer is declared global, the linker places it in a global memory
segment.

→ Be sure to explain your observations in your memo report. Does the contents of you
table match these expectations? Which segments contain code (machine instructions)
and which contain data? Verify your results and explain.

Exercise #2:
Replace the main.c file in your project with the main.c from Lab #2 (LED flash
program).

Make the program, fix any errors, and launch the debugger. Set the debugger to use the
P&E target interface, and verify that the code runs properly (LEDs flash) on the HC12
evaluation board.

Once everything is running properly, go back and modify your C program to include an
interrupt function, as follows.

To do this you will have to define an interrupt service routine (ISR) by using the type
qualifier interrupt. This is done as follows:

interrupt num void your_function_name(void)
{

… your ISR code …
}

The interrupt qualifier is important: it tells the compiler to generate an RTI (return
from interrupt) at the end of the function, rather than an RTS (return from subroutine).

The num indicates which interrupt vector number will be loaded with the address of your
interrupt handler.

Write the interrupt function so that it just increments a global variable. Something like:
int vcnt;

interrupt num void your_function_name(void)
{

vcnt++;
}

We want to install this interrupt service routine so that it gets executed when the user
presses switch 1 (SW1) on the processor daughterboard. The button press generates the
XIRQ signal, which is level sensitive. You need to determine which vector number (0, 1,

EE475 Lab #3 4

2, etc.) is associated with the XIRQ signal on the HC12. The vector number replaces
num in the interrupt function declaration.

Keep in mind that after your program sets the interrupt vector to point to your function,
you will need to enable (unmask) the XIRQ interrupt signal using the X bit in the
condition code register: _asm(“andcc #BF”).

Once enabled, XIRQ is unmaskable, but for other interrupts on the HC12 you need to do
an interrupt enable using the statement EnableInterrupts; in your main()
program.

Make and load your program, then use the debugger to observe the vcnt variable before
and after you press the IRQ button on the I/O board. Is the variable incremented?

→ Show the instructor where the XIRQ vector address is located in the interrupt
vector table. Also, show that the contents of that vector is the address of
your_function_name(). Give your answers in hexadecimal.

Exercise #3:
(3a) Investigate what happens if you enable XIRQ but you do not install the interrupt
service routine.

→ In other words, where does the program jump to if no vector address has been
installed?

(3b) Finally, modify the LED flashing loop in your main() routine so that it stops
looping (and thus stops flashing) once the XIRQ button has been pressed.

NOTE that you should put a statement after the loop to prevent your main() program
from exiting. An infinite loop is a good example.

→ What happens if you do exit from the main() routine??
→ Is there an instruction that you can put in your program to �halt� execution and return
control to the debugger�just as if you had pressed the red stop button?

Instructor Verification Sheet
Lab #3 Fall 2005

Student Name:

SECTION-ALLOCATION SECTION segment sizes in bytes and start address in hex:
Section Name (.map file) 1

auto
2

auto+init
3

static
4

static+init
5

global
Size (bytes): .text

Start Address:
Size (bytes): .bss

Start Address:
Size (bytes): .data

Start Address:
Size (bytes): .startData

Start Address:
Size (bytes): .init

Start Address:
Size (bytes): .common

Start Address:
Size (bytes): .stack

Start Address:
Size (bytes): .copy

Start Address:

 Instructor Initials Date
#1 Locate and view
segments in memory
according to .map file.

#2 Demonstrate functioning
interrupt service routine and
vector table entry.

	Preliminaries
	Exercise #1:
	Exercise #2:
	Exercise #3:

