
EE475  Lab #3      Fall 2005 
 

Memory Placement and Interrupts 
 
In this lab you will investigate the way in which the CodeWarrior compiler and linker 
interact to place your compiled code and data in the memory of the HC12 evaluation 
board.  You will also install an interrupt function that is called when the IRQ button is 
pressed. 

Preliminaries 
1. Make a temporary local folder for your work:  

c:\EEClasses\EE475\tempxxx . 

2. Launch CodeWarrior and create a new project using the New Project Wizard (see 
Lab #2 if you don't recall the procedures). 

3. Make (compile and link) a dummy main.c program (empty main() routine). 

4. In CodeWarrior, open the linker input file, simulator_linker.prm.  The 
.prm file tells the linker the regions of memory that are available.  The ROM and 
RAM labels are defined and used to locate the program�s code and data. 

→ From the simulator_linker.prm file, record the ROM and RAM address 
ranges and include this information in your memo report. 

5. Now open the linker output map file, simulator.map.  The .map file is 
generated by the linker, and lists the results of the linking process, i.e., where the 
code and data segments were placed in the HC12 memory.  For this minimal C 
program note that the program occupies only a few dozen bytes, and there are no 
constants and no static data. 

Exercise #1: 
Now see what happens to the actual memory allocation when you declare an array in 
various ways:  automatic, static, automatic initialized, static initialized, and global.  Do 
this by making the following modifications to your C program: 
 

1. Edit your C program by adding the statements within the main() block: 
 
 char buf[40]; 
 buf[0]='\0'; 

 
This creates an automatic storage class array and simply sticks a null in it. 

→ Build the program, open the simulator.map file, find the 
SECTION-ALLOCATION SECTION and fill out the first column of the table on 
the check-off sheet, indicating the size of each of the specified segments.  If the 
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segment is not present, just leave that box blank.  Ignore the .abs_section 
lines. 

 
2. Now edit your C program to change the declaration to be initialized: 

 
 char buf[40]={"test"}; 
 buf[39]='\0'; 

 
→ Rebuild and note the size of each segment from the linker output file in column 2 
of the table. 
 
3. Again edit your C program to change the declaration to static, without initializing: 

 
 static char buf[40];  
 buf[0]='\0'; 
 
→ Rebuild and note the size of each segment in column 3. 
 

4. Once again edit your program to use a static initialized array: 
 

 static char buf[40]={"test"}; 
 buf[39]='\0'; 
 
→ Rebuild and note the size of each segment in column 4 of the table. 
 

5. Finally, make the buf array declaration global by moving it up outside of the 
main() function, i.e., 

 
char buf[40]; 
 
void main(void) 
{… 

 buf[39]='\0'; 
… 

→ Rebuild and record the size of each segment in column 5. 
 

 
→ Using the .map file information, demonstrate for the instructor that you can 
locate each section and view the memory contents using the debugger. 
 
Note that the memory requirements and linker behavior differ depending on the class of 
storage used. 

1. If the buffer is automatic and uninitialized, it will only appear on the stack and no 
memory is allocated explicitly in the program. 
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2. If the buffer is automatic but must be initialized, the code image now must 
include the initialization string AND some additional instructions that will copy 
the initialization string into the buffer (on the stack) before it is used. 

3. If the storage class is static, the buffer is placed in a static data segment. 

4. Finally, if the buffer is declared global, the linker places it in a global memory 
segment. 

→ Be sure to explain your observations in your memo report.  Does the contents of you 
table match these expectations?  Which segments contain code (machine instructions) 
and which contain data?  Verify your results and explain. 
 

Exercise #2: 
Replace the main.c file in your project with the main.c from Lab #2 (LED flash 
program). 

Make the program, fix any errors, and launch the debugger.  Set the debugger to use the 
P&E target interface, and verify that the code runs properly (LEDs flash) on the HC12 
evaluation board. 

Once everything is running properly, go back and modify your C program to include an 
interrupt function, as follows. 

To do this you will have to define an interrupt service routine (ISR) by using the type 
qualifier interrupt.  This is done as follows: 

interrupt num void your_function_name(void) 
{ 

… your ISR code … 
} 

The interrupt qualifier is important:  it tells the compiler to generate an RTI (return 
from interrupt) at the end of the function, rather than an RTS (return from subroutine). 

The num indicates which interrupt vector number will be loaded with the address of your 
interrupt handler. 

Write the interrupt function so that it just increments a global variable.  Something like: 
int vcnt; 
 
interrupt num void your_function_name(void) 
{ 

vcnt++; 
} 

We want to install this interrupt service routine so that it gets executed when the user 
presses switch 1 (SW1) on the processor daughterboard.  The button press generates the 
XIRQ signal, which is level sensitive.  You need to determine which vector number (0, 1, 
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2, etc.) is associated with the XIRQ signal on the HC12.  The vector number replaces 
num in the interrupt function declaration. 

Keep in mind that after your program sets the interrupt vector to point to your function, 
you will need to enable (unmask) the XIRQ interrupt signal using the X bit in the 
condition code register:  _asm(“andcc #BF”). 

Once enabled, XIRQ is unmaskable, but for other interrupts on the HC12 you need to do 
an interrupt enable using the statement EnableInterrupts; in your main() 
program. 

Make and load your program, then use the debugger to observe the vcnt variable before 
and after you press the IRQ button on the I/O board.  Is the variable incremented? 
 
→ Show the instructor where the XIRQ vector address is located in the interrupt 
vector table.  Also, show that the contents of that vector is the address of 
your_function_name().  Give your answers in hexadecimal. 
 

Exercise #3: 
(3a) Investigate what happens if you enable XIRQ but you do not install the interrupt 
service routine. 

→ In other words, where does the program jump to if no vector address has been 
installed? 

(3b) Finally, modify the LED flashing loop in your main() routine so that it stops 
looping (and thus stops flashing) once the XIRQ button has been pressed. 

NOTE that you should put a statement after the loop to prevent your main() program 
from exiting.  An infinite loop is a good example. 
 
→ What happens if you do exit from the main() routine?? 
→ Is there an instruction that you can put in your program to �halt� execution and return 
control to the debugger�just as if you had pressed the red stop button? 
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Student Name:         
 
 
 
SECTION-ALLOCATION SECTION segment sizes in bytes and start address in hex: 
Section Name (.map file) 1 

auto 
2 

auto+init 
3 

static 
4 

static+init 
5 

global 
Size (bytes):      .text 

Start Address:      
Size (bytes):      .bss 

Start Address:      
Size (bytes):      .data 

Start Address:      
Size (bytes):      .startData 

Start Address:      
Size (bytes):      .init 

Start Address:      
Size (bytes):      .common 

Start Address:      
Size (bytes):      .stack 

Start Address:      
Size (bytes):      .copy 

Start Address:      
 
 
 
 
 
 
 
 
 Instructor Initials Date 
#1 Locate and view 
segments in memory 
according to .map file. 

  

#2 Demonstrate functioning 
interrupt service routine and 
vector table entry. 
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