
EE475 Lab #5 Fall 2005

Basic Multitasking

This lab introduces some simple non-preemptive multitasking concepts and issues. The
way in which the processor is shared among multiple process threads, or tasks, is
important when considering system performance, latency, and expandability.

Preliminaries
1. Make a temporary local folder for your work:

c:\EEClasses\EE475\tempxxx .

2. Launch CodeWarrior and create a new project using the New Project Wizard (see
Lab #2 if you don't recall the procedures).

3. Replace the main.c file with your own code. You may want to use portions of
your previous lab exercises as a starting point.

Exercise #1: Simple Background Loop

For the first exercise this week you will be creating a simple background task loop.

Create a set of 8 independent functions named task_0(), task_1(), � task_7().
When run, the function must toggle the state of the LED corresponding to the task
number, e.g., task_4() must toggle LED number 4 on the SLK main board while
leaving all the other LEDs alone.

→ The first four LEDs (LED1 � LED4) on the SLK main board are connected by default
to PAD04/AN04 � PAD07/AN07, respectively (no jumper wires required).For the other
four LEDs carefully use jumper wires to connect PM0 � PM3 to LEDs LED5 � LED8
on the SLK main board.

RECALL that you will have to enable the proper port pins as outputs prior to driving the
LEDs on and off, and also properly assert the SLK LED enable (Port T bit 4).

→ Write a main() program that tests your 8 task functions by running them one after
the other in a loop. Put in a delay so that you can see each LED blink as expected.

Exercise #2: Running the Core Faster

The 9S12C32 processor on the CSM daughterboard uses a 16MHz crystal. The processor
core (bus clock) runs normally at the crystal frequency divided by 2, or 8MHz. The
processor core is able to function correctly at up to 24MHz by using the on-chip phase-
lock loop (PLL) to generate a frequency multiplied clock. Refer to the PLL section of the
9S12 data sheet for more information. The following instructions can be used to program
the PLL to make the bus clock 24MHz instead of 8MHz:

EE475 Lab #5 2

/*
 * Set up oscillator phase lock loop (PLL) for 24MHz bus speed.
 * (Procedure taken from HCS12 serial monitor code).
 */
 CLKSEL_PLLSEL = 0; // Disengage PLL
 PLLCTL_PLLON = 1; // Turn on PLL

 SYNR = 0x02; // Set loop multiplier to 3 (SYNR = 2, mult=SYNR + 1)
 REFDV = 0x00; // Set input osc divider to 1 (REFDV=0, div=REFDV+1)

 _asm("nop"); _asm("nop"); // Delay for stabilization

 while(CRGFLG_LOCK != 1){}; // Wait until clock circuit locks on

 CLKSEL_PLLSEL = 1; // Engage PLL and go!

→ Add these instructions to the start of your main() program and observe the effect on
the LED flash rate. Be sure to explain this behavior in your lab report�including use of
the PLL registers.

Exercise #3: Task Loop With Timing

Next, experiment with a way that you can use the Real Time Interrupt so that
your main() program calls each task according to a specific schedule.

Your interrupt service routine and task loop must use a global unsigned char
variable called taskbits. The task loop in main() must test one after the other each
of the least significant 8 bits in the variable taskbits. If a bit is one, your main
routine should clear it and call the corresponding function task_n(), and so forth, like
the following pseudocode:
loop forever:

for 0 ≤ n ≤ 7 :
if bit n in taskbits is '1': set that bit to zero and call task_n();
 else continue

end for n
end forever
Your interrupt routine must keep track of the call schedule for each task, according to the
schedule table given below. When the appropriate number of interrupt ticks have
occurred, your ISR must set the proper bits in taskbits so that your background task
loop in main() will trigger the proper tasks.

EE475 Lab #5 3

Task Name Call every:

task_0() 250 ms

task_1() 500 ms

task_2() 1 s

task_3() 2 s

task_4() 3 s

task_5() 4 s

task_6() 16 s

task_7() 32 s

NOTE that you will not be able to obtain the precise durations due to the coarseness of
the available Real Time Interrupt intervals. Choose the slowest RTI frequency
that will still provide better than 1 ms accuracy for each time interval, and include your
precision calculations in your memo report.

→ Also, try your program both with and without the PLL timing change. Does the Real
Time Interrupt rate change according to the bus clock?

Exercise #4: Task Loop With Timing and Disabling

→ Finally, add an IRQ interrupt service routine and a jumper wire from one of the SLK
pushbuttons to the IRQ* (pin 2) on the daughterboard header. Create another global
variable so that each time you press the button your ISR will cause task_n() not to be
called by preventing its enable bit from ever getting set in the taskbits variable. Start
with n = 0 and then increment n after each button press. In other words, after 8 presses
none of the tasks should be called. With the 9th and subsequent presses your program
should re-enable the 8 tasks one at a time.

Also, be sure that IRQE is set for edge-triggered operation.

As you implement your program, consider if you might be able to use a task table
consisting of an array of pointers to each function. This could reduce the size and
complexity of your program, and make it easier to expand. We'll work on this more in
future labs.

→ Show the instructor your time-controlled AND IRQ-controlled LEDs in operation.

EE475 Lab #5 4

Lab #5 Fall 2005

Student Name:

 Instructor Signature Date
Ex #4 Time and switch
controlled tasks

Lab Report
The lab report is to be written up in the Memo format. Be sure to put the lab number in
the Memo header along with your name and date. For each exercise, answer the given
questions and demonstrate your understanding of the exercise. Include commented file
excerpts and this instructor verification sheet to get credit for the lab.

→ This lab report is due a week from today by 5PM.

	Preliminaries
	Exercise #1: Simple Background Loop
	Exercise #2: Running the Core Faster
	Exercise #3: Task Loop With Timing
	Exercise #4: Task Loop With Timing and Disabling
	Lab Report

